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Abstract 

 

Electronic interactions present in material compositions close to the 

superconducting dome play a key role in the manifestation of high-Tc superconductivity. In 

many correlated electron systems, however, the parent or underdoped states exhibit 

strongly inhomogeneous electronic landscape at the nanoscale that may be associated with 

competing, coexisting, or intertwined chemical disorder, strain, magnetic, and structural 

order parameters. Here we demonstrate an approach based on a combination of scanning 

tunneling microscopy/spectroscopy (STM/S) and machine learning tools for an automatic 

separation and extraction of statistically significant electronic behaviors in the spin density 

wave (SDW) regime of a lightly (~1%)  gold-doped BaFe2As2. We show that the 

decomposed STS spectral features have a direct relevance to fundamental physical 

properties of the system, such as SDW-induced gap, pseudogap-like state, and impurity 

resonance states. 

 

 

Introduction. Nanoscale inhomogeneity of chemical, structural and electronic orders in a 

crystalline matter is expected to have a profound and non-random effect on the macroscopic 

properties of technologically relevant materials. Notorious examples include reduced mobility of 

Dirac electrons in graphene transistor devices due to formation of charge nanopuddles [1, 2], 

ultra-high piezoelectric response of relaxor ferroelectrics due to interaction between nanopolar 

domains and acoustic phonon mode [3], filamentary superconductivity [4], and fluctuating 

superconducting (SC) state above a transition temperature (Tc) in high-Tc cuprates associated 

with emergence of nanometre-sized electron pairing regions [5]. 

Scanning tunneling microscopy and spectroscopy (STM/S), which probes topographic 

and electronic properties of the surfaces with a nanometer-scale resolution, constitutes an ideal 

experimental tool for exploring local inhomogeneity in materials. The STM topographic images 

are typically recorded in a constant current regime [6], resulting in a 2-dimensional (2D) Z(X,Y) 

dataset, where Z represents a convolution of actual height variation and electronic local density 

of states (LDOS) at each point (X,Y) on the surface. Meanwhile, the STS mode allows to acquire 



3D G(X,Y,V) datasets, where G=dI/dV corresponds to a value of differential conductance 

proportional to LDOS at specific energy E=eV at each (X,Y) point. In the simplest realizations of 

the bi-phase or multi-phase nanoscale systems, a separation between two or more phases is 

clearly visible in the STM topography, and comparison of STS spectra associated with different 

topographic features allows a straightforward analysis of electronic properties in these phases. 

Examples include STM/S measured on 2D lateral heterostructures sufficiently far from the 

boundary [7] or STM/S experiments on an isolated impurity embedded in otherwise ideal lattice 

[8]. For many strongly correlated materials, however, a complex local inhomogeneity patterns in 

conductance maps do not have a direct and simple connection to topographic features [see, for 

example, Ref. 9-11]. To complicate things even further, the morphology and chemical 

composition of the top-most layer of a cleaved surface in many complex compounds is usually 

itself a subject of controversy [12] which makes it nearly impossible to predict electronic 

properties in a characteristic field of view (FOV) of STM/S experiment from the first principles. 

 Given an ever-growing amount of multidimensional STM/S data on strongly correlated 

materials [12-14], there is an urgent need for developing a deep data based analysis that would 

allow reliable and un-biased identification and spatial mapping of statistically significant 

different electronic behaviors without a priori knowledge about the details of surface structure. 

Here we present a physics-robust machine learning style approach based on k-means clustering, 

principle component analysis (PCA) and Bayesian linear unmixing to uncover a wealth of 

“hidden” information from the STS datasets in a lightly-doped, “precursor”, magnetic regime of 

iron-based superconductor [15]. We show how the features extracted from multivariate statistics-

based decomposition of STS signal have a direct relevance to fundamental physical properties of 

the system, which we illustrate by uncovering a “buried” pseudogap-like phase and impurity 

induced double resonance states.   

As a model system, we have chosen a lightly Au-doped BaFe2As2 single crystal, Ba(Fe1-

xAux)2As2 with  x=0.009 ( ~1%). This compound shows a coupled structural and 

antiferromagnetic (AF) transition, from the tetragonal non-magnetic state into the orthorhombic 

striped SDW phase at TN≈110 K [16].  Upon increased Au-dopants, the AF interactions becomes 

suppressed and the system develops into a superconductor (Tc≈ 4 K) at ~3%. It has been 

recognized that interactions present in such SDW states of the FeAs-based compounds play a 



crucial role in understanding unconventional superconductivity [17, 18]. However, the details of 

local electronic structure at low temperatures in the non-SC phase of FeAs compounds, including 

the role of lattice strain, presence and origin of a pseudogap-like state, and character of impurity-

induced quasiparticle states, remain a subject of a debate. 

Results and discussion. We first present the STM topographic image over a relatively 

large FOV on a cleaved surface of 1% Au-doped BaFe2As2 in the SDW phase recorded at T=77 

K [Fig. 1(a)]. The typical surface area at 77 K appears to be peppered with dark nanoscale 

regions. Upon cooling down to T=4 K, we found a dramatic increase in the density of the dark 

nanoregions as can clearly be seen from the representative STM topographic image in Fig. 1(b). 

In general, the variations in apparent topographic height associated with dark and bright regions 

can be of both topographic and electronic origin. However, we do not expect any extensive 

surface damage or profound changes in nanoscale chemical composition as we cool down the 

sample from 77 K to 4 K. Instead, the observed change in STM topographic patterns in Fig. 1(a) 

and 1(b) is likely related to the enhanced nanoscale electronic inhomogeneity as we approach 

towards a phase region with competing normal and SC orders [19] or with admixture of another 

form of magnetic order within the SDW phase (See Supplemental Material [20]). Such 

inhomogeneity shows the necessity for applying data mining tools based on multivariate 

statistical analysis for extracting relevant electronic behaviors in this system [21].  

Zooming into a smaller FOV reveals a stripe-like reconstruction at the surface with a 

periodicity across the stripes of ≈0.7 nm [inset in Fig. 1(b)]. Similar unidirectional modulation of 

charge density has been also reported for SDW phase of SrFe2As2 [22]. While the exact origin of 

these charge stripes and their relation to SDW, if any, is not clear at present moment, it is worth 

to note that we were not able to observe similar 1D modulations at 77 K on the same cleaved 

surface. This suggests that the reconstruction is not cleavage-induced. 

In Fig. 1(c) we show the STM topography at T=4 K measured in a region with extended 

quasi-1D defect which appears as a bright “diagonal” feature in the topography. The spatial 

extension of this defect typically exceeds ≈1 m and we were able to reproducibly observe it in 

several areas of the sample. Furthermore, a similar structure was reported in another iron-based 

superconductor compound [23] suggesting that this defect can be a common feature of iron 

pnictides. High-resolution spatial maps of differential conductance G [Fig. 1(d-g)] recorded at 



the area shown in Fig. 1(c) at several selective energies confirm a highly inhomogeneous 

electronic structure of the surface, with no one-to-one correspondence to underlying topographic 

data. Accordingly, averaging over even relatively small surface area can lead to a loss of 

significant physical information contained in individual G curves. Such a lossy compression of 

the original data is illustrated in Fig. 2 (b), where the STS curve averaged from 182 individual 

line spectra inside the box in Fig. 2 (a) fails to reproduce physically important features at the 

Fermi level seen in the 4 selected point spectra (gray, red, blue, and black spectral curves) 

recorded within the box area. It therefore becomes clear that the surface electronic behavior 

cannot be characterized reliably by a simple visual assessment of the topographic image and 

individual inspection of STS curves from G(X,Y,V) dataset. 

We now proceed to the accurate extraction of statistically significant information 

associated with surface electronic structure from a deep data style analysis [21]. We use the STS 

dataset recorded on the topographic area shown in Fig. 2(a). The dataset has dimensions of 

X×Y×V=50×50×768, that is, it contains a stack of 768 conductance maps with a spatial resolution 

50px×50px. To decorrelate the STS data in a statistically meaningful way we start with imposing 

a lower bound limit on the number of relevant electronic behaviors within the dataset. The 

smallest reasonable number of statistically significant behaviors can be estimated using k-means 

algorithm [25]. The k-means algorithm divides the dataset in a specified number of optimally 

selected clusters of curves that have similar behavior so that the within-cluster sum of squares is 

minimized [24, 25]:  

, 

where  is the mean of points in . The selection of the number of clusters is based on the 

analysis of dendogram in Fig. 3 (b), in which larger vertical drops in the binary branches indicate 

a better cluster organization scheme in the data [25]. Based on the results shown in Fig. 3 (b), we 

used 3 clusters as an input in our k-means analysis. The resultant spatial distribution of the 3 

clusters is shown in Fig. 3 (a), and the mean curves associated with each of 3 clusters are 

displayed by thick solid black line in Fig. 3(c-e). 

We further analyzed a variance in the STS curves distributed over each nanoregion 

(cluster) by means of PCA [26-28]. The deviation from the mean curve within each cluster 



associated with first 5 eigenvectors in PCA is shown by dashed lines in Fig. 3(c-e), and the 

corresponding scree plots are depicted in Fig. 3(f-h).The PCA analysis indicates that the cluster 2 

and cluster 3 show a relatively moderate variance in the shape of the mean STS curve, allowing 

us to extract physical information from the curves. The STS curve from cluster 2 displays a 

metallic behavior and a well-defined dip at about 15 meV below the Fermi level. This is in a 

good agreement with an observation of the SDW gap centered at around -15meV in the ARPES 

measurements of BaFe2As2 [29]. We note that the theoretical model in [29] also showed that the 

SDW phase features a finite density of states at the Fermi level in the absence of the (coexisting) 

superconducting state, which is supported by our results. The mean STS curve from cluster 3 

shows a metallic behavior and is somewhat similar to the curve from cluster 2, but with the 

center of the dip shifted to about -25 meV. We tentatively assign this behavior to the SDW phase 

whose characteristics were altered locally due to the strain induced by the quasi-1D defect [30]. 

Noteworthy, we did not observe similar lineshape in the regions far (>100 nm) from the defect in 

our experiments. The PCA-derived variance within cluster 2 and cluster 3 can be understood as 

relatively minor fluctuations of electronic response within a defined phase. The situation, 

however, is quite different for cluster 1. Here, a stronger variance in the shape of STS curves, 

especially in the regions close to the Fermi level, does not allow assigning any physically-

defined phase. This suggests that the total number of relevant electronic behaviors is larger than 

estimated by the k-means method. However, additional, “hidden”, electronic responses cannot be 

accurately revealed from the PCA eigenvectors, as they are constructed to be orthogonal and 

hence do not have a well-defined physical meaning.  

To perform a more thorough and detailed separation of electronic behaviors in the STS 

dataset we adopt Bayesian linear unmixing (BLU) technique. This algorithm, developed by 

Dobigeon and co-workers, is used for separating linear mixtures of spectral sources under non-

negativity and full additivity constraints [31] that allows assignment of physical meaning to the 

shape of the end-member curves [32]. The BLU approach assumes that a complete observation X 

is represented as a linear combination of independent positive endmembers, M, 

X = MA + N, 

where A are the relative abundances associated with each endmember, and N is an additive 

Gaussian noise. The detailed description of BLU method can be found in the Supplemental 



Material [20]. We assume that the total STM current at each pixel in the dataset can be 

represented as a linear combination of the currents flowing through each of the available 

“channels”, so that the latter can be represented by the endmembers.  

The number of endmembers R in the BLU algorithm must be postulated by a researcher. 

The lower bound limit for a total number of endmembers has already been set by the results of k-

means method. To set up the upper bound limit for possible number of relevant electronic 

behaviors, we refer to a general underlying physics of the problem. Here, in addition to the states 

associated with the SDW phase discussed in the k-means calculations, we must add states 

associated with (i) unidirectional modulation of surface charge density; (ii) possible presence of 

a different magnetic order “admixed” into the SDW phase; (iii) 2 common types of point defects 

on the cleaved surface; (iv) diluted concentration of Au dopants; (v) randomly scattered atoms on 

the surface [20, 33]. Using these constraints, coupled with the results of PCA analysis, and by 

performing over- and under-sampling of BLU R-components, we found that the most relevant 

description of electronic behavior is achieved for R=6 endmembers [20]. The BLU results with 

R=6, for both endmembers and abundance maps, are shown in Fig. 4. One can immediately see 

that endmember 4 and endmember 5 [Fig. 4(d) and 4(e)] corroborate the results on SDW-

associated phase found earlier from k-means algorithm. In addition to phases already seen in the 

k-means, the BLU analysis revealed new features in electronic behavior that can be linked to the 

fundamental physical properties of the material, as described below. 

The endmember 2 shows a well-defined signature of a spectral gap of 2≈40 meV 

centered near the Fermi level [Fig. 4(b)]. We note that the gap of a similar behavior and 

magnitude (30-40 meV) was observed by Madhavan and co-workers in their STM experiment 

on a closely related compound from AFe2As2 family, SrFe2As2, in which it was explained as the 

SDW-originated gap [22]. However, recent photoemission spectroscopy measurements and 

theoretical modelling [29] on the AFe2As2 type compound revealed that the SDW and SC orders 

must coexist spatially in order to produce a gap at the Fermi level. Otherwise, the SDW opens a 

gap below the Fermi level, in agreement with behavior observed in the endmembers 4 and 5. If 

the SDW and SC orders indeed coexist on a local scale in our sample, the formation of the 

electron-pairing “islands” associated with the SC order is expected to produce a continuous drop 

in bulk resistivity measurements [4, 34]. However, this is clearly not the case for our compound, 



in which the resistance showed a small upward trend in the temperature range of interest [20]. 

This rules out a scenario in which the “admixture” of SC order leads to the gap feature seen in 

the endmember 2. We therefore describe the spectral weight loss at the Fermi level observed in 

the endmember 2 in terms of a pseudogap-like state, which is defined here as a state outside the 

“superconducting dome” and not directly associated with either SDW-induced gap or 

‘SDW+SC’-induced gap. 

We next discuss a possible physical origin of the pseudogap-like state associated with 

endmember 2. At first glance, it is tempting to link the pseudogap-like state to the 1D striped 

charge order seen in the STM topographic image. However, a possibility of such direct 

correlation quickly falls apart as we were able to find the 1D stripes even in the areas without 

spectral features of a pseudogap [35]. Another explanation of a pseudogap-like state is based on 

the possible formation of a different, short-range, magnetic order admixed into the SDW phase, 

which is consistent with the presence of upturn in a magnetic susceptibility data below TN. The 

formation of a pseudogap-like state may also explain a peculiar upswing in the resistivity in the 

SDW phase below ≈20 K [20]. Noteworthy, our finding of a 2≈40 meV pseudogap-like feature, 

which is not directly related to SDW, correlates with photoemission spectroscopy results of Xu 

et al. [36] that showed emergence of 2≈36 meV pseudogap state at the Fermi level of the 

underdoped Ba1-xKxFe2As2 in both SC phase and non-SC phase without long-range SDW order. 

The endmembers 1 and 6 in Fig. 4 (a) and 4 (f) show a clear resonance peak features 

associated with impurity induced bound states in the SDW phase of this compound. The 

impurity-induced nature of these peaks is further confirmed by the inspection of the 

corresponding abundance maps that show the peak features are generally constrained to a point-

like areas on the surface [Fig. 4 (g, j)]. Of particular interest is the endmember 1 which can be 

described by a non-magnetic impurity-induced double resonance peak model studied in [37]. We 

tentatively ascribe the origin of this spatially diluted double peak state to the Au dopants. It is 

worth noting that a spatial dependence of the energy position and intensity of the two impurity-

induced peaks [37] allows in principle a further separation within the BLU scheme. Finally, the 

origin of endmember 3 is likely related to the minor instabilities (“noise”) of the tunneling 

junction during the grid acquisition. 



Conclusions and outlook. Our results on the identification of a surface nanoscale 

electronic structure in the underdoped  state of FeAs-based superconductor, by means of a deep 

data style analysis are important for providing clues to understand how the high-temperature 

superconductivity may emerge in these systems. First, while there is a growing evidence of the 

pseudogap state formation in FeAs compounds [36, 38-40], there is still an open debate on the 

relation of the pseudogap to the superconducting state and on the role of magnetic correlations in 

the formation of the pseudogap. Our revelation of “buried” pseudogap-like spectral features in 

the SDW phase, combined with results of magnetic susceptibility and resistivity measurements, 

suggests a potential link between a pseudogap state and weak or short-range magnetism within 

SDW phase. Second, the real-space analysis of the electronic character of impurity-induced 

quasiparticle states found in the spectral unmixing of our data can be further used as a probe into 

the details of the strong correlations in the system. In this sense, it is natural to extend the deep 

data approach to the reciprocal space, which is commonly used to study quasiparticle 

interference pattern [41]. We expect that a nanoscale inhomogeneity in the electronic structure of 

the surface would produce spatially different scattering patterns at the same value of energy. The 

application of techniques such as sliding FFT combined with multivariate analysis [42] would 

allow hidden scattering patterns to be uncovered. Finally, we note that the presence of 1D charge 

modulation at the surface did not allow us to measure the atomic lattice constant in the regions 

close to the defects that showed peculiar changes in electronic behavior within the SDW phase. 

We do expect, however, that for the systems in which the atomic lattice can be resolved (i.e., no 

surface “reconstructions” occur), one can perform a direct data mining to correlate minute 

variations in atomic positions with the changes in spectral characteristics, such as the magnitude 

of SDW and/or SC gaps. As the ever-increasing amount of STM/S data on strongly correlated 

systems makes the individual inspection of datasets highly impractical and, in many cases, nearly 

impossible, the approach outlined here present an ideal tool for an accurate mapping of locally 

inhomogeneous electronic structure on the surfaces in an automated fashion of a full information 

extraction. 
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FIGURES 

 

FIGURE 1. Data of 1% Au-doped BaFe2As2. (a,b) Representative experimental STM 

topographic images at 77K (a) and 4K (b). Tunneling conditions U=-60mV, Is=100pA. Inset in 

(b) shows a zoomed-in area of the surface which displays stripe-like features. (c) STM 

topographic image of quasi-1D defect at 4K. U=-110mV, Is=150pA (d-g) Conductance maps G 

(r, E=eV) in the same area as in (c) at several selected energies. 

 

 



 

FIGURE 2. Data of 1% Au-doped BaFe2As2. (a) STM topographic image of the area on which 

STS grid measurements are performed. (b) Green STS curve is averaged over the 182 individual 

STS spectra inside the box in (a). Gray, red, blue, and black curve are single-point STS spectra 

recorded at the corresponding locations (denoted by colored dots) in (a). Note that gray and red 

curves were extracted from locations displaying similar topographic features. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

FIGURE 3. (a) k-means cluster algorithm resultant map with 3 clusters specified in the image. 

The surface area is identical to the one in Fig. 2(a). (b) Dendogram plot of hierarchical binary 

cluster tree (circles illustrate the optimal number of clusters). (c-e) Mean STS curves for each of 

3 clusters shown in map (a) are plotted with black solid line. The PCA-derived deviation from 

mean curve within each cluster is shown by dotted color lines. (f-h) PCA scree plots showing 

variance within each of 3 clusters. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. (a-f) 6 Bayesian endmembers (see text for details). Inset in (b) zooms in the spectral 

gap features at the Fermi level. (g-j) Corresponding abundance maps (yellow) overlaid on the 

topographic image (red). The intensity contributions in the abundance maps below 0.2 were cut 

off for a better visualization (see SM for a full (0,1) intensity maps). 
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A. Experimental 
 

1. Sample and tip preparations 

Single crystals of lightly Au-doped BaFe2As2 (x= 0.009, ~1%) were grown out of self-

flux using a high-temperature solution-growth technique [S1]. Temperature-dependent magnetic 

susceptibility, χ, decreases with decreasing temperature and drops abruptly below TN = 110 K 

(Fig. A1), which also overlaps with the structural transition, Ts [S1]. Upon further cooling, χ 

increases in magnitude, which may be associated with additional magnetic contribution. Our 

neutron data (unpublished) confirms that the intensity of a wave vector relevant to SDW does not 

change in the corresponding temperature range, suggesting that the additional contribution to 

susceptibility comes from a different origin than simply enhanced SDW AF order. Resistance, R, 

diminishes with decreasing temperature from room temperature (R300K ~ mOhm.cm), rising 

below ~ 140 K, and shows slight upward trend below 110 K  TN = Ts , and a couple of smaller 

features below (inset of Fig. A1) [S1].  

STM/S measurements presented in the manuscript were carried using a Joule-Thomson 

scanning tunneling microscope (JT-STM, Specs, Berlin). Tungsten (W) STM tip was prepared 

by gentle field emission at a clean Ag(111) sample. The samples were cleaved in situ in the 

STM machine chamber at approximately 110 K.  STS measurements were performed using a 

standard lock-in amplifier techniques, with a bias modulation between 2 mV and 5 mV. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Fig. A1. Temperature-dependent magnetic susceptibility and resistance (inset) results of 

BaFe2As2, lightly doped with ~1 % gold (x=0.009).  χ is measured along the two crystallographic 

axes; TN is inferred from data; red arrows indicate STM/S temperature points at 4 K and 77 K. 

 

2. STM at 77 K and at 4 K. 

Our STM observations at 77 K on a cleaved surface shows a square-like lattice (Fig. A2) 

with a unit cell of (0.56 nm × 0.56 nm). This agrees well with measurements on BaFe2As2 

reported in [S2]. We note that we were not able to observe the same square lattice at 4 K at 

nearly the same microscopic area on the sample surface. Instead, a well-defined 1D modulation 

of a charge density was typically observed at 4 K (Fig. A3).  

During the STM measurements at 77 K, we were usually able to observe 2 types of bright 

protrusions (marked by red and orange ovals in Fig. A2), which we relate to specific point 

defects in the crystallographic lattice. We assume that these defects are preserved upon cooling 

down to 4 K,  although we were not able to get a clear STM image of these defects due to large 

inhomogeneity and 1D modulations of charge density in the 4 K topographic images.  

 

 



 

 

 

 

 

 

Fig. A2. STM topographic image recorded at T=77 K for 1% Au-doped BaFe2As2. Tunneling 

conditions U=100 mV, Is=1 nA. Two common types of point defects are marked with red and 

orange ovals. 

 

 

 

 

 

 

 

 

 

Fig. A3. (Left) STM topographic image recorded at T=4 K for 1% Au-doped BaFe2As2. 

Tunneling conditions U=-50 mV, Is=200 pA.  (Right) FFT on the topographic image on the left. 

Two spots corresponding to 1D modulation of a charge density are denoted by dotted circles.  

 

 



B. Data analysis 
 

1. Principle Component Analysis (PCA) 

 

Using the results of k-means clustering as an input, we acquire separate Gm(Nm, V) subsets, 

where Nm corresponds to number of observations in the cluster m, and V corresponds to number 

of parameters and is the same among all subsets (768 points in the -100 to +100 mV energy 

range). We perform PCA on each of the subsets to convert them into a product of expansion 

coefficients aik and eigenmodes wk. The eigenvectors are orthogonal and are arranged in 

descending order by variance [S3] 

 

 
 

(1.1) 

 

As the data is not mean-centered, the first eigenvector is the average STS curve within the 

selected cluster, and all other eigenvectors are deviations from that average curve sorted in order 

of explaining maximum amount of variance within remaining data.  

 

Dashed lines in Figure 3(c-e) in the main text demonstrate STS curves reconstructed from PCA 

by adding corresponding deviations to the average curve. Figure 3(f-h) shows the corresponding 

scree plots and cumulative variance explained for the first 10 eigenvectors within each cluster.  

 

2. Bayesian Linear Unmixing: General background 

 

STS data G(X,Y,V) represents an example of hyperspectral imagery, where multiple dimensions 

V correspond to spatial distribution defined by (X,Y) coordinates. Our current assumptions is that 

the STM current can be represented as a linear combination of currents arising from different 



sources, which makes this type of dataset a perfect problem for the Bayesian Linear Unmixing 

(BLU) [S4].   

 

BLU is an advanced statistical method for decomposing a pixel spectrum into a collection of 

endmembers and corresponding abundances. In our data we have P = X*Y pixels and V energy 

values. Linear mixing model assumes that spectral curve of a pixel p and overall dataset can be 

represented as:  

 

 

 

(2.1) 

 
 (2.2) 

 

where r is the endmember (R is the total number of endmembers), mr is the spectral curve of an 

endmember, ap,r is the abundance of r at pixel p, and np is a zero-mean Gaussian noise, Y = [y1, 

…, yp], M = [m1, …, mR], A = [a1, …, aP], N = [n1, …, nP].  

Since we did not have concrete predictions for the functional form of the potential sources to use 

as endmember guesses, we have utilized the unsupervised linear spectral mixture analysis. The 

model has been imposed with standard non-negativity and full-additivity constraints of the 

abundance coefficients: 

 

 

 

(2.3) 

 

Additionally, the model is constrained to non-negativity of the endmember spectra, and there is 

no assumption of the presence of pure pixels. 

 



For the estimation of the prior for the Bayesian model, the data X = MA dimensionality is 

reduced to K (R - 1 ≤ K ≤ V), by an assumption that without the noise data can be represented by 

(R – 1)-dimensional convex polytope of RV, where vertices represent pure endmember spectra 

mr. For the next step, PCA projection is obtained, which forms a simplex recovered through N-

FINDR [S5]. Using these results, the endmember abundance priors as well as noise variance 

priors are estimated from the conjugate multivariate Gaussian distribution, where the posterior 

distribution is calculated based on the endmember independence using Markov chain Monte 

Carlo (MCMC), which generates asymptotically distributed samples probed via Gibbs sampling 

strategy. Unmixing was run for 100 MCMC iterations for each attempt.  

 

 

3. Bayesian Linear Unmixing: choice of number of endmembers 

 

To establish a number of endmembers in BLU analysis, we first used the results of k-means and 

PCA analysis (see also Fig. 3 in the main text). The mean curves associated with clusters 2 and 3 

in k-means method show a relatively small variance in PCA analysis (see Fig. 3 (d, e, g, h) in the 

main text) and can be therefore described in terms of a physically defined electronic “phases”. 

Furthermore, we also were able to see persistently the well-defined spectral features associated 

with these “phases” in BLU analysis as we varied a number of endmembers between R=4 and 

R=8 (described below). The situation is quite different for cluster 1, which shows relatively large 

variance in PCA analysis, and can be in principle decomposed into several spectra associated 

with distinct electronic “phases”. The number of these “hidden” spectral behaviors can be 

estimated from PCA scree plot which suggests that the most relevant information associated with 

cluster 1 can be expressed by 4 PCA components (Fig. B.1). We therefore use the R=6 

endmembers in the BLU analysis of the full dataset, which fits within the physical constraints on 

the number of distinct electronic responses, which was defined in the main text.  

 

We next proceed to confirming our choice of the total number of endmembers by over- and 

under-sampling procedure. The proposed optimal number of the endmembers is R=6, as 



determined earlier. Here, we demonstrate scenarios, in which the full dataset is BLU-unmixed 

into R=5 (under-sampling) and R=7, 8 (over-sampling) components. The results for endmembers 

and associated abundance maps are shown in Fig.B2 and Fig. B3, respectively. We will denote 

the spectral curve associated with a specific endmember for each unmixing result as . The 

spectral features associated with spin-density wave induced gap (  and  curves) appear for 

both R=5 (under-sampling) and R=7, 8 (over-sampling). These are also the spectral features 

found earlier in k-means clustering. 

 On the other hand, it is clear that the under-sampling, R=5, leads to incomplete separation of 

other relevant electronic responses from experimental dataset. Indeed, impurity induced spectral 

features are not accurately revealed in R=5 case, in which the  endmember exhibits only one 

broad peak [Fig. B2 (a)]. In addition, the spectral features of a pseudogap-like state are not seen 

for R=5. Comparison of abundance maps between R=5 and R=6 scenarios [Fig. B3 (a) and B3 

(b)] suggests that this inability to accurately reveal the pseudogap-like state for R=5 is due to the 

partial transfer of the spectral weight from the “impurity phase” into the “pseudogap phase”, 

which blurs over the spectral gap features in the positive energy range in  curve. The presence 

of such transfer is confirmed by the inspection of relative intensities of  and  curves in the 

energy range from 0 meV to +25 meV, which shows the intensity of  curve is roughly twice 

smaller than that of   curve in this region (intensities are estimated as areas under the curves 

in the corresponding regions). 

We next examine the over-sampling scenario. Both impurity double resonance and pseudogap 

spectral features are persistently seen for R=7 and R=8, in a good agreement with the results for 

R=6, as is confirmed from the inspection of  and endmembers in Fig. B2 (b)-(d) and the 

associated abundance maps in Fig. B3 (b)-(d). We also note that the oversampling splits the  

curve [Fig. 1(c)] into the two curves represented by  and  endmembers [Fig. B2(d)]. This 

can also be clearly seen from corresponding abundance maps in Fig. B3(c) and B3(d). We 

characterize this split as an emergence of a pseudo-component which does not have a direct 

physical meaning and is a result of oversampling.  We finally note that the observed fluctuations 

in the positon of the dip in a pseudogap-like state [Fig. B4]  are likely related to a slightly 

different extraction of a “noise” component (endmember 3) from the full dataset in each case.  

 



 

Fig. B1. PCA scree plot describing variance in k-means derived cluster 1 

(see main text)  

 

 

Fig. B2. Bayesian endmembers for different number of total endmembers: R=5 (a), R=6 (b), R=7 

(c), R=8 (d). 



 

 

Fig. B3. Abundance maps associated with different number of total Bayesian endmembers in 

Fig. B2: R=5 (a), R=6 (b), R=7 (c), R=8 (d). 

 

 

 

 

 

 

 

 

 

 

Fig. B4. Endmember associated with a pseudogap-like state for BLU unmixing into R=6, R=7, R=8 

components. Arrows and dashed line are guides for eye only. 
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