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ABSTRACT 

The link between changes in the material crystal structure and its mechanical, electronic, 

magnetic, and optical functionalities – known as the structure-property relationship – is the 

cornerstone of the contemporary materials science research. The recent advances in scanning 

transmission electron and scanning probe microscopies (STEM and SPM) have opened an 

unprecedented path towards examining the materials structure–property relationships on the 

single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based 

approaches for cross-correlation of structure and property variables obtained in different 

information channels of the STEM and SPM experiments. Here we have designed an approach 

based on a combination of sliding window fast Fourier transform, Pearson correlation matrix, and 

linear and kernel canonical correlation, to study a relationship between lattice distortions and 

electron scattering from SPM data on graphene with defects. Our analysis revealed that the strength 

of coupling to strain is altered between different scattering channels, which can explain 

coexistence of several quasiparticle interference patterns in nanoscale regions of interest. In 

addition, the application of kernel functions allowed us to extract a non-linear component of the 

relationship between the lattice strain and scattering intensity in graphene. The outlined approach 

can be further utilized towards analyzing correlations in various multi-modal imaging techniques 

where the information of interest is spatially distributed and generally has a complex 

multidimensional nature.  
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Introduction. The central postulation of the contemporary structure-property relation 

paradigm is that the properties of materials are a direct function of their structure1-3. This allows 

scenarios in which relatively small changes in the material crystal structure may have a decisive 

impact on the physical properties of the system. For example, introduction of dopant atoms into a 

lattice of a Mott insulator can turn it into a superconductor whose critical transition temperature 

(Tc) is sensitive to subtle variations of the inter-atomic bond lengths and bond angles in the crystal 

lattice structure4-6. The recently developed framework of materials cartography3, based on 

application of graph theory and machine learning algorithms to database of materials ab-initio 

calculations, allows “breaking” the crystal system down to the individual geometric fragments and 

identifying the geometric features that most influence the physical property of interest (for 

example, Tc).  

Despite achieving substantial progress in theoretical prediction of structure-property 

relationships, the experimental identification of a connection between material functionalities and 

variations in the crystal lattice geometry has been typically difficult and indirect. Recently, the 

progress in the development of high-resolution, multi-modal scanning transmission electron and 

scanning probe microscopies (STEM and SPM) has allowed researchers performing simultaneous 

measurements of materials structural parameters (e.g., lattice distortion) and functional properties 

(e.g., perturbation in local density of states) in real space with sub-nanometer precision2,7,8. This 

potentially allows studying the structure–property relationship in materials on the single-defect 

and atomic-configuration levels.  However, methods to cross-correlate information obtained in 

different information channels and to describe the obtained correlation in terms of certain (linear 

or non-linear) physical models are very limited and yet are increasingly necessary due to the ever-

growing volumes of relevant experimental data.  

Here we illustrate how to use information on local atomic coordinates and parameters of 

quasiparticle scattering obtained from atomically-resolved SPM images of graphene samples with 

defects to mine structure-property relationships in these systems. Due to unique properties of the 

(undistorted) graphene, in which the charge density oscillations are commensurate with the 

underlying atomic lattice9-11, both structure and property information channels can be accessed in 

a single SPM image acquired in the electron tunneling regime10,11. By applying a combination of 

the sliding window fast Fourier transform, Pearson correlation matrix, and linear and kernel 
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canonical correlation analysis, we showed the presence of a non-negligible correlation between 

the nanoscale lattice strain and the intensities of inter-valley quasiparticle scattering at defect sites. 

Our analysis also revealed that the strength of coupling to strain is altered between different 

scattering channels, which can explain an emergence of more than one quasiparticle scattering 

pattern in the sample (the so-called fine structure of the electronic superlattice). Finally, application 

of the kernelised canonical correlation analysis aided in extracting a non-linear component of the 

relationship between the lattice strain and scattering intensity in graphene. 

Experimental systems. To illustrate our approach, and its universality, we have selected 

two different graphenic systems. The first system is a monolayer of reduced graphene oxide on 

Au(111) substrate, which we denote as GO. Figure 1a shows the representative current map of such 

system obtained in the small bias regime (2 mV) of a conductive atomic force microscopy (c-

AFM) where the tunneling current signal is proportional to the local density of states at the Fermi 

level12. The second system is the top graphene layer of graphite, peppered with the hydrogen-

passivated vacancies and nanosized holes, GH
13. The spatial distribution of -electronic states in 

this system, obtained via scanning tuneling microscopy, is shown in Fig. 1b. More experimental 

details on both systems, including sample preparation procedures, can be found in Ref. 1212 and 

Ref. 1313. The global 2-dimensional fast Fourier transform (2D FFT) performed on the data from 

Fig. 1a and 1b shows a very similar reciprocal space patterns for both systems which are 

characterized by a presence of two well-defined hexagons (Fig. 1c and 1d). These two hexagons 

are rotated by 30o with respect to each other, and their lattice constants differ by a factor of ≈ √3. 

The outer hexagon corresponds to graphene reciprocal lattice points. The deformation of the 

perfect graphene lattice would result in a shift of the centers of the FFT kl = (k1, k2, k3) spots from 

their original high-symmetry positions depicted in Fig. 1e. The inner hexagon corresponds to a 

formation of the electronic superlattice with an average unit cell of ൫√3 × √3൯ܴ30୭ where R = a0  

is a translational vector of unperturbed graphene lattice (hereafter referred as R3 superlattice). We 

denote the FFT spots corresponding to R3 superstructure as Ke = (K1, K2, K3). Due to the symmetry 

properties of the FFT method, it is sufficient to analyze the correlations associated with only 3 

distinct FFT peaks (not paired by the inversion symmetry) in each hexagon. 

  The formation of the R3 superlattice in undistorted graphene can be explained as the 

constructive interference between incident and (back)scattered states associated with electron 
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valleys at the opposite corner points, ܭାand ିܭ, of the hexagonal Brillouin zone (BZ)10,11,14. The 

corresponding momentum scattering is ℏݍ = ℏ(݇ி +  where kF and G are Fermi wavevector ,(ܩ

and the reciprocal lattice vector of graphene, respectively see Fig. 1 (e). Owing to the symmetry 

of graphene lattice, there are three backscattering channels that we denote as ܭ௜
ା → ௜ܭ 

ି (i=1, 2, 

3). The circle-like shapes of the FFT spots associated with backscattering channels (reciprocal 

lattice) in Fig. 1c and Fig. 1d are due to the distribution of scattering (lattice) vectors across the 

experimental image. Note that for point defects that preserve the lattice symmetry, the scattering 

probability is equivalent in all the three channels resulting in the same intensity of the six inner 

hexagon’s peaks in FFT. However, the equivalency between different scattering channels may not 

necessarily hold for the distorted graphene lattice. Indeed, at the local scale we are able to observe 

a strong modulation in the relative intensities of the inner hexagon FFT spots that results in a fine 

structure of the electronic superlattice around the defects in the real space (see Fig. 1b, 1f and 1g). 

The precise origin of such a fine structure is not exactly understood at the present moment.  

Sliding FFT. Our goal is to analyze a structure-property relationship in the two graphenic 

systems by studying the correlation between local lattice distortions associated with kl peaks and 

electronic features associated with Ke peaks (see Fig. 1e). In the first step, we shift a square window 

of size (wx, wy) across the input image (Tx, Ty) in series of steps xs and ys such that the entire image 

is scanned. At each step, the 2D FFT is computed for the image portion that lies within the window. 

This procedure is known as sliding FFT method and its application to scanning probe microscopic 

data has been described in detail in our earlier publication15. The amplitudes and coordinates of 

the selected peaks are extracted from each 2D FFT image by fitting them with 2D Gaussian 

distribution, 

 

൫ܳ௫ܩ , ܳ௬൯ = −exp ൤ ܣ ൬
൫ொೣିொೣ

బ൯
మ

ା൫ொ೤ିொ೤
బ൯

మ

ଶఙమ ൰൨, (1) 

 

where A is the peak amplitude,  (ܳ௫ , ܳ௬) are the Cartesian coordinates of the peak position, and ߪ 

is the standard deviation.  
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We first compute the lattice strain ߝ defined as the variation of the lattice vector along the 

three directions shown in Fig. 2a, 

 

௜ߝ = (ܽ௜ − തܽ௜)/ തܽ௜. (2) 

 

Here ai is the unit cell vector calculated for each pixel of the resultant sliding FFT maps using a 

standard relation between real space and reciprocal space lattices in graphene (index i stands for 

three different directions) and തܽ௜ is the mean value of unit cell vector in the overall image; for the 

randomly fluctuating strain fields the mean value is close to that in the unperturbed lattice, തܽ௜ ≈

ܽ଴. We also compute the variations in the unit cell area,  ∆ܵ = ݏ) −  is the mean of ݏ where ,ݏ̅/(ݏ̅

the 3-element vector such that ݏ௜௝ = 1/2൫ܽ௜ ௝ܽ൯. In a similar fashion, the relative shift ∆ܭ in the 

positions of the ܭ௘ vectors of the R3 superlattice is determined as ∆ܭ௜ = ௜ܭ) − (ഥ௜ܭ ⁄ഥ௜ܭ . The 

scattering intensities ܫ௄೔
= ௜ܭ)ܫ

ା → ௜ܭ 
ି) associated with the R3 superlattice are given by the 

amplitudes of the corresponding Ke spots extracted directly from the sliding FFT maps. 

Mining the linear relationships. We start with exploring a relationship between the lattice 

strain and parameters of the R3 electronic superlattice in graphene via pairwise correlation matrix 

analysis. The correlation parameter for each pair of variables x and y is defined as a linear Pearson 

correlation coefficient, 

 

௫௬ݎ =
∑ ௜ݔ) − ௜ݕ)(ݔ̅ − ത)ேݕ

௜ୀଵ

ට∑ ௜ݔ) − ଶே(ݔ̅
௜ୀଵ ට∑ ௜ݕ) − ത)ଶேݕ

௜ୀଵ

 
(3) 

 

where ̅ݔ is the mean of x , y is the mean of ݕത, and N is a number of scalar observations. The results 

for GO and GH samples are shown in Fig. 2b and 2c respectively. We note in passing that the typical 

range of the lattice strain values in (2) was within 0.1 (10%) in both samples. Remarkably, the 

dependence of the scattering intensity on the unit cell area and corresponding strain components 

shows quite an opposite behavior for our two samples. In the GO sample, there is a strong negative 
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correlation (maximum absolute value |r|max0.51) for all backscattering channels (Fig. 2b). This is 

not the case, however, for GH sample (Fig. 2c), in which the scattering intensities associated with 

two channels (ܫ௄భ
and ܫ௄మ

) show a considerable positive correlation (|r|max0.59). Possible origin of 

different behavior of coupling coefficients in two samples will be explained below.  

We first analyze the correlation matrix results for GO sample. We recall that some oxygen 

functional groups, and in particular epoxy group, are known to remain on the surface of reduced 

graphene oxide.16,17 The effect of the epoxy functional groups on the structure of graphene 

monolayer is two-fold. First, they induce the out-of-plane distortions (“rippling”) of the graphene 

sheet.17-19 As the experimental image gives a 2D-projection of a 3D lattice structure, the rippling 

of graphene sheet tilts the lattice with respect to the viewing direction causing an apparent 

contraction of the lattice constant. Second, the presence of epoxy groups is known to induce 

changes in the C-C bond lengths, including a considerable stretching of the nearby bonds up to 

1.58 Å18,20,21, that may well be hidden from our view “under” the curvature regions in the 

experimental image. Both curvature22 and stretched C-C bonds23,24 can lead to the enhancement of 

the density of states in the surrounding region, although a simple correlation analysis may not 

allow us to disentangle these two contributions. Particularly, as graphene bonds are stretched, first-

principles calculations show emergence of new peaks in the density of states that shift towards the 

Fermi level with increasing the length of C-C bond24. The dependence of the density of states per 

area on the bond length can also be understood from the simple tight-binding (TB) model 

perspective. In the nearest-neighbor TB approximation, the density of states D(E) in monolayer 

graphene is given by25 

 

(ܧ)ܦ =
|ா|

గ√ଷఊమ, (4) 

 

where ߛ is the nearest neighbor hopping parameter. The dependence of the hopping parameter ߛ 

on the bond length can be described in terms of the exponential decay model,26 

 

ߛ ≅  ,(ߝ߬−) ଴expߛ
(5) 



9 

 

 

where ߬  is typically assigned values between 3 and 4.27 It follows from (4) and (5) that in agreement 

with first-principles calculations, the expanded lattice constant in the curved regions can lead to a 

higher density of states. The enhancement of density of states can in turn increase the number of 

states participating in the scattering between different valleys at the given energy “under” the 

curved regions of GO sample. This can explain the apparent negative correlation coefficient 

between strain components and the scattering amplitude in Fig. 2b. 

We now turn to the GH sample. As the surface of this sample is peppered with mono- and 

multi-vacancies,13 as well as with larger holes,28 we expect an alteration of the in-plane bond 

distances and variations in associated nanoscale strain fields across the surface. It should be noted 

that in contrast with the GO sample, the out-of-the-plane distortions in the GH sample are mainly 

limited to the immediate periphery of the monovacancy-hydrogen complexes and that no hydrogen 

atoms are adsorbed on the surface in other regions.13 Thus, the mainly positive correlation between 

the strain components and the scattering amplitude seen in Fig. 2c shows that in agreement with 

equations (4) and (5) the density of states available for scattering is enhanced with increasing  bond 

length. Notably, the character of coupling between the strain and the scattering intensity in the GH 

sample is clearly altered for ܭଶ
ା → ଶܭ

ି backscattering channel as compared to ܭଵ
ା → ଵܭ

ି and  

ଷܭ
ା → ଷܭ

ି channels which can be easily seen from the correlation matrix in Fig. 2c. Indeed, the ܫ௄మ
 

intensity component shows significantly lower positive correlation values for 1 and 3 components 

of strain, as well a negative value for 2 strain component. As shown in Fig. 1f and 1g, a 

suppression of the contribution from FFT K2 spots is associated with the formation of the staggered 

dimer-like superlattice in the real space image, whereas all the three Ke spots are required to 

produce the hexagonal superlattice. The fine structure of the electronic superlattice associated with 

the coexistence of staggered dimer (sometimes characterized as “honeycomb”) and hexagonal 

superlattices has been consistently observed in different STM experiments on graphenic 

surfaces.14,29,30 Our correlation matrix analysis suggests that a different coupling of backscattering 

channels to strain fields can explain this fine structure. 

Finally, we note that in both systems we found only a relatively small correlation 

(|r|max0.33) between the lattice strain and the variation in the momentum space positions of the 
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electron scattering maxima. We recall that in the undeformed graphene lattice the Ke scattering 

maxima are located at the corners of the graphene BZ (see Fig. 1e) and that the coordinates of the 

latter in both deformed and undeformed lattices are obtained through a direct linear transformation 

of the reciprocal space lattice vectors. Hence, our correlation analysis indicates that the location of 

the electron scattering maxima (“Dirac valleys”) in the deformed graphene lattice do not coincide 

with the position of the BZ corners. 

The standard Pearson correlation analysis that was used so far is limited to analyzing 

bivariate correlations. Canonical correlation analysis (CCA), on the other hand, allows grouping 

the variables in each multivariate dataset such that optimal correlation is achieved between two 

sets31. Specifically, CCA solves the problem of finding basis vectors w and v for two multi-

dimensional datasets X and Y such that the correlation between their projections ܠ → ,ܟ〉  and 〈ܠ

ܡ → ,ܞ〉  onto these basis vectors is maximized (see schematics in Fig. 3a). The canonical 〈ܡ

correlation coefficient  can be expressed as32 

 

ߩ = max
ܞ,ܟ

ܞܡܠᇲ஼ܟ

ටܟᇲ஼ܞܟܠܠᇲ஼ܞܡܡ
 , (6) 

 

where Cxx, Cyy are auto-covariance matrices, and Cxy, Cyx are cross-covariance matrices of x and 

y. The projections ܉ = =and b ܠᇱܟ   .represent the first pair of canonical variates ܡᇱܞ 

We apply the CCA method to analyze the dependency of the scattering intensities on 

variations of the lattice parameter. The canonical correlation between the components of the 

apparent strain and the intensity of electron scattering in GO sample has a value of  = 0.50. The 

associated canonical variables scores are 

 

 

ܽ௜
௦௧௥௔௜௡ = ௜(ଵߝ)0.31  + ௜(ଶߝ)0.73 +  ௜(ଷߝ)0.32

ܾ௜
௔௠௣௟ = ௜(௄ଵܫ)0.37− − ௜(௄ଶܫ)0.41 −  ௜(௄ଷܫ)0.80

(7) 

 



11 

 

where the magnitudes of the coefficients before the variables give the optimal contributions of the 

individual variables to the corresponding canonical variate. For GH samples, the CCA correlation 

analysis returns a value of  = 0.62 and the canonical scores are 

  

ܽ௜
௦௧௥௔௜௡ = ௜(ଵߝ)0.37  + ௜(ଶߝ)0.50 +  ௜(ଷߝ)0.36

ܾ௜
௔௠௣௟ = ௜(௄ଵܫ)0.39 − ௜(௄ଶܫ)0.33 +  ௜(௄ଷܫ)0.80

(8) 

 

Note that for the GH sample in (8) the coefficient before ܫ௄మ
 has a negative value, whereas the rest 

of the coefficients are positive. This shows that the scattering intensity associated with the ܭଶ
ା →

ଶܭ
ି  channel responses to the changes in the bond lengths in the opposite fashion as compared to 

ଵܭ
ା → ଵܭ

ି and  ܭଷ
ା → ଷܭ

ି channels. This distinctive coupling of the strain to the ܭଶ
ା → ଶܭ

ି 

scattering channel is in the agreement with Pearson correlation matrix analysis in Fig. 2c and 

confirms that the origin of superlattice fine structure in GH sample stems from a subtle connection 

between certain combination of strain fields to the scattering intensity in different channels. 

Likewise, for the GO sample in (7), the scattering intensity associated with ܭଷ
ା → ଷܭ

ି 

backscattering channel and the 2 component of strain show the strongest contribution to their 

respective canonical variates, hinting at the important role of the non-uniform strain-scattering 

relation in occurrence of various superlattice patterns observed in Fig. 1a. Note that for both GO 

and GH cases the canonical correlation plots in Fig. 3b and Fig. 3c clearly show a presence of 

nonlinear associations between strain and scattering intensities. In the remaining part of the paper, 

we will discuss how such a non-linear features can be discovered in the combinatorial library of 

distortion modes and electronic scattering. 

 

Mining the non-linear associations. Due to its linearity, the CCA may not extract useful 

descriptors from the data in the presence of non-linear relationships between variables. The 

kernelization of CCA offers an alternate solution by first performing a non-linear mapping ߮௫ and 

߮௬ of the data points to a higher dimensional space, 

 

߮௫: ܠ → ߮௫(ܠ) ∈  ௫ߔ

߮௬: ܡ → ߮௬(ܡ) ∈  ,௬ߔ
(9) 
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and then performing CCA in the new feature space. In such cases, the linear model found in the 

new feature space corresponds to a nonlinear model in the input space32. The computational 

complexity arising from the high dimensionality mapping is addressed by using the kernel 

functions,32-35  

 

݇௫൫ܠ௜ , ௝൯ܠ = ൻ߮௫(ܠ௜), ߮௫൫ܠ௝൯ൿ 

݇௬൫ܡ௜ , ௝൯ܡ = ൻ߮௬(ܡ௜), ߮௬൫ܡ௝൯ൿ. 
(10) 

 

We look for a correlation between functions ݂ ∈ ݃ ௫ andߔ ∈  ,௬ of the formߔ

 

(ݔ)݂ = ∑ ௜ܠ)௜݇௫ߙ , ே(ܠ
௜ୀଵ   

(ݕ)݃ = ∑ ௜ܡ)௜݇௬ߚ , ே(ܡ
௜ୀଵ , 

(11) 

 

where  and β are the expansion coefficients. Then, similar to linear CCA, the objective of kernel 

CCA can be written as32,33  

 

ߩ = max
ఈ,ఉ

ࢼ೤ࡷೣࡷᇲࢻ

ටࢻᇲೣࡷ
మࢼ∙ࢻᇲࡷ೤

మ ࢼ
 , (12) 

 

where (ࡷ௫)௜௝ = ݇௫൫ܠ௜ , ௜௝(௬ࡷ) ௝൯ andܠ = ݇௬൫ܡ௜ ,  ௝൯ are Kernel matrices (see Fig. 4a forܡ

schematics). The regularization parameter is usually introduced to kernel CCA model for avoiding 

overfitting problems in a higher dimensional space.32  

We use the polynomial kernel (polykernel) functions of the form ݇(܉, (܊ = ,܉〉) 〈܊ +  ௗ(ߟ

which are well suited for extracting non-linear relationships that may occur in our system. The 

corresponding kernel Hilbert space is a finite-dimensional vector space, whose dimension depends 

only on d.  The first degree polykernel, d = 1, captures linear correlations, and is equivalent to 

linear CCA.  Second degree polykernel, d = 2, captures all second order statistics, and so forth. 

We started with testing kernel CCA on synthetic datasets with strong non-linear relationships 

between stimulus and response. The dependency of the correlation coefficient on the polynomial 
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order of kernel function for several synthetic datasets is shown in Fig. 4c. One can immediately 

see that the quadratic dependency between stimulus and response can easily be captured by the d 

= 2 polykernels. On the other hand, capturing exponential relation requires polykernels of the order 

as high as d = 5. Overall, observing the behavior of the kernel correlation coefficient with 

increasing the dimension of the corresponding kernel Hilbert space can provide an important 

information about the type of non-linear relationship between the multivariate datasets under the 

consideration. We also demonstrated in Fig. 4c that the application of the polynomial kernels to 

the synthetic periodic function returns a very low correlation value, indicating that in general the 

appropriate kernel function must be selected for each physical problem. It is noteworthy that a 

presence of “distortion” within stimulus-response relationship associated with a higher order 

correlation between some of the variables from two multidimensional datasets decreases the 

overall correlation between corresponding canonical variates for a given polykernel. The overall 

canonical correlation values can also be reduced due to a substantial level of noise in some 

variables (for real-world physical systems this may happen due to specific limitations on 

measuring accurately certain components of forces and fields).  

We now describe an application of the kernel CCA to finding a non-linear relationship 

between lattice strain components and scattering intensity in Go and GH samples. As discussed 

earlier in the paper, we expect a presence of the non-linear contribution to the density of states 

(and associated scattering intensity) in a form of (ܧ)ܦ~exp (2߬ߝ). Figure 4d shows the values of 

kernel correlation coefficient for different polykernel orders for the GO sample. The d = 1 case 

reproduces perfectly the results of linear CCA. Overall, the dependency of the correlation 

coefficient on polykernel order closely resembles the test result for exponential relation between 

stimulus and response (see Fig. 4c). This implies that, using kernel CCA, we were able to uncover 

the “hidden-under-the-curvature” component of the correlation between the modulation of the 

lattice constant and the scattering intensity in the GO sample. Remarkably, we found very similar 

behavior of the kernel correlation coefficient in the GH sample that does not have significant out-

of-the-plane curvature. This further confirms that the kernel CCA allowed us uncovering non-

linear changes in the scattering intensities originating from the altered C-C distances for both 

samples. The overall lower values of canonical correlation for GO sample are likely due to the 

somewhat “noisier” datasets of strain and intensity maps in this sample. It should be noted that 

larger values of ߬ (up to ߬6) and/or strain (up to 40%) are in general required to get a dominant 
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non-linear contribution from the exponential term; otherwise the relationship can be well 

approximated by a linear CCA (d = 1). The discrepancy may originate from not taking into account 

in our simplistic model an effect of the underlying substrate on the resultant charge density 

distribution as well as from neglecting contributions from hopping parameters beyond the nearest 

neighbor. In addition, certain variations in the bond length may produce a bond-centered charge 

order that has the same symmetry as the scattering-produced R3 superlattice, thus enhancing the 

signal of interest.36 

 

Conclusion and outlook. In conclusion, we have designed a procedure for data mining 

structure-property relations from atomically-resolved images of graphene. By applying a 

combination of the sliding FFT, Pearson correlation matrix, and linear and kernel canonical 

correlation analysis, we were able to extract detailed information on the correlation between the 

nanoscale strain and the parameters associated with electron scattering. We found that the 

expansion of the lattice constant results in the enhanced scattering intensity which was attributed 

to the increased density of states available for scattering in the stretched areas of the graphene 

lattice. Our analysis also revealed that the strength of coupling to strain is altered between different 

scattering channels which can explain an emergence of more than one superperiodic patterns in 

the samples (the so-called fine structure of the superlattice). Finally, using a kernelized version of 

canonical correlation analysis, we uncovered the presence of non-linear associations between the 

strain components and the intensity of electron scattering in graphene. We envision that these tools 

could become especially valuable for a detailed analysis of the structure-property relationship in 

graphene systems where the spatial distribution and shape of the defect(s) can be controlled with 

a high precision at the nanoscale (e.g. via STM tip manipulation or focused electron beam 

‘writing’). 

In future, the approach outlined here can be applied to scanning probe datasets representing 

a combination of atomically-resolved topographic imaging and spectroscopic grids obtained on 

the same area. This would allow finding, for example, a correlation between the subtle variations 

of strain and the magnitude of a gap in the superconducting materials. By the same token, our 

approach can be extended to correlative analysis of the combined electron energy loss 

spectroscopy and STEM (the so-called STEM-EELS37) experimental data, in which the 
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information on the position, electronic structure, and chemical bonding of different atomic 

columns can be acquired through different channels. 
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Methods: 

The GO sample was prepared by chemical and thermal reduction of single-layer oxidized graphene 

on Au(111). The GH sample was prepared by sputtering the topmost graphene layer of graphite 

with low-energy Ar+ ions followed by exposure to atomic hydrogen environment and annealing. 

For more details of the samples preparation procedure, see Ref. 12 and Ref. 13. The data analysis 

was carried out using Matlab. For sliding FFT procedure, the size of the input image was (874 px 

 874 px) for GO and (768 px  768 px) for GH.  The size of the sliding window was set at wx = wy 

= 256 px and the step of the window shift was set at xs = ys = 16 px. Mean-centering and 

normalization of the data was performed prior to application of linear and kernel CCA. 
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FIGURES 

 

FIGURE 1. Imaging  electronic states in two different graphenic samples. (a) Low-

bias (Us=2 mV) current-mapping c-AFM image of reduced graphene oxide on Au(111) substrate. 

The sliding window used for our analysis is schematically shown in the top left corner. (b) STM 

image of the top graphene layer of graphite with vacancy-hydrogen complexes (Us=100 mV, 

Isetpoint=0.9 nA). The 2D FFT transform of data in (a) is shown in (c) and the 2D FFT of data in (b) 

is shown in (d). (e) Schematics of graphene reciprocal space structure explaining pattern in (c) and 

(d). (f) Hexagonal superperiodic lattice and its 2D FFT. (g) Staggered-dimer-like electronic 

superlattice and its 2D FFT. Both superlattices are also marked in (b). 
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FIGURE 2. Correlation matrix analysis. (a) Schematic depiction of 3 different strain 

components used in our analysis. (b, c) Pairwise Pearson correlation matrix for GO sample (b) and 

for GH sample (c). See text for further details. 
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FIGURE 3. Canonical correlation analysis. (a) Schematics of CCA workflow. (b) Plot of the 

canonical variable scores for the correlation between strain components and scattering intensity 

for the GO sample. (c) Same for the GH sample. 
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FIGURE 4. Kernel canonical correlation analysis. (a) Schematics of kernel CCA workflow. (b) 

Stimulus-response relationship is defined by function F; the purpose of the current analysis is to 

uncover the function  F  for the multivariate datasets under consideration. (c) Dependence of the 

kernel CCA correlation coefficient on the order of kernel polynomial for different synthetic 

datasets. (d) Application of polynomial kernel to the experimental dataset on GO and GH. 
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