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ABSTRACT

The link between changes in the material crystal structure and its mechanical, electronic,
magnetic, and optical functionalities — known as the structure-property relationship — is the
cornerstone of the contemporary materials science research. The recent advances in scanning
transmission electron and scanning probe microscopies (STEM and SPM) have opened an
unprecedented path towards examining the materials structure—property relationships on the
single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based
approaches for cross-correlation of structure and property variables obtained in different
information channels of the STEM and SPM experiments. Here we have designed an approach
based on a combination of sliding window fast Fourier transform, Pearson correlation matrix, and
linear and kernel canonical correlation, to study a relationship between lattice distortions and
electron scattering from SPM data on graphene with defects. Our analysis revealed that the strength
of coupling to strain is altered between different scattering channels, which can explain
coexistence of several quasiparticle interference patterns in nanoscale regions of interest. In
addition, the application of kernel functions allowed us to extract a non-linear component of the
relationship between the lattice strain and scattering intensity in graphene. The outlined approach
can be further utilized towards analyzing correlations in various multi-modal imaging techniques
where the information of interest is spatially distributed and generally has a complex

multidimensional nature.



Introduction. The central postulation of the contemporary structure-property relation
paradigm is that the properties of materials are a direct function of their structure!=. This allows
scenarios in which relatively small changes in the material crystal structure may have a decisive
impact on the physical properties of the system. For example, introduction of dopant atoms into a
lattice of a Mott insulator can turn it into a superconductor whose critical transition temperature
(T¢) is sensitive to subtle variations of the inter-atomic bond lengths and bond angles in the crystal
lattice structure*®. The recently developed framework of materials cartography’, based on
application of graph theory and machine learning algorithms to database of materials ab-initio
calculations, allows “breaking” the crystal system down to the individual geometric fragments and
identifying the geometric features that most influence the physical property of interest (for

example, 7¢).

Despite achieving substantial progress in theoretical prediction of structure-property
relationships, the experimental identification of a connection between material functionalities and
variations in the crystal lattice geometry has been typically difficult and indirect. Recently, the
progress in the development of high-resolution, multi-modal scanning transmission electron and
scanning probe microscopies (STEM and SPM) has allowed researchers performing simultaneous
measurements of materials structural parameters (e.g., lattice distortion) and functional properties
(e.g., perturbation in local density of states) in real space with sub-nanometer precision®”-8. This
potentially allows studying the structure—property relationship in materials on the single-defect
and atomic-configuration levels. However, methods to cross-correlate information obtained in
different information channels and to describe the obtained correlation in terms of certain (linear
or non-linear) physical models are very limited and yet are increasingly necessary due to the ever-

growing volumes of relevant experimental data.

Here we illustrate how to use information on local atomic coordinates and parameters of
quasiparticle scattering obtained from atomically-resolved SPM images of graphene samples with
defects to mine structure-property relationships in these systems. Due to unique properties of the
(undistorted) graphene, in which the charge density oscillations are commensurate with the
underlying atomic lattice’!!, both structure and property information channels can be accessed in
a single SPM image acquired in the electron tunneling regime!®!!. By applying a combination of
the sliding window fast Fourier transform, Pearson correlation matrix, and linear and kernel
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canonical correlation analysis, we showed the presence of a non-negligible correlation between
the nanoscale lattice strain and the intensities of inter-valley quasiparticle scattering at defect sites.
Our analysis also revealed that the strength of coupling to strain is altered between different
scattering channels, which can explain an emergence of more than one quasiparticle scattering
pattern in the sample (the so-called fine structure of the electronic superlattice). Finally, application
of the kernelised canonical correlation analysis aided in extracting a non-linear component of the

relationship between the lattice strain and scattering intensity in graphene.

Experimental systems. To illustrate our approach, and its universality, we have selected
two different graphenic systems. The first system is a monolayer of reduced graphene oxide on
Au(111) substrate, which we denote as Go. Figure 1a shows the representative current map of such
system obtained in the small bias regime (2 mV) of a conductive atomic force microscopy (c-
AFM) where the tunneling current signal is proportional to the local density of states at the Fermi
level'?. The second system is the top graphene layer of graphite, peppered with the hydrogen-
passivated vacancies and nanosized holes, Gu'®. The spatial distribution of m-electronic states in
this system, obtained via scanning tuneling microscopy, is shown in Fig. 1b. More experimental
details on both systems, including sample preparation procedures, can be found in Ref. 12'? and
Ref. 13'%. The global 2-dimensional fast Fourier transform (2D FFT) performed on the data from
Fig. 1a and 1b shows a very similar reciprocal space patterns for both systems which are
characterized by a presence of two well-defined hexagons (Fig. 1c and 1d). These two hexagons
are rotated by 30° with respect to each other, and their lattice constants differ by a factor of ~ /3.
The outer hexagon corresponds to graphene reciprocal lattice points. The deformation of the
perfect graphene lattice would result in a shift of the centers of the FFT k= (k1, k2, k3) spots from
their original high-symmetry positions depicted in Fig. 1e. The inner hexagon corresponds to a
formation of the electronic superlattice with an average unit cell of (\/§ X \/§)R30° where R = ao
is a translational vector of unperturbed graphene lattice (hereafter referred as R3 superlattice). We
denote the FFT spots corresponding to R3 superstructure as K.= (K1, K2, K3). Due to the symmetry
properties of the FFT method, it is sufficient to analyze the correlations associated with only 3

distinct FFT peaks (not paired by the inversion symmetry) in each hexagon.

The formation of the R3 superlattice in undistorted graphene can be explained as the

constructive interference between incident and (back)scattered states associated with electron
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valleys at the opposite corner points, K tand K ~, of the hexagonal Brillouin zone (BZ)!*!!4, The
corresponding momentum scattering is hq = h(kp + G), where kr and G are Fermi wavevector
and the reciprocal lattice vector of graphene, respectively see Fig. 1 (¢). Owing to the symmetry
of graphene lattice, there are three backscattering channels that we denote as K;" - K;~ (i=1, 2,
3). The circle-like shapes of the FFT spots associated with backscattering channels (reciprocal
lattice) in Fig. 1c and Fig. 1d are due to the distribution of scattering (lattice) vectors across the
experimental image. Note that for point defects that preserve the lattice symmetry, the scattering
probability is equivalent in all the three channels resulting in the same intensity of the six inner
hexagon’s peaks in FFT. However, the equivalency between different scattering channels may not
necessarily hold for the distorted graphene lattice. Indeed, at the local scale we are able to observe
a strong modulation in the relative intensities of the inner hexagon FFT spots that results in a fine
structure of the electronic superlattice around the defects in the real space (see Fig. 1b, 1fand 1g).

The precise origin of such a fine structure is not exactly understood at the present moment.

Sliding FFT. Our goal is to analyze a structure-property relationship in the two graphenic
systems by studying the correlation between local lattice distortions associated with &; peaks and
electronic features associated with K. peaks (see Fig. le). In the first step, we shift a square window
of size (wx, wy) across the input image (7%, 7)) in series of steps xs and ys such that the entire image
is scanned. At each step, the 2D FFT is computed for the image portion that lies within the window.
This procedure is known as sliding FFT method and its application to scanning probe microscopic
data has been described in detail in our earlier publication'®. The amplitudes and coordinates of
the selected peaks are extracted from each 2D FFT image by fitting them with 2D Gaussian

distribution,

(Qx—Qa?)z*'(Qy—Qﬁ)z)]’ )
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where 4 is the peak amplitude, (Q,, @, ) are the Cartesian coordinates of the peak position, and o

is the standard deviation.



We first compute the lattice strain € defined as the variation of the lattice vector along the

three directions shown in Fig. 2a,

g = (a; — ay)/a;. (2)

Here a; is the unit cell vector calculated for each pixel of the resultant sliding FFT maps using a
standard relation between real space and reciprocal space lattices in graphene (index i stands for
three different directions) and @; is the mean value of unit cell vector in the overall image; for the
randomly fluctuating strain fields the mean value is close to that in the unperturbed lattice, a; =
aq. We also compute the variations in the unit cell area, AS = (s — §)/§, where s is the mean of
the 3-element vector such that s;; = 1/ Z(aiaj). In a similar fashion, the relative shift AK in the
positions of the K, vectors of the R3 superlattice is determined as AK; = (K; — K;)/K;. The
scattering intensities I, = | (K;* - K;) associated with the R3 superlattice are given by the

amplitudes of the corresponding K. spots extracted directly from the sliding FFT maps.

Mining the linear relationships. We start with exploring a relationship between the lattice
strain and parameters of the R3 electronic superlattice in graphene via pairwise correlation matrix
analysis. The correlation parameter for each pair of variables x and y is defined as a linear Pearson

correlation coefficient,

L L DY)
xy —
\/ZL(xi )2 ngvﬂ(yi g2

3)

where X is the mean of x , y is the mean of y, and N is a number of scalar observations. The results
for Go and Gu samples are shown in Fig. 2b and 2c¢ respectively. We note in passing that the typical
range of the lattice strain values in (2) was within 0.1 (£10%) in both samples. Remarkably, the
dependence of the scattering intensity on the unit cell area and corresponding strain components
shows quite an opposite behavior for our two samples. In the Go sample, there is a strong negative
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correlation (maximum absolute value |#|max~0.51) for all backscattering channels (Fig. 2b). This is
not the case, however, for Gy sample (Fig. 2¢), in which the scattering intensities associated with
two channels (I, and Ik, ) show a considerable positive correlation (|7|max~0.59). Possible origin of

different behavior of coupling coefficients in two samples will be explained below.

We first analyze the correlation matrix results for Go sample. We recall that some oxygen
functional groups, and in particular epoxy group, are known to remain on the surface of reduced
graphene oxide.'®!” The effect of the epoxy functional groups on the structure of graphene
monolayer is two-fold. First, they induce the out-of-plane distortions (“rippling”) of the graphene
sheet.!”!” As the experimental image gives a 2D-projection of a 3D lattice structure, the rippling
of graphene sheet tilts the lattice with respect to the viewing direction causing an apparent
contraction of the lattice constant. Second, the presence of epoxy groups is known to induce
changes in the C-C bond lengths, including a considerable stretching of the nearby bonds up to
1.58 A%2921 that may well be hidden from our view “under” the curvature regions in the
experimental image. Both curvature®? and stretched C-C bonds®**** can lead to the enhancement of
the density of states in the surrounding region, although a simple correlation analysis may not
allow us to disentangle these two contributions. Particularly, as graphene bonds are stretched, first-
principles calculations show emergence of new peaks in the density of states that shift towards the
Fermi level with increasing the length of C-C bond?*. The dependence of the density of states per
area on the bond length can also be understood from the simple tight-binding (TB) model
perspective. In the nearest-neighbor TB approximation, the density of states D(E) in monolayer

graphene is given by*

D(E) = 2, (4)

where y is the nearest neighbor hopping parameter. The dependence of the hopping parameter y

on the bond length can be described in terms of the exponential decay model,?¢

(5)
Y = yoexp(—1e),
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where 7 is typically assigned values between 3 and 4.?” It follows from (4) and (5) that in agreement
with first-principles calculations, the expanded lattice constant in the curved regions can lead to a
higher density of states. The enhancement of density of states can in turn increase the number of
states participating in the scattering between different valleys at the given energy “under” the
curved regions of Go sample. This can explain the apparent negative correlation coefficient

between strain components and the scattering amplitude in Fig. 2b.

We now turn to the Gy sample. As the surface of this sample is peppered with mono- and
multi-vacancies,'> as well as with larger holes,”® we expect an alteration of the in-plane bond
distances and variations in associated nanoscale strain fields across the surface. It should be noted
that in contrast with the Go sample, the out-of-the-plane distortions in the Gu sample are mainly
limited to the immediate periphery of the monovacancy-hydrogen complexes and that no hydrogen
atoms are adsorbed on the surface in other regions.'® Thus, the mainly positive correlation between
the strain components and the scattering amplitude seen in Fig. 2c¢ shows that in agreement with
equations (4) and (5) the density of states available for scattering is enhanced with increasing bond
length. Notably, the character of coupling between the strain and the scattering intensity in the Gu
sample is clearly altered for K — K; backscattering channel as compared to K;* — K; and
K5 — K3 channels which can be easily seen from the correlation matrix in Fig. 2c. Indeed, the Iy,
intensity component shows significantly lower positive correlation values for & and & components
of strain, as well a negative value for & strain component. As shown in Fig. 1f and 1g, a
suppression of the contribution from FFT K> spots is associated with the formation of the staggered
dimer-like superlattice in the real space image, whereas all the three K. spots are required to
produce the hexagonal superlattice. The fine structure of the electronic superlattice associated with
the coexistence of staggered dimer (sometimes characterized as “honeycomb’) and hexagonal
superlattices has been consistently observed in different STM experiments on graphenic
surfaces.!*?** Our correlation matrix analysis suggests that a different coupling of backscattering

channels to strain fields can explain this fine structure.

Finally, we note that in both systems we found only a relatively small correlation

(|7lmax~0.33) between the lattice strain and the variation in the momentum space positions of the



electron scattering maxima. We recall that in the undeformed graphene lattice the K. scattering
maxima are located at the corners of the graphene BZ (see Fig. 1e) and that the coordinates of the
latter in both deformed and undeformed lattices are obtained through a direct linear transformation
of the reciprocal space lattice vectors. Hence, our correlation analysis indicates that the location of
the electron scattering maxima (“Dirac valleys™) in the deformed graphene lattice do not coincide

with the position of the BZ corners.

The standard Pearson correlation analysis that was used so far is limited to analyzing
bivariate correlations. Canonical correlation analysis (CCA), on the other hand, allows grouping
the variables in each multivariate dataset such that optimal correlation is achieved between two
sets’!. Specifically, CCA solves the problem of finding basis vectors w and v for two multi-
dimensional datasets X and Y such that the correlation between their projections X — (w, x) and
y = (v,y) onto these basis vectors is maximized (see schematics in Fig. 3a). The canonical

correlation coefficient p can be expressed as>?

w'Cva
L = max

i p——— (©6)

where Cxx, Cyy are auto-covariance matrices, and Cxy, Cyx are cross-covariance matrices of x and
y. The projections a = w'x and b= v'y represent the first pair of canonical variates.

We apply the CCA method to analyze the dependency of the scattering intensities on
variations of the lattice parameter. The canonical correlation between the components of the
apparent strain and the intensity of electron scattering in Go sample has a value of p= 0.50. The

associated canonical variables scores are

aftr i = 0.31(g;); + 0.73(&,); + 0.32(&3);

(7)
bt = —0.37(Ii1); — 0.41(Ikz); — 0.80(Ix3);

L
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where the magnitudes of the coefficients before the variables give the optimal contributions of the
individual variables to the corresponding canonical variate. For Gu samples, the CCA correlation

analysis returns a value of p=0.62 and the canonical scores are

aftreimn = 0.37(e;); + 0.50(e,); + 0.36(e3);

(8)
bt = 0.39(Ig1); — 0.33(Ix2); + 0.80(Ix3);

Note that for the Gu sample in (8) the coefficient before Iy, has a negative value, whereas the rest
of the coefficients are positive. This shows that the scattering intensity associated with the K —
K5 channel responses to the changes in the bond lengths in the opposite fashion as compared to
K{ - K{ and Kj — K5 channels. This distinctive coupling of the strain to the K — Kj
scattering channel is in the agreement with Pearson correlation matrix analysis in Fig. 2¢ and
confirms that the origin of superlattice fine structure in Gu sample stems from a subtle connection
between certain combination of strain fields to the scattering intensity in different channels.
Likewise, for the Go sample in (7), the scattering intensity associated with K3 — K3
backscattering channel and the & component of strain show the strongest contribution to their
respective canonical variates, hinting at the important role of the non-uniform strain-scattering
relation in occurrence of various superlattice patterns observed in Fig. la. Note that for both Go
and Gu cases the canonical correlation plots in Fig. 3b and Fig. 3¢ clearly show a presence of
nonlinear associations between strain and scattering intensities. In the remaining part of the paper,
we will discuss how such a non-linear features can be discovered in the combinatorial library of

distortion modes and electronic scattering.

Mining the non-linear associations. Due to its linearity, the CCA may not extract useful
descriptors from the data in the presence of non-linear relationships between variables. The
kernelization of CCA offers an alternate solution by first performing a non-linear mapping ¢, and

¢y, of the data points to a higher dimensional space,

Py X — (px(x) € D,
Py y = 9, (y) € Dy,
11
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and then performing CCA in the new feature space. In such cases, the linear model found in the
new feature space corresponds to a nonlinear model in the input space®’. The computational
complexity arising from the high dimensionality mapping is addressed by using the kernel

functions,’>>

kx(Xl', X]-) = (‘px(xi)r (px(xj))

(10)
ky (v ¥5) = {0y 3, 05 (¥)))-
We look for a correlation between functions f € &, and g € @, of the form,
f(x) = T aiky (x4, %)
(11)

9 =X, Bk, (¥i,¥),

where a and S are the expansion coefficients. Then, similar to linear CCA, the objective of kernel

CCA can be written as32>3

a'KyKyB

p = maxX—————,
a,f ,“IK)ZC“_ﬁIK?]ﬁ (12)

where (K,);j = kx(xl-,xj) and (K,);j =k, (yi, yj) are Kernel matrices (see Fig. 4a for
schematics). The regularization parameter is usually introduced to kernel CCA model for avoiding
overfitting problems in a higher dimensional space.>*

We use the polynomial kernel (polykernel) functions of the form k(a,b) = ({(a, b) + 1)
which are well suited for extracting non-linear relationships that may occur in our system. The
corresponding kernel Hilbert space is a finite-dimensional vector space, whose dimension depends
only on d. The first degree polykernel, d = 1, captures linear correlations, and is equivalent to
linear CCA. Second degree polykernel, d = 2, captures all second order statistics, and so forth.
We started with testing kernel CCA on synthetic datasets with strong non-linear relationships
between stimulus and response. The dependency of the correlation coefficient on the polynomial
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order of kernel function for several synthetic datasets is shown in Fig. 4c. One can immediately
see that the quadratic dependency between stimulus and response can easily be captured by the d
= 2 polykernels. On the other hand, capturing exponential relation requires polykernels of the order
as high as d = 5. Overall, observing the behavior of the kernel correlation coefficient with
increasing the dimension of the corresponding kernel Hilbert space can provide an important
information about the type of non-linear relationship between the multivariate datasets under the
consideration. We also demonstrated in Fig. 4c that the application of the polynomial kernels to
the synthetic periodic function returns a very low correlation value, indicating that in general the
appropriate kernel function must be selected for each physical problem. It is noteworthy that a
presence of “distortion” within stimulus-response relationship associated with a higher order
correlation between some of the variables from two multidimensional datasets decreases the
overall correlation between corresponding canonical variates for a given polykernel. The overall
canonical correlation values can also be reduced due to a substantial level of noise in some
variables (for real-world physical systems this may happen due to specific limitations on
measuring accurately certain components of forces and fields).

We now describe an application of the kernel CCA to finding a non-linear relationship
between lattice strain components and scattering intensity in Go and Gu samples. As discussed
earlier in the paper, we expect a presence of the non-linear contribution to the density of states
(and associated scattering intensity) in a form of D (E)~exp(2t¢). Figure 4d shows the values of
kernel correlation coefficient for different polykernel orders for the Go sample. The d = 1 case
reproduces perfectly the results of linear CCA. Overall, the dependency of the correlation
coefficient on polykernel order closely resembles the test result for exponential relation between
stimulus and response (see Fig. 4c). This implies that, using kernel CCA, we were able to uncover
the “hidden-under-the-curvature” component of the correlation between the modulation of the
lattice constant and the scattering intensity in the Go sample. Remarkably, we found very similar
behavior of the kernel correlation coefficient in the G sample that does not have significant out-
of-the-plane curvature. This further confirms that the kernel CCA allowed us uncovering non-
linear changes in the scattering intensities originating from the altered C-C distances for both
samples. The overall lower values of canonical correlation for Go sample are likely due to the
somewhat “noisier” datasets of strain and intensity maps in this sample. It should be noted that

larger values of 7 (up to 7~6) and/or strain (up to 40%) are in general required to get a dominant
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non-linear contribution from the exponential term; otherwise the relationship can be well
approximated by a linear CCA (d = 1). The discrepancy may originate from not taking into account
in our simplistic model an effect of the underlying substrate on the resultant charge density
distribution as well as from neglecting contributions from hopping parameters beyond the nearest
neighbor. In addition, certain variations in the bond length may produce a bond-centered charge
order that has the same symmetry as the scattering-produced R3 superlattice, thus enhancing the

signal of interest.>

Conclusion and outlook. In conclusion, we have designed a procedure for data mining
structure-property relations from atomically-resolved images of graphene. By applying a
combination of the sliding FFT, Pearson correlation matrix, and linear and kernel canonical
correlation analysis, we were able to extract detailed information on the correlation between the
nanoscale strain and the parameters associated with electron scattering. We found that the
expansion of the lattice constant results in the enhanced scattering intensity which was attributed
to the increased density of states available for scattering in the stretched areas of the graphene
lattice. Our analysis also revealed that the strength of coupling to strain is altered between different
scattering channels which can explain an emergence of more than one superperiodic patterns in
the samples (the so-called fine structure of the superlattice). Finally, using a kernelized version of
canonical correlation analysis, we uncovered the presence of non-linear associations between the
strain components and the intensity of electron scattering in graphene. We envision that these tools
could become especially valuable for a detailed analysis of the structure-property relationship in
graphene systems where the spatial distribution and shape of the defect(s) can be controlled with
a high precision at the nanoscale (e.g. via STM tip manipulation or focused electron beam
‘writing”).

In future, the approach outlined here can be applied to scanning probe datasets representing
a combination of atomically-resolved topographic imaging and spectroscopic grids obtained on
the same area. This would allow finding, for example, a correlation between the subtle variations
of strain and the magnitude of a gap in the superconducting materials. By the same token, our
approach can be extended to correlative analysis of the combined electron energy loss

spectroscopy and STEM (the so-called STEM-EELS®’) experimental data, in which the
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information on the position, electronic structure, and chemical bonding of different atomic

columns can be acquired through different channels.
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Methods:

The Go sample was prepared by chemical and thermal reduction of single-layer oxidized graphene
on Au(111). The Gu sample was prepared by sputtering the topmost graphene layer of graphite
with low-energy Ar" ions followed by exposure to atomic hydrogen environment and annealing.
For more details of the samples preparation procedure, see Ref. 12 and Ref. 13. The data analysis
was carried out using Matlab. For sliding FFT procedure, the size of the input image was (874 px
x 874 px) for Go and (768 px x 768 px) for Gu. The size of the sliding window was set at wy = wy
= 256 px and the step of the window shift was set at x; = y; = 16 px. Mean-centering and

normalization of the data was performed prior to application of linear and kernel CCA.
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FIGURES

Brillouin
Zone

FIGURE 1. Imaging 7 electronic states in two different graphenic samples. (a) Low-
bias (Us=2 mV) current-mapping c-AFM image of reduced graphene oxide on Au(111) substrate.
The sliding window used for our analysis is schematically shown in the top left corner. (b) STM
image of the top graphene layer of graphite with vacancy-hydrogen complexes (Us=100 mV,
Lsetpoin=0.9 nA). The 2D FFT transform of data in (a) is shown in (c) and the 2D FFT of data in (b)
is shown in (d). (¢) Schematics of graphene reciprocal space structure explaining pattern in (¢) and
(d). (f) Hexagonal superperiodic lattice and its 2D FFT. (g) Staggered-dimer-like electronic
superlattice and its 2D FFT. Both superlattices are also marked in (b).
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FIGURE 2. Correlation matrix analysis. (a) Schematic depiction of 3 different strain

components used in our analysis. (b, ¢) Pairwise Pearson correlation matrix for Go sample (b) and

for Gu sample (c). See text for further details.
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canonical variable scores for the correlation between strain components and scattering intensity

for the Go sample. (c) Same for the Gu sample.
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