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Outline

* Infrequent event systems

* Hyperdynamics

* Ring polymer molecular dynamics (RPMD)
* Example system

* Results and challenges



Infrequent Event Systems

The system spends most of its time vibrating in a 3-N
dimensional basin before finding an escape path.

We would like spend less of our computational budget on
simulating this boring vibrational activity, so that we can observe
more interesting events.



Hyperdynamics

Procedure:

- design bias potential
— run simulation on biased surface (V + AV)
- accumulate hypertime as

AV (x
th}fper — Z AtMD - exp ( kBj(T ))

V + AV



Hyperdynamics

Procedure:

- design bias potential
— run simulation on biased surface (V + AV)
- accumulate hypertime as

AV (zx
thyper = Z Atnp |- exp ( kB(T )>

V + AV



Hyperdynamics

Assumptions:

- Infrequent events
— NO recrossings
- bias potential AV is zero at dividing surface

V + AV



Ring Polymer MD (RPMD)

Replaces each atom with a ring of n beads; exact equilibrium
guantum results in the infinite bead limit.

Each set of beads evolves in its own 'universe' while also
Interacting with its two neighboring universes.



Ring Polymer MD (RPMD)

Each bead is connected to its two neighbors by a spring with a
spring constant given by
n,kBT) ?

h

spring constant = m - (

The spring frequency often limits the length of timesteps in the
simulation.



RPMD and Hyperdynamics

The most difficult part of adapting hyperdynamics to RPMD is
choosing an appropriate bias potential.

We must choose a bias that gives a significant boost, but is zero
along all dividing surfaces.




RPMD and Hyperdynamics

The most difficult part of adapting hyperdynamics to RPMD is
choosing an appropriate bias potential.

We must choose a bias that gives a significant boost, but is zero
along all dividing surfaces.
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RPMD and Hyperdynamics

We define the bias force as the gradient of the bias potential at the
centroid of the ring, and assign each bead 1/n of the bias force.

We assume that the centroid will be near the dividing surface when
the system is making a transition.
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Energy (eV)

Example System

Symmetric Eckart barrier:
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Transition Rate (m/ s)
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Active Matter

» Nonequilibrium particle-based systems with internal,
propulsion.

» Possible collective behaviors




Simulation

System parameters:

» number of particles:
Ns = 8000 — 20000

> particle radius: R; = 1.0
> system size: L = 300 x 300
Equation of motion:

dr,-

WE = Fi’;ﬁer + Fr{n (1)

> repulsive disk-disk
interaction force:

Fioter = ©(d—2R)k(d —2R)
> particle motor force :
Fi.=1.0

> run length: /, = 300 — 600

Run-and-thumble dynamics:




Random Pinning Substrate

Equation of motion:

dl’,' i i
nE = mter + F + F (2)
» pinning force:
= o(r— Rp)r/Rpr
System parameters:

» number of particles:
Ns = 8000 — 20000

» number of pinning sites:

N, = 8000
» pinning site force:
Fpb=0-8

Nr part|cles = 16000 Nr pamcles = 16000
1.0 8

: X
Nr. particles = 16000 Nr. particles = 10000
pinning force = 2.25 pinning force = 8.0
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Drift Force

Equation of motion:

dr;
77d—tI= mter+F, +F,
» drift force: FQ =0-7

» number of particles:
Ns = 6000 — 24000

» number of pinningsites:

N, = 8000
» pinning force: F, = 5.0

(3)

(b)

(c)

Nr particles

16000 Nr particles = 10000
25 d

(f)



Phases:

Mbvin, T
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1. Motivation and Tools



Classical Molecular Dynamics




Classical Molecular Dynamics

From Ab Initio Calculation to Mp: a scaling issue

Hp =Eyp

Grégoire Ferré, Kipton BARROS & Gabriel StoLtz CnLs— Enpc
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Motivation of Numerical Potentials

Mb requires the computation of forces for many configurations
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Motivation of Numerical Potentials

Mb requires the computation of forces for many configurations

o® °®
s o
[ ] ~ [
[ ... o : .
® o
..o. ° Lo Objective
0®® 0o o0 °, & Estimate for the central particle:
ee ° 0.. s e the energy V(C)
M TY s ° ¢ e the forces —-VV(C)
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°p ° .‘ o

CnLs — EnpPC
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Motivation of Numerical Potentials

Potential at an intermediate level
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Motivation of Numerical Potentials

Potential at an intermediate level

Ab Initio Calculation

Accurate, long to compute, depends on the number of electrons

Cnis — Enpc




Motivation of Numerical Potentials

Potential at an intermediate level

Ab Initio Calculation

Accurate, long to compute, depends on the number of electrons

Classical Potentials and Forces

Unable to reproduce all the properties of a complex material

Cnis — Enpc




Motivation of Numerical Potentials

Potential at an intermediate level

Ab Initio Calculation

Accurate, long to compute, depends on the number of electrons

Numerical Potentials and Forces

Ab Initio accuracy with lower computational cost

Classical Potentials and Forces

Unable to reproduce all the properties of a complex material

Cnis — Enpc




Machine Learning Tools

Database:

e atoms’ positions, configurations (C;) fori=1,...,N

e associated forces (VV(C;))fori=1,...,N

Grégoire FERRE, Kipton BArRROS & Gabriel StoLTz CNLs — ENPC
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Machine Learning Tools

Database:

e atoms’ positions, configurations (C;) fori=1,...,N

e associated forces (VV(C;)) fori=1,...,N

Regression methods

e Support Vector Machine
e Neural Networks
e Kernel methods

e invariant polynomials ...

Cnis — Enpc




Machine Learning Tools

Database:

e atoms’ positions, configurations (C;) fori=1,...,N

e associated forces (VV(C;)) fori=1,...,N

Regression methods

e Support Vector Machine
e Neural Networks
e Kernel methods

e invariant polynomials ...

| A\

Kernel methods

For two configurations C; and C,, a kernel K(Cq, C5) is a measure of
similarity between C; and C,.
Result: if we can compare, we can interpolate.

Grégoire FERRE, Kipton BArRROS & Gabriel StoLTz CnNLs — EnpPC

Kernels over S itti ial el and 7/18



Difficulties

Physical properties:
e the number of atoms may vary,
e invariance with respect to ordering of atoms,

e rotation invariance.

Grégoire FERRE, Kipton BArRROS & Gabriel StoLTz CNLs — ENPC
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Physical properties:
e the number of atoms may vary,
e invariance with respect to ordering of atoms,

e rotation invariance.

Extensive literature on this problem:
e symmetry functions (Behler et al., 2007),
e Smooth Overlap of Atomic Position (Soap, Csanyi et al., 2010),
e Internal Vector coordinates (Li, Kermode, De Vita, 2015)
e scattering transform (Mallat et al., 2015),

e Moment Tensor Polynomials (MTP, Shapeev, 2016)

Grégoire FERRE, Kipton BARROS & Gabriel ST CNLs — ENPC
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2. Graph Representation



Graph Representation

Define an adjacency matrix :

A; ; =«weight between particles i and j»= ¢, (|g; — g;])

Grégoire FERRE, Kipton BArRROS & Gabriel StoLTz




Graph Representation

Define an adjacency matrix :

A; ; =«weight between particles i and j»= ¢, (|g; — g;])
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Graph Representation

Define an adjacency matrix :

A; ; =«weight between particles i and j»= ¢, (|g; — g;])

Grégoire FERRE, Kipton BARROS & Gabriel STOLT: CNLs — ENPC
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Graph Representation

Define an adjacency matrix :

A; ; =«weight between particles i and j»= ¢, (|g; — g;])

Rotation invariant description of the system

Grégoire Ferré, Kipton BARROS & Gabriel StoLtz CnLs — Enpc
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Graphs in the Literature

Important interest in the last 15 years:
e web/internet,

e social networks,

disease propagation,

e chemoinformatics.
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Graphs in the Literature

Important interest in the last 15 years:

web/internet,
social networks,
disease propagation,

chemoinformatics.

Many graph kernels have been developed (Gartner, 2002):

spectral properties (Kondor et. al, 2002),
shortest paths (Borgwadt et al., 2005),
graphlets (Shervashidze & Vishwanathan, 2009),

random walks (Vishwanathan, Schraudolph, Kondor & Borgwardt,
2010),

functional embedding (Shrivastava & Li, 2014).

Grégoire FERRE, Kipton BArRROS & Gabriel StoLTz CNLs — ENPC
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Graph kernels and random walks

n
ij=

Adjacency matrix (A, ;)'._; as generator of a Markov process.

Grégoire FERRE, Kipton BArRROS & Gabriel StoLTz




Graph kernels and random walks

n
ij=

Adjacency matrix (A, ;)'._; as generator of a Markov process.
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Graph kernels and random walks

n
ij=

Adjacency matrix (A, ;)'._; as generator of a Markov process.

Random walk from an initial
distribution xg € R"

x1 = Axg

Xp = A2XO

xi = Ak xo.




Graph kernels and random walks

n
ij=

Adjacency matrix (A, ;)'._; as generator of a Markov process.

Random walk from an initial
distribution xg € R"

x1 = Axg
X2 :AZXO
xi = Ak xo.

Bonus: if xg is chosen uniform, graph properties are made
permutation invariant, sowe use xg = e = (1,...,1).

pton BArRROS & Gabriel StoLTz

hs for lan



Toy application

Fitting the pair interaction between a central atom and 4 neighbors
with random perturbations.

8 T T T
Corgiatiay
78 . . .
) Good interpolation capacity
¥ .
er 1 with a small database ( ~ 400
o~
g | R4 | elements)
g ¥
2 :
é 721 ‘f’x 1
E i
g A |
68 ,f“*' 4
66 B
6‘.6 (;.B ‘7 7‘2 7‘.4 7‘.6 7‘.5 8

Expected energy

Grégoire FERRE, Kipton BArRROS & Gabriel StoLTz CNLs — ENPC
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Conclusion & Tracks

New methodology for fitting potential energy landscapes:

e represent a configuration by a graph,
e random graph theory for kernel design,

e proof of principle.

CnLs — EnpPC




Conclusion & Tracks

Conlusion

New methodology for fitting potential energy landscapes:

e represent a configuration by a graph,
e random graph theory for kernel design,

e proof of principle.

v

Ongoing work

e test on DFT database,

e insert more physics into the graph,
e discrepancy between tight-binding and DFT,
e approximation of the graph’s probability density.

Grégoire FERRE, Kipton BArRROS & Gabriel StoLTz CNLs — ENPC
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We consider a compact metric space .
A positive definite kernel is a function K : X x X’ — IR, that verifies:

o K is symmetric: ¥ (x,x") € X2, K(x,x") = K(x’, x),

o forallN e N*, (x,...,xn) € XN the matrix K(xi,X;)ij<n is positive
semidefinite, or for all (ay,...,an) € RN,

N N
ZZaia}K(XilXj) >0.

CnLs — EnpPC
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Definition - Kernel

We consider a compact metric space .
A positive definite kernel is a function K : X x X’ — IR, that verifies:

o K is symmetric: ¥ (x,x") € X2, K(x,x") = K(x’, x),
o forallN e N*, (x,...,xn) € XN the matrix K(xi,X;)ij<n is positive
semidefinite, or for all (ay,...,an) € RN,

N N
ZZa x,,xj ) > 0.

=1 =1

<

In this context

For data (x;)7_;, K(x;,X;) is a matrix of correlation.
Typically,

)2
Vx,yeR", K(xy)=e 22 .

Grégoire FERRE, Kipton BArRROS & Gabriel StoLTz CNLs — ENPC
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RkHs : basics

Reproducing Kernel Hilbert Spaces

Consider a space of real functions H C RY forming a Hilbert space
with inner product (-, ). A kernel K is a reproducing kernel of H if:

e H contains all function of the form
VxeX, K, :t— K(x,t)
e forallxe X andfeH,

f(X) = (K, F)n-

Grégoire FERRE, Kipton BArRROS & Gabriel StoLTz CNLs — ENPC

16/18



RkHs : basics

Reproducing Kernel Hilbert Spaces

Consider a space of real functions H C RY forming a Hilbert space
with inner product (-, ). A kernel K is a reproducing kernel of H if:

e H contains all function of the form
VxeX, K, :t— K(x,t)
e forallxe X andfeH,

f(X) = (K, F)n-

’

CnLs — EnpPC
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Understanding RkHs

Consider the operator:
Lg: L2 = L?

o [ ke,
]:Rm
and associated eigenvalues (Ag, k), Ay — 0. Any L2 function reads

f(x) = ch¢k(x) with ¢, = _[Rm F(x) i (x)d x.

k>1

Grégoire FERRE, Kipton BArRROS & Gabriel StoLTz CNLs — ENPC
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Understanding RkHs

Consider the operator:
Lg: L2 = L?

o [ ke,
]:Rm
and associated eigenvalues (Ag, k), Ay — 0. Any L2 function reads

f(x) = ch¢k(x) with ¢, = _[Rm F(x) i (x)d x.

k>1

Alternative definition Functions of finite energy

CnLs — Enpc
17/18



Gabriel’s Graph

Taking into account the angular information

(Source: Wikipedia)




Embedding parallel LIBSVM in Julia for
SVR analysis

B VVesselin Grantcharov
e =3 ond LANL T-1 Group



Outline

Support Vector Machines (SVM) and Support
Vector Regression (SVR) models

LIBSVM
JULIA language

LIBSVM JULIA embedding in MADS.Julia



Support Vector Machine (SVM) models



SVM: Linear Separators

Binary classification is a task to separate classes
In the feature space:

wix+b=0

wix+b<0

ot f(x) = sign(w'x + b)




Classification Margin

Distance from x; to the separatoris '~

Examples closest to the optimal hyperplane are support
vectors.

Margin p of the separator is the distance between support
vectors. .




Linear SVM: Mathematically

A quadratic optimization problem:

Find w and b such that

IS maximized
2
Il

and for all (x;, y)), i=1..n:  y(w'x;+ b) 21

Which can be reformulated as:

Find w and b such that

d(w) = ||w||*=w'w is minimized

and for all (x;, y)), i=1..n: y;(WwTx;+ b) 2 1




Non-linear SVMs: Feature spaces

« General idea: the original feature space can always be
mapped to some higher-dimensional feature space

where the training set is separable:
1 o
o
.. o . " ““““““““““““ : °
o |° ¢ x— (P(X) “““““““““ o
¢ ® e o © e
° ® ‘: o o
o |, ° ° ¢
’ . @ ® ’ .. ° . o °
o e o ’ o
o




The Kernel Trick

* Mapping between X,
two spaces ¢ 1~7

« Every dot product is
a kernel

« It allows the
algorithm to find the
max-margin
hyperplane in a
transformed feature

space
P Kernel functions Type of classifier
K(x, x) = (x'x;) Linear, dot product, kernel, CPD
Linear SVM Kix. x) = [(x'x;) + | |‘1 Complete polynomial of degree d, PD
| PRI o DR
. —5l(X=%;)" L7 (x-x;)] I
xi xj K(x.x,)=e 2 Gaussian RBE, PD
K(x, x;) = tanhl(xrxi) +b]* Multilayer perceptron, CPD
Non-linear SVM ¢(x) ¢(x ) ]

: J K(x.x;)= - [nverse multiquadric function, PD

JIx-x; 1"+

Kernelfunction ” k (xl X J) *only for certain values of b, (C)PD = (conditionally) positive definite




. @ Negative objects (y=-1) & Positive objects (y=+1)

GeneY Feature space
. Input space
(o]
o Vi
o 0 (o] o)

Gaussiankernel

< <& 0o '
(o] L3 .

* -
® - < D(X,)
L R 4 @
(o) *
(o)
(o) o
(o)
o ©




Support Vector Regression (SVR) models



Linear Support Vector Regression (SVR)

« Solution:
o DataM={(x;,y;), (%, ¥5), o, (X 1), },

x;—vectorsXER", y; ER,1<i <]

* Find a function f(x), that has at most ¢ deviations

« Constraints:  from the obtained targets y; for all data points and it
is as flat as possible (meaning that||w|| is minimun)

* We will not accept errors more than ¢

* Noerrors inside of the ¢-tube

* Equation of hyperplane: f(x) =< w,x > +b,w € R",
beR

* Solving a convex quadratic optimization problem

Py

1
i —’ u{
2

y,—wx,=b<,

Wy, +b-y, <.




e—SVR: Hyperparameters

The solution to SVR we just saw is referred to as e-SVR

Two Hyperparameters

minimize —||w|| ©§: +§
+b V'

subject to § y —b<e+&

g,.zo, ; >0

C controls the penalty term on poor fit
¢ determines the minimal required precision



SVR: Mathematically

Given a trainingset D = {(x1,91), -, (Xp,yp)} the linear
SVR finds an optimal linear function by solving the

following constrained convex optimization problem

. D
N7 . : J’ 2 Y *
PO(SVR) : min Znll2+C ) (¢ + &)

d=1
ya —n ' £(xq) < e+&
s.t. Vd : —ya+n f(xq) <e+&5 .
£a,§; = 0
where f = {fi,---, fr} 1s a vector of feature functions

n 1s the corresponding weight vector
|n[|3 = n'n is the fo-norm; &; and &4 are slack variables

and € 1s the precision parameter



The Kernel Trick

« Mapping between
two spaces ¢ -7

« Every dot product is
a kernel

« It allows the
algorithm to find the

max-margin

hyperplane in a

transformed feature 2 o)

space

Kernel functions Type of classifier
Linear SVM K(x,x) = (x'x) Linear, dot product, kernel, CPD
o xi . xj K(x, x;) = [(x'x) + ]|" Complete polynomial of degree d, PD
—ll(x—x,-)TE"(x—x,»)l Y
Non-linearSVM L ¢( xi) . ¢( X ) K(xx,)=¢? : : GdUS.SIdI] RBF PD.
J K(x, x;) = tanh[(x'x;) + b]* Multilayer perceptron, CPD

T k (xl. X j) K(x,x;)= \/”\-\]W [nverse multiquadric function, PD

*only for certain values of b, (C)PD = (conditionally) positive definite



LIBSVM, JULIA and MADS



LIBSVM - The best Library for Support
Vector Machines

Chih-Chung Chang and Chih-Jen Lin

LIBSVM is an integrated parallel software for support vector
classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and
distribution estimation (one-class SVM). It supports also multi-class
classification.

Main features of LIBSVM include
Different SVM\SVR formulations
Efficient multi-class classification
Cross validation for model selection
Probability estimates
Various kernels (including precomputed kernel matrix)
Weighted SVM for unbalanced data
Both C++ and Java sources
Python, R, MATLAB, Perl, Ruby, Weka, Common LISP, CLISP, Haskell,
implementations



O 0’0
julia
“Because We Are Greedy.”

“We want a language that’s open source, with a liberal license.
We want the speed of C
with the dynamism of Ruby.
We want a language that’s homoiconic,
with true macros like Lisp,
but with obvious, familiar mathematical notation like Matlab.
We want something as usable for general programming as Python,
as easy for statistics as R,
as natural for string processing as Perl,
as powerful for linear algebra as Matlab,
as good at gluing programs together as the shell.
Something that is dirt simple to learn,
yet keeps the most serious hackers happy.”



<>

<>

Computational Framework MADS

http://madsjulia.lanl.gov

Mode) LAnalysziz and N ecizion 50[7?

(Model Analysis & Decision Support) is an open-source high-
performance parallel computational framework for model analyses,
developed in Computational Earth Science Group at LANL, and supported by

DOE Office of Science (LA-CC-11-035).

includes advanced adaptive computational techniques:
Sensitivity analysis (local / global);
Uncertainty quantification (local / global);
Optimization / calibration / parameter estimation (local / global);
Model ranking & selection
Decision support (Bayesian, GLUE, Info-gap, BIG-DT)

O O O O O

allows external coupling with any existing physics simulator



LIBSVM embedded in Mads.Julia

 Runs and controls parallel code
« Calls python that calls Julia (grid regression)

« Wrappers that allow for easy interactive mode rather
than writing C code, compiling, running, debugging
 Integrate software from LIBSVM which is downloaded or

modified separately from the standard library — grid
search for regression, dense data version, etc.

* More flexible code to predict data in different formats
than standard LIBSVM data format and read more than
one file to make predictions, thus reducing constraints
due to memory size



Thank you for your time
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OUTLINE Lok Alamos

@ Formulation

@ Original Arbitrary Order MFD Method

@ Improvement and Comparison of Methods
@ Results

@ Conclusion



DIFFUSION EQUATION LosAlamos

STATIONARY DIFFUSION EQUATION
—div(KVp) =f J

Examples: conductivity (electrical, thermal), chemical diffusion, etc.

MIXED FORMULATION WITH BOUNDARY CONDITIONS

u=—-KVp in Q,
divu=f in Q,
p=g on 02.

p — potential (unknown scalar)
u — flux (unknown vector)
QcCR?

K — diffusion tensor (symmetric positive definite matrix)
3/18



Discretization
WEAK FORMULATION AND DISCRETIZATION “Los Alamos

AAAAAAAAAAAAAAAAAA

WEAK FORMULATION
Find (u, p) € H(div, Q) x L?(Q) such that
(K7lu,v)q — (p,divu)qg = —(g,v - V)oq Vv € H(div, Q),
(divu,q)o = (. g9)a Vg € [2(Q).

Mimetic Finite Difference method: discretization scheme that mimics
important calculus properties (Divergence Theorem, Green's formula, etc.).

DISCRETE MIXED FORMULATION
[un, vhlx, — [Pn DIVVh]q, = —(&hsVh - V)n Wvp € Xp,
[DZVun, ar]q, = [fh- anlo, Vqn € Q.

h — size of the mesh
Xy, — discrete space for fluxes uy,

Qp, — discrete space for potentials py, s



Meshes
MESHES - Los Alamos
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el netion
£7
IMPLEMENTATION OF MFD SCHEME “LosAlamos

DISCRETE MIXED FORMULATION
—(gh,Vh - V)n Yvp € X,
[fh» qh]Oh VQh S Qh-

[un, vhlx, — [P, DIVvi]g,
[DIVUh7 qh] Qp

IMPLEMENTATION

All matrices are constructed additively from their local analogs for each element E € Q.

@ Construct the matrix Mx, that corresponds to the bilinear form that defines the
mimetic inner product on Xg:

(Mxgun,vh) = [un, va]y, = /<K71U7V>dx
E

@ Construct the matrix Mg, that corresponds to the bilinear form that defines the
mimetic inner product on Qe:

(Mg ph, Gn) = [P/p Clh]QF ~ / pq dx
JE
@ Construct the discrete divergence operator DZVe using commutation property:

DIVevV = (div v)/ on E € Q4

6/18



Recesloiiissdon)
DEGREES OF FREEDOM (ORIGINAL) ‘LosAlamos

Local interpolation — discretization u’ and p’ for one element E € Q.

Pk(E) — the space of all polynomials on E with degree less or equal to k.

DoOF OF POTENTIAL p

@ the polynomial coefficients of the approximation of p in the space
Pr—1(E)

FIGURE: Degrees of freedom for potential on a quadrilateral element (k = 2)

7/18



Original Arbitrary Order MFD Method Degrees of Freedom

DEGREES OF FREEDOM (ORIGINAL) ‘LosAlamos

DoF OF FLUX u
o the moments of u with respect to Vg ;, basis of Py_1(E):

1
u’E,-::/(u,ngSE;)dx fori=1,...,nk_1
’ |El Je ’

o the moments of (u,vg ) with respect to ¢, basis of Py(e):

1
ué,— = T /(u,l/E,e)d)ey,'(s)ds fori=0,....,k Vee&e
e

(W
LI

oo

(W
LI

FIGURE: Degrees of freedom for flux on a quadrilateral element (k = 2)
8/18



Improvement and Comparison of the Methods New Degrees of Freedom

47
MovVvING EDGE DOF TO VERTICES “LosAlamos
Locally: one-to-one correspondence for elements with no hanging nodes
C‘ﬁ\%%%/\j & % @
+ oo +F —s + oo -+
< IR A

FIGURE: Old and new degrees of freedom (locally)

Globally: the number of degrees of freedom is reduced
AN =
S

( SN

)

FIGURE: Old and new degrees of freedom (globally)
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Improvement and Comparison of the Methods Comparison

A
DOF ON PERTURBED SQUARE MESH “Lo3 Alamos

1.0

_ 09 ——.

=} /

°

808
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£z

= 0

j=3

(=]

= 0.6

8

(=3

8

s

El).o == =

] —— =2
0.4 —— =3

=1
0.3
27' 2(5 23 2-1 2‘4 22 21 2()

h, resolution (linear)

FIGURE: Ratio of number of new DoF to number of old DoF
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PROPERTIES “LosAlamos

Locally: same number of DoF, nothing changes for the elements with no
hanging nodes (vertices with parallel adjacent edges).

Pros (globally):

o Fewer degrees of freedom: ( -

o Additional continuity of the flux:

Cons: Discontinuous diffusion coefficient requires special consideration.

11/18



TEST PROBLEM “LosAlamos

The results below were calculated for the following problem:

o Q=10,1]

_[2+x2 0
°K_[ 0 2+y2}

e p(x,y) =sinmTxcosmy

@ The perturbed square mesh is used.

12 /18



ERROR COMPARISON

A
. L?sAIamos

NATIGNAL LABORATORY

Old method

New method

Error (flux, old)

1072

Error (flux, new)

55 91 93 92 9 20 97 96

h, resolution (linear)

FIGURE: Error for flux

95 94 9-3

h, resolution (linear)
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ERROR COMPARISON “LosAlames

Old method New method

10t 10!
10 10
107 10-3

Error (scalar, old)
Error (scalar, new)

10~ 10-
10~ 10~
107 107°
1016 101
107! 10-1
27 276 2% 274 23 22 2- 20 27 276 275 274 273 272 27! 20
h, resolution (linear) h, resolution (linear)

F1GURE: Error for potential
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47
RATE OF CONVERGENCE (NEW METHOD) Lok Alamos
Flux Potential
- —_—

h, resolution (linear)

h, resolution (linear)

FIGURE: Rate of convergence

Numerical experiment shows the following rate of convergence:

e k+1 for flux

@ k + 2 for potential when k > 2
@ k + 1 for potential when k=1

15/ 18



CSloeslizton Fusie:
C7
CONDITION NUMBER (NEW METHOD) “Lod Alamos

NAL LABORATORY

— =1
100 —— =2
—— k=3

k=4

P

Condition number (quad mesh)
Condition number (regular hex mesh)

97 96 2-5 91 9-3 9-2 9= 90 97 96 )5 91 9-3 9-2 9-1

h, resolution (linear) h, resolution (linear)

(A) Perturbed square mesh (B) Regular hexagonal mesh

Ficure: Condition number of a global coefficient matrix for [u, p] " for
(a) perturbed square and (b) regular hexagonal meshes

The condition number of a coefficient matrix for a fixed order k does not
grow much in the new method.

16 /18



Los Alamos

CONCLUSION  oimemos

CONCLUSION
@ The new method gives the same convergence results as the original

method.
@ The performance is increased due to decrease of number of variables:

o up to 40% in the low-order case;
o up to 10 — 18% in the high-order cases.

@ The new method adds the additional continuity of the discrete

approximation.

FUTURE WORK
@ Special consideration of discontinuous diffusion tensor (e.g., add

additional degrees of freedom to the vertices where K is

discontinuous).
e Find problems where additional continuity plays an essential role.

17 /18
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Appendix Discontinuous Case

,47
DISCONTINUOUS CASE Lok Alamos

Diffusion coefficient K can be discontinuous.

Analytical solution: flux is continuous through the edges where K jumps
(normal component) but its tangential component may have jumps.

The edge DoFs possess this property automatically. The vertex DoFs force
the approximation uj, to be continuous at each vertex (cannot have

tangential jumps).

19/18
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Optimization of interatomic potentials
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Reactive quantum MD with LATTE

Orbital overlap

Fast, parameterized electronic structure -
models (DFTB) S 4\a~
Covalent bonding and charge transfer o

z it z
g T/y\ /Y\T /y

LANL-developed open-source code:
A ’ p\x / p\x o ‘ p\x

Extended Lagrangian Born-
Oppenheimer MD He 1 x

Fast, parallel O(N) and O(N?) algorithms C; N,O:1xs+3xp
for the density matrix, P

Electronic . :
energy Electrostatics | | Repulsion
A | |
l ! 1l g q\ [ \
Potential energy: U(R;P)= 2Tr[PH] n _2 EIN
2 R pair
UNCLASSIFIED /P} Slide 2
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Automatically tuning parameterizations

Bond integrals: /1, (R) = h,._(R,)exp(A(R—R))+A,(R—R,)*)

4
Pair potentials: ~ @(R) = @, H exp(Bl-Ri)

i=1

bondints.nonortho Overlap matrix from wavefunction overlap

Noints= 7

Elementl_Element2 Kind HO B1 B2 B3 B4 BS__R1 Rcut HO R1 R2 R3 R4 B5S__R1 Rcut
H C sss |-8.569940 -1.463764 -0.280323 0.000000 0.000000 1.100000 3.000000 3.500000 0.393139 -1.559300 -0.659087 0.074430 -0.017004 1.100000 3.000000 3.500000
C sps |7.892364 -1.079786 -0.288107 0.000000 0.000000 1.100000 3.000000 3.500000 -0.469300 -1.018870 -0.997495 0.301138 -0.081795 1.100000 3.000000 3.500000
C C sss [-7.893027 -1.531314 -0.482302 0.000000 0.000000 1.500000 3.000000 3.500000 0.275515 -1.688130 -0.523751 0.041905 -0.010372 1.500000 3.000000 3.500000
C C sps [8.004860 -1.184291 -0.525113 0.000000 0.000000 1.500000 3.000000 3.500000 -0.332137 -1.243440 -0.739495 0.176080 -0.049828 1.500000 3.000000 3.500000
C C pps [5.659036 -0.800774 -0.503255 0.000000 0.000000 1.500000 3.000000 3.500000 -0.331087 -0.460593 -1.562450 0.924350 -0.298106 1.500000 3.000000 3.500000
C C ppp [-2.611850 -2.008940 -0.163584 0.000000 0.000000 1.500000 3.000000 3.500000 0.155671 -2.073180 -0.432304 0.024030 -0.011508 1.500000 3.000000 3.500000
H H sss |-8.827050 -1.119400 -0.440439 0.000000 0.000000 0.740000 3.000000 3.500000 0.563921 -1.450000 -0.756144 0.000000 0.000000 0.740000 3.000000 3.500000

H S

Nopps= 3

Elel Ele2 A0 Al A2 A3 Ad A5 A6 C R1 Rcut

C H 622.109477 -7.494398 4.304384 —-3.176901 0.000000 0.000000 0.000000 0.000000 1.500000 1.700000
E)E)C)t:f; <. NONOYthO ¢ c4.719818 20.460516 ~40.187100 28.078400 ~7.506860 0.000000 0.000000 0.000000 1.800000 2.000000

H H 25.489000 7.692560 —52.078700 79.678800 -48.738600 0.000000 0.000000 0.000000 1.000000 1.200000

UNCLASSIFIED Slide 3
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Reference data from DFT for optimization

LT
o\ —__ . ggomdqletc:lrjtl.es
. istortions per
CHs N _ N
e A molecule
he « Species + coordinates
00 ED @@@ « Atomization energy
seloeloed » Forces

OO0 OO0 OO0 » Dipole moment

+.... e.g. stresses

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
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Objective function measures error in
parameterization

Npmo R
O )
B Nmol OF

e R G R e

Oy Oy

X2 =x%+x%+x5+ ...

« Stress, ionization potentials, HOMO-LUMO gap,
polarizibility...

* Normalized per molecule by standard deviation:
dimensionless

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA




EPO (“Empirical Potential Optimizer”):
Python + MPI (mpi4py)

Read in parameter files and reference table

}

Write input and parameter files

}

Loop over reference tables -

Parallelized step / / A/I\\\

Run LATTE, a tight-binding energy code to
get new energies, forces, etc.

}

Accept/reject parameter update via steepest
descent or simulated annealing algorithm

}

Build objective function —

UNCLASSIFIED Slide o
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Parallel Scaling

.
ot 640 structures in reference data
= 16]- -
O
=
2
2 8 i
2
O
2
2 4 .
=
o
St
& 5, LANL: Wolf .
B
E
1 | | | | |
1 2 4 8 16 32

Number of processors
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Steepest Descent: Number of iterations
vs. Objective Function for perturbed
parameters

Steepest Descent: Number of iterations vs. Objective Function

10°
— Perturbation = <1%
—— Perturbation = 1%
10°} —  Perturbation = 5%
—— Perturbation = 10%
c 10%%
ks
©
[
et
o 1034
=
©
Q2
Q0
L
\
L_\\
10} ANy
—
T
100 1 1 1 1 Il 1
0 1000 2000 3000 4000 5000 6000 7000

Number of iterations
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-5 Steepest Descent: Number of iterations vs. Objective Function

\ | | — No perturbation
i —— Perturbation = 1%
ol — Perturbation = 5% |
11 —— Perturbation = 10%
_ 1
£ 15 l‘x .
2 \ Steepest descent
: ] optimization of 28
J \1 parameters
L‘M
5 \\ |
T ]
00 5(l)0 10100 15100 20|00 25|00 30100 35100 4000

Number of iterations

Slide 9

« Los Alamos

UNCLASSIFIED

NATIONAL LABORATORY
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA YR




Perturbed Parameters Error

RMS Error

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Perturbed Parameters Error

®<1%
1%
“5%
"10%

Energy error Geometry error Dipole error

Slide 10
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Error in atomization energy

RMS Error
(eV/molecule)

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

® Pre-optimization

® No Perturbation

“ Perturbation = 1%
¥ Perturbation = 5%
¥ Perturbation = 10%
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Error in molecular geometry

0.05
0.045 -
0.04 -
0.035 - B Pre-optimization
RMS Error (A/ 0.03 ® No Pertur.bation
molecule) 0.025 - “ Perturbation = 1%
0.02 - ¥ Perturbation = 5%
0.015 - ¥ Perturbation = 10%
0.01 -
0.005 -
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Error in molecular dipole moment

0.0175

0.017

0.0165

RMS Error (ea_/

0.016
molecule)

0.0155

0.015

0.0145

® Pre-optimization

® No Perturbation

“ Perturbation = 1%
¥ Perturbation = 5%
¥ Perturbation = 10%
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Future work: EPO

Release code

New optimizers
differential evolution
neural networks

Improve portability and compatibility with other codes via modules/
functions

Additional objective functions
stress tensors
polarizability
lonization potential
HOMO/LUMO eigenstates

“DOE acsef,

Slide 14
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Maud Rise Polynyas

Prajvala Kurtakoti
Texas A&M University
Advisor
Achim Stossel
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Mentors
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Schematic representation of physical processes taking place in
deep water (open ocean) and shelf water (coastal) polynyas.

DEEP WATER POLYNYA SHELF WATER POLYNYA

: - -
. " —

-
. ot
- —

sy idated newica

Reviews of Geophysics
Volume 42, Issue 1, RG1004, 18 MAR 2004 DOI: 10.1029/2002RG000116
http://onlinelibrary.wiley.com/doi/10.1029/2002RG000116/full#rog1583-fig-0001




Model details

[ High resolution run:
= Accelerated Climate Modeling for Energy (ACME) v0.1 baseline simulation.
= Horizontal resolution of 0.1° for the ocean (POP) and sea-ice components (CICE).
= (0.25° for the atmosphere (CAM) and land model components.
= 95 vyears run (pre-industrial scenario).

O Low resolution run:
» Horizontal resolution of 1° for the ocean (POP) and sea-ice components (CICE).
= 1°for the atmosphere (CAM) and land model components.

= 197 years run (pre-industrial scenario).



2 locations for Open Ocean Polynyas in the Weddell Region

(OOP)
* Maud Rise Polynyas (MRP) :

» Over Maud Rise Seamount :
 Weddell Sea Polynyas (WSP)
» Over Central and Eastern Weddell Sea.

(Image:
www.wikipedia.org/wiki/
Weddell_Gyre)

AVERAGE MONTHLY SEA ICE CONCEN




AVERAGE MONTHLY SEA ICE CONCENTRATION (%)
Simulation Year 15-Month 1
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(m)

Average Ocean MLD (m) calculated applying annual polynya mask.

Years
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Average grid cell mean ice thickness (m) calculated applying annual polynya mask.
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Temperature (° C) averaged over polynya mask of the upper 250m (top panel) and full depth (bottom panel)
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Latitude

Comparison of Bathymetry in Observation vs. model (high-resolution & low-resolution simulation)

Bathymetry OBSERVATIONS GEBCO Bathymetry of the Low resolution simulation
Maud rise & Althoff Seamount (Metres) Maud rise & Althoff Seamount (Metres)
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Observed Sea Ice Concentrationon 1 -6 - 2016
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Observed Sea Ice Concentration on 5 -8 - 2016
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Jonathan Lim

Mentor: Thomas K Leitner

Davidson College, UGS

T-6 Theoretical Biology and Biophysics

Reconstructing HIV Populations from Population Sequences

Direct population sequencing is a molecular biology technique that collapses the genomes of a whole
population into a single file, yielding scope at the cost of resolution. In epidemiology, sequencing a
patient’s viral population is preferable to sequencing individual clones because physicians need to scan
the entire population for drug resistance. Recently however, we found that phylogenetic analysis is
greatly enhanced by the inclusion of many individual viral sequences from each patient. Since
population sequences are widely available in regional databases, we are now interested in developing
computational methods for reconstructing the viral populations of patients from their population
sequences. First, we formulated into rules the logic used by humans to interpret sequencing
chromatograms, both at the level of determining bases from peaks and at the level of determining
consensuses from multiple reads. Second, we began efforts to optimize this logic for our application of
obtaining phylogenetic signal while rejecting noise. We are validating these algorithms on a dataset in
which patient viral samples were sequenced as clones and as populations, and we plan to include next-
generation sequencing data from the same patients as well.



Title: Alpha to Omega: Modelling phase transformations in Ti under
shock loading

Thaddeus Song En Low (GRA)
The Ohio State University
Group: T-3

Mentor: Curt Bronkhorst

Thanks,
Thad

Abstract: Under shock loading conditions resulting in pressures > 7
GPa, Ti experiences a phase transformation from the ambient stable
alpha phase to the brittle and metastable omega phase. Although
experimental work on this topic spans several decades, there remains
much to uncover concerning the interaction between the phase
transformation and plastic mechanisms. As a step towards further
insight, the focus of this work is to incorporate a previously developed
model into an FEM implementation via a VUMAT. Current features of
the model include an EOS to account for elastic property changes,
twinning/slip, and phase transformation adapted from martensitic
theory. A brief overview of the model will be presented in addition to
preliminary results of a pseudo-1D FEM simulation.



Photon induced
Excited-State

Dynamics

Lightning Talk 7/28/2016

By: Levi Lystrom, Tammie Nelson, Shawn McGrane, David Chavez,
Jason Schartf, Serge1 Tretiak




Ground State and Linear Absorption
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Pathways
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ranching Pathway Algorithm
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Algorithm Output
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Conclusions

- The Branching Pathway Algorithm Performs

- Extraction of time resolved XYZ coordinates
- Saves 1n XYZ formatted files
* Find interatomic distances

Time = 0000fs

* Classifies All trajectories into Branching Pathways
- Finding Bond(s) cleaving events

- Finds represented trajectory for each Pathway
- Finds temperature dependency §
- Average Temperature for various pool

* Dress the distribution of temperature
with Gaussian distribution
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Conclusions

- The Branching Pathway Algorithm Performs

- Extraction of time resolved XYZ coordinates
- Saves 1n XYZ formatted files
* Find interatomic distances
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Outline

» Introduction to skyrmions, system
description, and experiment results

» Particlelike skyrmion model and interaction
of skyrmions with parabolic pin

» Collective transport properties of skyrmions
with a conformal pinning array
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[1] H. Braun, Advances in Physics, Vol. 61, 1-116, 2012



Skyrmion

Dzyaloshinskii-Moriya Interaction (DMI): Dz (Pxn)

(a) Real-space observation of
helical state and (b) skyrmion
crystal state. (c) a magnified

/ /////,:/,’/"%/'/‘/‘,'NW‘*& skyrmion from (b) [2]. (d)
(d schematic spin configuration
) of helical state [3]. (e)

schematic configuration of a
skyrmion [4].

[2] X. Z. Yu, et al, Nat. Mater. 465, 901-904, 2010
[3] C. M. Jin, et al, Chinese Physics B, 24(12), 2015
[4] I. Kézsmarki, et al, Nat. Mater. 14, 1116-1123, 2015
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Equation of Motion

The dynamics of a single skyrmion i [5] [6]

aldviitalmzXxvii=FIlilss+F lilsp+F TD=F Ttot

“—— L J
Y
Dissipative Nondissipative component
component from Magnus term

. ©
/ 7 \\
7/ T S\
V4 \
z \direction of vli
4 /4
almzXxv
li
al
dv

[5] S.-Z. Lin, et al, Phys. Rev. B 87, #fla 2013
[6] C. Reichhardt, D. Ray, C. J. Olson Re

Flilss =Y =1TNls &Er Lij Ki1 (RLif),
Riij=[rii —rl; |

F liTsp non-overlapping harmonic
traps

F 1D Lorentz force from applied
current

Hall angle: f=tanT-1 (adm /ald )

ichhardt, Phys. Rev. Lett. 114, 217202, 2015



Isolated Skyrmion within a Harmonic Trap with
AC Drive (x direction)
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Isolated Skyrmion within a Harmonic Trap with

AC Drive (x direction, «m [ 212=10)

(a) Fac=0.05,
Fdc=0.04

(c) Fac=0.05,
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Conformal Pinning Array

[7] .
System size: 36x36
Same density: zip=nis=0.3

Flpmax=01 rip=03

» Parabolic
[ pinning site

N\
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'e)

-~ U
)

(
Q
O
W/
O
e
-
-

0.1 0.2 0.3

Hook’s law: F=—/Ar, £k=0.1/0.3, [ /<0.3

[7] C. Reichhardt, D. Ray, C. J. Olson Reichhardt, Phys. Rev. B 91, 184502, 2015



Hall angle:
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AC Property & Ratch
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Strongly Pmned Reglon (a'lm/a'ld—g 962)
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AC drive in x direction with amplitude 0.03. (a) trajectory in positive half cycle,

(b) trajectory in negative half cycle.
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Strongly Pinned Region (qlm/ald=9.962)
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Conclusion

» Interaction of an isolated skyrmion within a
parabolic pinning site

» Collective transport properties with a
conformal pinning array, ratchet effect

» Ratchet effect due to different depinning

process
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Superconductors

* No Apparent Electrical Resistance
* Zero-point energy levitation
* Critical current is important!
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Quantum Vortices In
Type-ll Superconductor

H

Magnetic
Field

' Meissner state

Temperature

http://www.mmp.ph.gmul.ac.uk/~drew/?p=110 http://www.ims.demokritos.gr/people/mpissas/superconductivity.htm



Vortex Pinning

* The movement of the vortices creates resistive mixed state in
type-ll superconductors.

* Enhancement of pinning mechanisms via artificial pinscapes.

(W)

) Electrical
S Current
(a)

) F Lorentz
)




Vortex Pinning

* Effective channels created by periodicity.
* Distributing the pinning force evenly through out the system

— Limits on long-scale variation of density fluctuation of a Disordered Structure.
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Hyperuniformity

-

N(R): Number of points in Region Q
Var (N (R))=(N"(R))—(N(R))’
For a Poisson Random Process, Var(N(R))~ R’

If Var(N(R))~R® and a<2, the system is said to
have a hyperuniform structure.

S. Torquato and F. H. Stillinger, Phys. Rev. E 68, 041113 (2003)



Disordered Hyperuniform

Pinning Array

Unit Cell
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Disordered Hyperuniform
Pinning Array
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Model of Superconducting Vortices

* London approximation where guantum vortices can be
treated as classical particles.

Viscosity of the
* Molecular Dynamics (Langevin Dynamics): surrounding media

FW+FVP+Fth+Fd_T] |
A Overdamped motion,
\ thus the velocity is

proportional to the

net force
Net Force on Vortlces

Repulsive Vortex-  Spring-like pinning Thermal Force to Induced Lorentz
Vortex interaction force with cut-off  simulate Brownian  Driving Force

range motion



Enhancement of Critical Current

2.5

0.5

Nv: Number of Vortices
Np: Number of pinning
sites

= Hyperuniform | Fp=2.55

Hyperuniform | Fp=1.05
= Random | Fp=2.55
<« Random | Fp=1.05

»— Hyperuniform | Fp=0.53
Random | Fp=0.53




Structural Analysis

* Voronoi Algorithm

* Polygon-6




Local Induced Disorder

»— Hyperuniform | Fp=2.55
Hyperuniform | Fp=1.05
—= Random | Fp=2.55
« Random | Fp=1.05
»— Hyperuniform | Fp=0.53
Random | Fp=0.53

Nv: Number of Vortices
Np: Number of pinning
sites
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Suppression of Plasticity

3 I | | | | | | | |
i m—& Dynamic Order Hyperuniform |
25— @—® Depinned Hyperuniform _
m—& Dynamic Order Random
~ @—® Depinned Random .
2 |
S 15 : |
H- Elastic Phase
1 -
0.5 Plastic Phase
Nv: Number of Vortices Pinllled Phase |

Np: Number of pinning 0

. 0 0.5 1 1.5 2 2.5 3
sites
Nv/Np




Conclusion

* Disordered Hyperuniform Pinning Array enhances the critical
depinning current of the vortex lattices by effectively inducing
more local disorder than the Poisson Random Pinning Array.

* Plasticity in moving vortex lattices Is suppressed by Disordered
Hyperuniform Pinning Array.

- Provide insights for the study of plasticity in percolation theory.
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Thank You!
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New State of Matter:
Disordered Hyperuniform
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Meissner Effect In
type-ll Superconductors

MNarmal metal

Mixed state

Meissner state

Magnetic field

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/meis.html
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Background

Jamming/Clogging: flowing -> stuck state

77777777777777777

Hopper
(K. To, P. Lai, and H. Pak, PRL 01" )

beans in funnel o Presence of obstacles
o Role of particle density

2D bi-disperse model
-cisp -> ability to predict clogging ?



Method

N,,, 50:50 bi-disperse mixture AB of disks a4 = 1.40p
* N, obstacles; pinned small disks same as B
* N=N,+N,
* Grains interact when in physical contact

. F_D> applied uniformly on every grains
« Over-damped equation, 7; is the position of disk i

N
dr; _ N
n—-= Z k(oyj = Irij])0(ai; — [7ij])755 + Fp - (1)

1#]
0;j = 0; +0;; 1;; =1, —1;; ©isHeaviside function

Red: pinned disks (obstacles)

Green, Blue : mobile disks Characterization

o Average velocity (ny) = NLZ£V=1E'> x(¥)

o The largest cluster during simulation
o Local density defined by Voronoi construction

1
PiZE




Clogging & flowing states
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In 2D free-obstacle
bi-disperse disks:
Z=4,¢ = 0.844

(C. O’Hern, et al PRE03’)

Z number ~ 3

Contact number vs. time
system N = 565, P = 121, rho = 0.561

4 : : . .
| clogged
3 il
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ol i
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1 : ! . |
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time
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Packing fraction ¢ < 0.844

Initial state
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Effect of obstacle spacing

Clogging probability vs. density at various lattice spacing
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0.2

845

jamming probability , J(d)

! | ! |
0.55 0 0.60 0.65

N = 1600,N,, = 484,p = 0.47

a : lattice constant of obstacle array (K. To, P. Lai, and H. Pak, PRL 01’ )
Particle density defined as area covered

by all disks
p = [0.5N,,ta; + (N,+0.5N,,) 5]/ L




Effect of the direction of the drive

Angle Dependence
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Conclusion

o Periodic array of obstacles reduces jamming density

o Contact number is significantly smaller than in the clean limit

o Clogging probability monotonically increases with the particle density

o Exhibit some features found in 2D jamming flowing through an aperture

THANKS!



Arctic Riverine CDOM and its Effects on
the Polar Marine Light Field
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OUTLINE

» The Importance of Phytoplankton and CDOM (Chromophoric Dissolved Organic Matter)

> Baseline Model

» Preliminary Conclusions

» Future improvements




A map of the Arctic Region
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Phytoplankton CDOM

Defined as microscopic,
autotrophic organisms that
inhabit the photic zone in
oceans and fresh water.

Defined as the optically

measurable component of

dissolved organic matter in water.

» Absorb same
visible
wavelengths of
light

» Has a limiting effect on
photosynthesis

» Obtain energy through
photosynthesis

» Can absorb UV radiation, absorbs
best in blue and violet

» Absorbs violet-blue and
orange-red light best

» Visible in high
numbers

» Foundation of food chain > Dissolved detrital material

» Riverine inputs

» Open ocean



NASA SATELLITE IMAGES OF
PHYTOPLANKTON BLOOMS

‘clouds:

July August

Although this bloom in the Barents Sea does not originate from a river, it complements our data quite nicely.



NASA SATELLITE IMAGE OF MACKENZIE RIVER PLUME

High concentrations of CDOM appear brown and then green as the plume spreads out.




PARAMETERS

Attenuation table

Months | CDOM DOC* CDOM Sediment | Clear sea

DOC* water
(m1) (1M C) [(m1) (m1) (m-1)

(kM C)
Jan 0.35 115.8 | 0.003022 0.05 0.017
Feb 0.7005 231.6 | 0.003025 0.05 0.017
Mar 1.401 463.2 | 0.003025 0.05 0.017
Apr 1.46 345.8 | 0.004222 0.05 0.017
May 8.33 1386 0.006010 0.05 0.017
Jun 5.5 932.75 | 0.005897 0.05 0.017
Jul 3.75 683.4 | 0.005487 0.05 0.017
Aug 2.6 632.8 | 0.004109 0.05 0.017
Sep 1.953 491.6 | 0.003973 0.05 0.017
Oct 3.47 708.83 | 0.004895 0.05 0.017
Nov 1.735 354.42 | 0.004895 0.05 0.017
Dec 0.35 177.21 | 0.004893 0.05 0.017

* = concentration, not attenuation value

>

>

PAR (Photosynthetically Available Radiation W/m"2)
Dynamic mixed layer depth (meters)

Appropriate wavelength (443 nm)

Attenuating factors (see left table)

CDOM decay timescale (316 days)

Concentrations and dilution factor (0.3)

These factors were used in calculating and plotting the
average intensity in Watts per meter squared over the
mixed layer of the Arctic Ocean.



BASELINE MODEL: JUNE

VV/I'T\2 W,mZ
CDOM attenuation included (June)

CDOM attenuation not included (June)
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How much PAR the CDOM appropriates (June)







CONCLUSIONS
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How much PAR the CDOM appropriates (June)

S
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FUTURE REFINEMENTS

Individual Rivers

Suspended Sediments

Ha}rleigh Scattering Mie Scattering Mie Scattering,

larger particles

— Direction of incident light

—Gulf of Ob

—flooded river

The Ob is completely blocked by ice in June
unlike other major rivers



PICTURES CITED

In order of appearance

» http://sailorsforthesea.org/programs/ocean-watch/searching-phytoplankton (phytoplankton)
» https://nordpil.com/portfolio/mapsgraphics/arctic-topography/ (map of arctic)

» http://www.nasa.gov/feature/goddard /nasa-study-shows-oceanic-phytoplankton-declines-in-
northern-hemisphere (July bloom 2014)

» http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=51765 (August bloom 2011)
» http://visibleearth.nasa.gov/view.php?id=52586 (Ob river June)

» http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html (scattering types)



Improving the Parallel Scalability of BoxMG

Andrew Reisner!
David Moulton?
Luke Olson?
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lectric Barrier Discharge Model Problem

D

Dielectric
Electrode: Ground
g ; Electrode: High Voltage I
Oxidizer
O,- Ar; Air
Fuel
H,; CH,

e Goal: Calculate electric field (V - €V = f) in dielectric
barrier discharge
e Application: Electric field processed as body force on cross
flow
Center for Exascale Simulation
XPACC -



E-field Calculation V - ¢

e Accurate discretization leads to ill-conditioned S.P.D. matrix

e Efficient solution requires multilevel solvers

Multilevel Solver Design

e Challenge: Jump in diffusion coefficient (€)

e Approach: Operator-induced interpolation

High Voltage

Ground



E-field Calculation V - eV¢ = f

Multilevel Solver Design

e Challenge:
e Electrodes at coarse levels
e Applied potentials in domain

e Approach:
e Operator-induced interpolation

e Krylov solvers



E-field Calculation V - ¢

Multilevel Solver Design

e Challenge:
e Electrodes at coarse levels
e Applied potentials in domain

...... 108 — Two Level
: : : : : : 10! \\ — Three Level
‘‘‘‘‘ 1o \ —— Four Level
10? \\\\ \
;‘%10" \ \
e Approach: \ \\
e Operator-induced interpolation N \ NG
w . .
e Krylov solvers 10 \ N
1070 10 20 30 40 0
Iteration 4




E-field Calculation V - V¢ = f

Multilevel Solver Design

e Challenge: Stretched meshes

e Approach: Line/plane relaxation with standard coarsening




Black Box Multigrid (BoxMG)

Robust multigrid for discretizations on structured grids

Robust Structured Grids

e Operator-induced e Fixed coarsening pattern

interpolation .
P e Stencil operators on each

e Discontinuous coefficients
level

e Variational coarsening .
_ . e Direct memory access
e Minimize CGC error in
range of interpolation
e Line/Plane relaxation

e Anisotropic problems



Distributed BoxMG

e Point-relaxation and intergrid Q O
transfer use efficient stencil

operators b d

e Coarse grid correction requires

solve on coarsest level

e At some level in the coarsening we D D D

run out of local work

e Initial approach:
e Gather data to one processor D D B
e Serial BoxMG cycle
e Scatter solution and continue

[-] (-] [-]



Distributed BoxMG

e Point-relaxation and intergrid Q O
transfer use efficient stencil

operators b d

e Coarse grid correction requires

solve on coarsest level

e At some level in the coarsening we
run out of local work
e Initial approach:

e Gather data to one processor
e Serial BoxMG cycle
e Scatter solution and continue




Distributed BoxMG

e Point-relaxation and intergrid Q O
transfer use efficient stencil

operators b d

e Coarse grid correction requires

solve on coarsest level

e At some level in the coarsening we D D D
run out of local work

e [nitial approach:
e Gather data to one processor D D
e Serial BoxMG cycle
e Scatter solution and continue
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Distributed BoxMG

e Point-relaxation and intergrid Q O
transfer use efficient stencil

operators b d

e Coarse grid correction requires

solve on coarsest level

e At some level in the coarsening we
run out of local work
e Initial approach:

e Gather data to one processor
e Serial BoxMG cycle
e Scatter solution and continue




e Coarsest grid grows with number of processors

e Best case: 3 x3=9o0r3x3x3=27d.o.f. per core
e Redistribute problem on subset of processors

e Using redundancy: opportunity for resilience
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e Coarsest grid grows with number of processors

e Best case: 3 x3=9o0r3x3x3=27d.o.f. per core
e Redistribute problem on subset of processors

e Using redundancy: opportunity for resilience
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e Coarsest grid grows with number of processors

e Best case: 3 x3=9o0r3x3x3=27d.o.f. per core
e Redistribute problem on subset of processors

e Using redundancy: opportunity for resilience
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e Coarsest grid grows with number of processors

e Best case: 3 x3=9o0r3x3x3=27d.o.f. per core
e Redistribute problem on subset of processors

e Using redundancy: opportunity for resilience
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e Coarsest grid grows with number of processors

e Best case: 3 x3=9o0r3x3x3=27d.o.f. per core
e Redistribute problem on subset of processors

e Using redundancy: opportunity for resilience
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e Coarsest grid grows with number of processors

e Best case: 3 x3=9o0r3x3x3=27d.o.f. per core
e Redistribute problem on subset of processors

e Using redundancy: opportunity for resilience
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e Coarsest grid grows with number of processors

e Best case: 3 x3=9o0r3x3x3=27d.o.f. per core
e Redistribute problem on subset of processors

e Using redundancy: opportunity for resilience
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Algorithm

e Subset enumeration
e Group processors into blocks that
will share the same data
e Start with one agglomerate and
refine greedily by dimension

e Redistribution search

e Known structure of coarse-grid
operators enables global search
over recursive redistribution

e Path cost given by predictive
performance model



Weak Scaling on BlueWaters!

e Local problem: 568 x 71 ~ 40,000 d.o.f. per core
e Processor grid ratio: 2 x 1

10°
®-@ Residual
* =%  Agglomerate
o1l —e Solve .
V¥ -V Relaxation
_ B-B cg-solve
% - ¢ -9 Remainder
£ 1077¢ k-4 [nterpolation
|
10734
1071— :

32 128 512 2048 8192 32768 131072
Cores

!Cray XE/XK hybrid with 22,640 XE compute nodes with two AMD

“Interlagos” processors (NCSA) https://bluewaters.ncsa.illinois.edu 10
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Weak Scaling on Mira?

e Local problem: 568 x 71 ~ 40,000 d.o.f. per core
e Processor grid ratio: 2 x 1

10— : : : : , , ,
®-® Residual
;e o * =% Agolomerate
10% - . T b —e® Solve
R R V=¥ Relaxation
_10-1L A Ekeiaie i A A S - B-B cgsolve
% .----.=====’=====’::::: :::: 2""*""‘ ¢ -9 Remainder
=} S at- k-4 [nterpolation
g B - Srr. TTTTT SR TEEEE S
=102 ™ B ;
PR
¢4
1073} ‘ 6 ¢ ¢ 9
10-1— :

32 128 512 2048 8192 32768 131072 524288
Cores

IBM BlueGene/Q with 49,152 compute nodes with PowerPC A2 processors

(Argonne) https://www.alcf.anl.gov/mira 11


https://www.alcf.anl.gov/mira

Conclusions & Future Work

Conclusions

e Redistribution extends the scalability of BoxMG

e Global search guided by performance model templates
robust /flexible redistribution

e |ogarithmic setup cost can be avoided by local search and
heuristics

Future Work

e Line/plane relaxation
e Study accuracy of performance estimation

e Improve baseline performance model
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Thank You!

Questions

This material is based in part upon work supported by the
Department of Energy, National Nuclear Security Administration,
under Award Number DE-NA0002374
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Predicting the Crystal Structures of Layered
Materials with an Evolutionary Algorithm

Benjamin Revard, Sven Rudin

Evolutionary algorithm

— How it works top view

Layered materials

o« \
— Island approach to layered | | |
structure prediction 3 ! 3 Z } side view

* Preliminary results

— SnSe —VSe, layered system G.A.S.P

e Future work Genetic Algorithm for
_ o Structure Prediction

— Variable composition search http://gasp.mse.ufl.edu

https://eithub.com/henniggroup/gasp

° LOS AlamOS Cornell Universit UF UNIVERSIIY of @
NATIONAL LABORATORY & "“’ y FLORIDA
EST.1943

QEp n.0




Evolutionary Algorithm: How it works

1. Make random initial structures and
evaluate their energies with VASP

2. Select two relaxed structures to act
as parents

3. Combine parent structures together

to form offspring structure

4. Repeat step 2and 3

o o
o o
e 6 o Q O O ® 6 o
Q OOOQ .Q.Q.Q S
® 06 o
@ 0,0 O O O O O
e 6 o QO 9O O ® © o
Q OOOO .Q.Q.Q .
e 06 o
® O O O O Q O O

GUALJ S’_IRJ
Genetic Algorithm for Structure Prediction
http://gasp.mse.ufl.edu

» Los Alamos w.w. Tipton & R. G. Hennig. J. Phys.: Cond. Matter 25, 495401 (2013)

NATIONAL LABORATORY
EST.1943

B. C. Revard, W. W. Tipton, and R. G. Hennig. Topics in Current Chemistry (2014)




Island Approach to Layered Structure Prediction

* Layered materials have unique properties, can be precisely synthesized
* Approximate one layer with a finite island, leave the other infinite

Advantages:
* Exploring new systems
-> No constraints on relative orientations of the layers
-> |dentify energetically favorable ion positions
 Computationally less expensive
* Provides guidance to experimentalists

A -> Applied to [(SnSe),,,],,(VSe,), layered system

» Los Alamos S. P. Rudin and D. C. Johnson. Physical Review B 91.14, 144203 (2015) @

NATIONAL LABORATORY
EST.1943




SnSe Islands between VSe, Sheets

* SnSe —VSe, layered materials have recently been synthesized
* Island approach previously used to elucidate layers’ orientation
* Good test case for evolutionary algorithm island search

Bulk structures Lowest energy island structure
found by the algorithm so far...

SnSe

Promising start!

NATIONAL LABORATORY S. P. Rudin and D. C. Johnson. Physical Review B 91.14, 144203 (2015)

EST.1943

» Los Alamos R. Atkins et al. Chemistry of Materials 26.9, 2862-2872 (2014) @




Predicting the Crystal Structures of Layered
Materials with an Evolutionary Algorithm

Benjamin Revard, Sven Rudin

Evolutionary algorithm

— How it works top view

Layered materials

o« \
— Island approach to layered | | |
structure prediction 3 ! 3 Z } side view

* Preliminary results

— SnSe —VSe, layered system G.A.S.P

e Future work Genetic Algorithm for
_ o Structure Prediction

— Variable composition search http://gasp.mse.ufl.edu

https://eithub.com/henniggroup/gasp

° LOS AlamOS Cornell Universit UF UNIVERSIIY of @
NATIONAL LABORATORY & "“’ y FLORIDA
EST.1943

QEp n.0




Evolutionary Algo

rithm: Why it works

Cast structure prediction as a

global optimization problem Enthalpy

Minimize the enthalpy (per
atom) as a function of the
structural parameters

&

K

lattice vectors

Basin of
attraction

A Effective potential energy
surface of local minima

surface

Local
. Optimization

Potential energy

Local minimum

&
atomic locations

Exploit features
of the potential
energy surface

/A
° I?ojsAIamos

NATIONAL LABORATORY
EST.1943

-

C.
B.

P.
C.

Massen & J. P. Doye (2007), W. W. Tipton & R. G. Hennig (2013),
Revard, W. W. Tipton, and R. G. Hennig (2014), J. K. Cockcroft (1995)

3N+3 configurational degrees of freedom

Potential energy surface divided into basins of attraction
Hypervolume increases with the basin depth

Physical constraints reduce size of search space
Short-range interactions contribute most to energy



Modifications for Layered Crystal Structure Prediction

Once a structure has been

Sandwich it between

generated... sheets to create anisland

I:I —
3

Remove G

sandwiching sheets

/A
° fo?sAIamos

NATIONAL LABORATORY
EST.1943

VASP
PAW-PBE

Pass to
energy code



Texture completion using
a pre-trained convolutional
neural network
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, person

Introduction

Jchaw

=S

Convolutional Neural Networks : The stars of computer vision

-> Perform tasks like : classification, localization, segmentation, etc.
-> Recently exceeded human-level performance

-> Can be used for new tasks beyond the scope of their training (transfer learning)
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CNNs Texture model Texture completion

Outline

CNNS Texture model

Texture Completion 3




Artificial Neural Networks (ANN)

F(z)

5
1 o
3
\ 5
1-
: 3 5 2 4 0 1 2 3 & st
] :inputs
B : outputs zZ =) wix; + b

Texture model



Convolutional neural networks (CNNs)

Input image

Convolutional layer
(Filtering)

Pooling layer

(Step back)



Convolutional neural networks (CNNs)

Input image Convolutional layer Pooling layer
(Filtering) (Step back)
CNNS Texture model Texture Completion 5




Convolutional neural networks (CNNs)

Input image Convolutional layer Pooling layer
(Filtering) (Step back)

CNNS Texture model Texture Completion




Gatys’ texture representation

VGG
L=2 L=3 L=4 L=5

Input L=1

CNNS Texture model Texture Completion



Gatys’ texture representation

4 5
F F Gram Matrix :

FTF FIT: FT =ZF.§F.L

Input

Loss Function :

= ll6 — ¢l

[\

Reference Target

Texture model Texture Completion



Texture synthesis

Reference

‘B

Texture model %g% @ Texture Completion



Texture synthesis

Reference

‘B

Texture model %g% @ Texture Completion



Texture synthesis

Reference

B

Texture model QHE @ Texture Completion



Texture synthesis

Reference

-

Texture model EHE @ Texture Completion



Texture completion

Texture model



Texture completion

Texture model



Texture completion

Texture model



Texture completion

Texture model



Texture completion

Texture model i 65 Texture Completion
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Results

Initialization Reconstruction

B

Texture model QHE @ Texture Completion



successes

Texture model




successes

Reconstruction

Initialization
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Failure modes : Highly constrainted patterns

Source Initialization Reconstruction

.. =

Texture model




Failure modes : Critically degraded images
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Thank you from the bottom of our hearts |




Rule-based modelling of autophagy
with dynamic compartments allows
incorporation of effects of Influenza A
infection

Kalina Slavkova
advised by Dr. Bill Hlavacek
and Dr. Ruy Ribeiro




Background
L»Problems

L»Future Directions



[Background]

What is autophagy?

Autophagy = “self-eating”

Macroautophagy = “Macroautophagy is a process in which cellular contents are degraded by lysosomes or
vacuoles and recycled.”

Starvation-induced(http://www.nature.com/subjects/macroautophagy)

Microautophagy = Direct engulfment of small particles by the lysosome

Important in viral and cancer pathways

(A)
Initiation Elongation Cargo loading Maturation Transport
ER g g - and fusion
v S o W W - )
Omegasame t,;? 7 (ps2f™ .
1\"_"’* lsolatian e " e i
Lipidation Wit el i !
v [ :
I l > 4 - <V
v | ; o
Key: 57 L€34 Phagophore Autophagosome Tl ca
W L [PG] [AV] to 103
il Autophagolysosome



http://www.nature.com/subjects/macroautophagy

[Background]

What is rule-based modelling?

» Implicitly describe mathematics of reactions with a set of rules

Languages

® RuleBender

#association/dissociation of WIPI and PtdIns{3,5)P2

Rie: WIPI(1,1) + PIns{t-PP,f~PP,1,1) =-> WIPI(1!1,1).PIns{t-PP,f-PP,111,1) k_cap, k_rel2

® ML-Rules

MemSrc[PtdIns35P2:pip2 + pm?] + WIPI:w —> Heerc[HIPIJPtdIn33592+pm?] @ k_ a2*$pip2*#w; //forward asj

MemSre [WIPI_ PtdIns35P2:wpt2+pm?] —-> MemSrc[PtdIns35P2 +pm?]+ WIPI

@k d2 Z2*#wpt2;//dissociation, eq




[Background]

Key Publications

Martin, K. R., Barua, D., Kauffman, A. L., Westrate, L. M., Posner, R. G., Hlavacek, W.
S., & MacKeigan, J. P. (2013). Computational model for autophagic vesicle dynamics
in single cells. Autophagy, 9(1), 74-92.

Count AV’s via GFP labelled LC3-II

Computational model of autophagy under different conditions
AZD8055 - stimulates autophagy

BafA1 - inhibits autophagy

Zhirnov, O. P, & Klenk, H. D. (2013). Influenza A virus proteins NS1 and
hemagglutinin along with M2 are involved in stimulation of autophagy in infected
cells. Journal of virology, 87(24), 13107-13114.

NS1and M2 stimulate autophagy
NS1 may downregulate apoptosis



[Background]

Deterministic Model of Autophagy (Martin et
al.)

Membrane C\)/ Ol ¢ Lysosome

O
Source — O OO » (Sink)
T OO0 o | |
Inhibitor —] TORC1 BafA1
(AZD8055)

Fig. 2: Simple deterministic model of autophagy, modelled by one ODE (Fig. 3 A in Martin et al.)

dv P = initiation rate = 0.18 min
_ > o N k = augmentation of P = 2.94
o ( I + Of;k ) P o ( I o (),f; )‘:-' V » ¢ = degradation rate = 0.037
df 6_ = presence of AZD8055 =0 or 1
6, = presence of BafA1=0 or1




[Background]
Mechanistic model of autophagy (Martin et al.)

Fig. 3: Mechanistic model of autophagy, stochastically simulated as reactions (Fig. 5 in Martin et al.)
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[Background]

Effects of IA Proteins on Autophagy (Zhirnov et al.)
[influenza model]

VIRUS

1-3 h.p.i. @ Fig 4. Autophagy pathway under IA infection.
NS1 stimulates amplified production of M2 and
) HA, which in turn block fusion of autophagosome
4-7 h.p.i. o~ with lysosome. M2 recruits LC3 to the plasma
{M membrane, effectively redistributing
C =y ¢ phospholipids (Fig. 7 Zhirnov et al.)

813 hp.i, ,

ay ,:_f Vi Key Players:

| *NS1: Nonstructural Protein 1

*HA: Hemagglutinin
*M2 Microtubule-associated protein 1A/1B-light chain 3

14-20 h.p.i.




[Problems]

Problems of Interest

1) Martin et al. models not executed with a system capable of dynamic
compartments; hard-coded in C instead. We want an easily expandable model
Solution: ML-Rules rule-based language with dynamic compartments

2. Deterministic model in Martin et al. is very simples; not many degrees of
freedom to explore
Solution: create an expanded model with four stages of autophagy

3.) Martin et al. models do not explicitly describe effects of Influenza A proteins
Solution: add relevant parameters/rules to expanded model

: Main Motivation: Develop ML-Rules as useful tool in this context, get :
: some results on IAV infection :




[Approaches]

Approach to P#1. Modelling with ML-Rules

1. Convert SBML of simple and mechanistic models to ML-Rules syntax

2. Run and average many simulations using SESSL modelling package
a. Simple model will serve as control

3. Plot autophagosome count averages and compare to published data

Phagophore
& ——> (ATG12-ATG5-ATG16L1)

|

I

|

|

l |

LC3-l {1 | LC3- :
:

I

|

& —o—s{( )

LC3I:1c31 + PG[ATGComp+ sol?]:pg -> PG[LCBI_RTGComp + s0l?]@ k ad*#pg*#lc3i; //association, eqg 19

PG[LC3I ATGComp:1la + sol?]:pg -> LC3I + PG[ATGComp + sol?] @k _dd4*#la*#pg; //dissocciation, eg 19
PG[LCSI_RTGCDmp:la + sol?]l:pg —> PG[LC3II + ATGComp + =0l?] @k_catE*#la*#pg; /fLC3II production, eq 18
PG[LC3II:1c3ii + sol?]:pg -> (1)AV[LC3II +s0l?] @ if (#1c3ii > thrsh) then k_av*#lc3ii*#pg else 0; //thre

Fig 5. Screen shot from Martin et al mechanistic model and corresponding ML-Rules syntax

10




Translate Simple Model (Martin et al.) into ML-Rules

~Editor
/ /PARAMETERS

9 Llrs

10

11Aav () [1;

128V _azd () [];
13AV baf () [];

14AV both () [];

15

16/ /INITIAL SOLUTION
17>>INIT[ (infinity())I];
18
19/ /REACTTON RULES

211 -> AV Qp;

22BV:av —-> Qc*fav;

23

241 -> AV _azd (@p azd;
25AV _azd:azd -> @c*#azd;
26

271 -> AV baf @p;

281 -> AV _both @p azd;
29

1

2 Bi0+18; //initiation rate
3 p azdi.71; //stimulated initiation rate
4 e: 0.037: //dearadtion rate
5
6
7
8

1 AV !

[Approaches]
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Translate Mechanistic Model (Martin et al.) into ML-Rules [Approaches]

r Editor -
1 //no cytoplasm “Editor
2 //Constants 46 CO0_1(); €C1_1(); €2_1(); €3_1();
3 1i:4.48*le-6; //stimulus 47 LC3I();
4 k d:0.1; //deactivation rate of PtdIns3KC3; sece-1 48 LC3II();
5 k al:le-6; // association rate of PtdIns3KC3* and PtdIns; (molecule/cell)e-1*:49 ATG4();
6 k_dl1:0.1; // dissociation rate of PtdIns3KC3* and PtdIns; sece-1 50 ATGComp () ; //write out the name
7 k_cat: 1; // phosphorylation rate of PtdIns to PtdIns3P; sece-1 51 LC3I_ATGComp () ;
8 k dep: 1; // dephosphorylatoin rate of PtdIns3P; sece-1 52
9 k_cat2: 1; // rate of catalytic conversino of PtdIns3P to PtdIns(3, 5)P2; sece-53 //Initial solution
10 k dep2: 1; //rate of dephosphorylation of PtdIns(3,5)P2 to PtdIns3P; sece-1 54 >>INIT([ (1)MemSrc|[ (1e5) PtdIns3KC3 (false) + (le6)PtdIns +(1le5)ATGY ]
11 k_a2: le-6; // rate of association of of WIPI and Ptdins3P or PtdIns(3,5)P2; 55 +(infinity() )ATGComp + (infinity())ATG4 + (1e5)LC3I+(1le5)WIPI ];
12 k d2 1:0.1; // rate of dissociation of WIPI and PtdIns3P; sece-1 56
13 k d2 2:1; //rate of dissociation of WIPI and PtdIns(3,5)P2; sece-1 57 //Rules
14 k_a3:1le-6; //rate of association of ATGY and WIPI.PtdIns3P or WIPI.PtdIns(3,5)158 //Plasma membrane
15 k d3:0.1; //rate of dissociation of ATGY9.WIPI.PtdIns3P or ATGY.WIPI.PtdIns(3,5)59 MemSrc[PtdIns3KC3 (false):pi3kc3d +pm?] -> MemSrc[PtdIns3KC3 (true)+pm?] Qi*#pi3kec3d; //activated, eq 1
16 k mod: 0.1; // rate of activation step of ATGY.WIPI.PtdIns3P or ATGY.WIPI.PtdIr60 MemSrec[PtdIns3KC3 (true):pilkc3at+pm?] -> MemSrec[PtdIns3KC3(false)+pm?] @k d*#pi3kc3a; //disactivated, egq 2
17 k:nuc:0.0l; //rate of nucleation of phagophore, requires fully activated ATGY9 61
18 k flux:0.1l; // rate at which ATGComp is added into PG 62 MemSrc[PtdIns3KC3 (true):pi3kc3a + PtdIns:pi +pm?] -> MemSrc[PtdIns3KC3_PtdIns +pm?] @k al*#pi3kc3a*#pi; //associztion, e
1.9 k:atg:O.l; //rate at which ATG4 is recruited into PG 63 MemSrc[PtdIns3KC3_PtdIns:pkpi+pm?] -> MemSrc[PtdIns3KC3(true) + PtdIns +pm?]@k dl*#pkpi; //dissociation, eq 3
20 k_aé4:1e-6; //rate at which ATGComp and LC3I associate 64
21 k d4:0.1; //rate at which ATGComp and LC3I dissociate 65 MemSrc[PtdIns3KC3_PtdIns:pkpi +pm?] -> MemSrc[PtdIns3KC3 (true) + PtdIns3P+pm?] @k cat*#pkpi; //phosphorylation, eq 3
22 k cat3:1; //rate of conversion of LC3I to LC3II 66 MemSrc[PtdIns3P:pi +pm?] -> MemSrc[PtdIns+pm?] @ k dep*#pi; //dephosphorylation, eq 4
23 k_av:0.05; //rate of AG formation 67
24 k rel: le-6; //rate of release of LCII from autophagosome 68 MemSrc[PtdIns3P:pip + pm?] -> MemSrc[PtdIns35P2+pm?] @k_cat2*#pip; //phosphcrylation, eq 10
25 k:dim:5*(1e—4); //rate of pseudo-dimerization of autophagosomes 69 MemSrc[PtdIns35P2:pip2 +pm?] -> MemSrc[PtdIns3P+pm?] @k _dep2*#pip2; //dephosphorylation eq 11
26 k_splt:0.15; //rate of splitting of pseudo dimers of autophagosomes 70
27 k_degr:4.5e-4;//rate of degradation of autophagosome 71 MemSrc[PtdIns3P:pip+pm?]+ WIPI:w -> MemSrc[WIPI_PtdIns3P +pm?] @ k al2*#pip*#w; //association, eq 5
28 thrsh:400; //threshold of LC3II needed for AV formation 72 MemSrc[WIPI_PtdIns3P:wpt +pm?] ->MemSrc[PtdIns3P + pm?]+ WIPI @ k d2 I*fwpt; //dissociation, eg 8
29 //species 73
30 //compartments 74 MemSrc[PtdIns35P2:pip2 + pm?] + WIPI:w —-> MemSrc[WIPI_PtdIns35P2+pm?] @ k_al2*#pip2*f#w; //forward association, eq 12
31 anSré() [1; //membrane source, ER primarily 75 MemSrc[WIPI_PtdIns35P2:wpt2+pm?] -> MemSrc[PtdIns35P2 +pm?]+ WIPI @k d2 2*#wpt2;//dissociation, eq 12
32 PG()[]; //phagophore, switch to IM 76
33 AV() [1; //autophagosome 77 MemSrc[WIPI_PtdIns3P:wpt + ATG9:atg + pm?]-> MemSrc[CO+pm?] Gk _a3*#wpt*fatg; //forward association, eq 6
34 AVDim() []1; //autophagosome pseudo-dimer, dimer 78 MemSrc([CO:cO+pm?]-> MemSrc[WIPI_PtdIns3P + ATGY9 + pm?] @ k d3*#c0; //dissociation, eq 6
35 //components 79
36 PtdIns3KC3 (bool); //PI3KC3 80 MemSrc[WIPI_PtdIns35P2:wpt2 + ATG9:atg +pm?]-> MemSrc[CO_l+pm?] @ k a3*#wpt2*#atg; //forward association, eq 13
37 PtdIns(); 81 MemSrc[CO_1:c01 +pm?]-> MemSrc[WIPI PtdIns35P2 + ATG9+pm?] @ k_d3*#c01;//dissociation, eqg 15
38 PtdIns3P(); 82
39 PtdIns35P2() ; 83 //activation of complexes in series (CO to C3 and CO_1 to C3_1)
40 PtdIns3KC3 PtdIns(); 84 MemSrc[C0:cO + pm?] -> MemSrc[Cl + pm?] @ k_mod*#c0; //activation of CO to Cl, eq 7
41 WIPI(); - 85 MemSrc([Cl:cl + pm?] -> MemSrc[WIPI_PtdIns3P + ATG9+pm?] @k _d3*#cl; //deactivation of Cl with dissociation of ATGY from c
42 WIPI PtdIns3P(); 86 MemSrc[Cl:cl + pm?] -> MemSrc[C2 + pm?] @ k_mod*#cl; //activation of Cl to C2, eq 7
43 wIpI_ptdIns35p2(); 87 MemSrc[C2:c2 + pm?] -> MemSrc|[WIPI_PtdIns3P + ATG9+pm?] @k_d3*#c2; //deactivation of C2 with dissociation of ATGY9 from c
44 ATGS_(); 88 MemSrc[C2:c2 + pm?] -> MemSrc[C3 + pm?] @ k_mod*#c2; //activation of C2 to C3, eq 7
45 C0 () 1) C2()5 €31) 89 MemSrc([C3:c3 + pm?] -> MemSrc[WIPI_PtdIns3P + ATG9+pm?] @k _d3*#c3; //deactivation of C3 with dissociation of ATGS from c
90 [CO_1:c0_1 + pm?] -> MemSrc[Cl 1 + pm?] @ k mod*#cO_1; //activation of CO_1 to Cl_1 eq 14
91 MemSrc[Cl _1:cl 1 + pm?] -> MemSrc[WIPI_PtdIns35P2 + ATG9 + pm?] @k d3*#cl 1; //deactivation of C1 1 with dissociation of ATGY from complex, eq 15
92 MemSrc[Cl_1l:cl 1 + pm?] -> MemSrc[C2_1 + pm?] @ k_mod*#cl_1; //activation of Cl 1 to C2 2 eq 14
93 MemSrc|[C2 2 1 + pm?] -> MemSrc[WIPI_PtdIns35P2 + ATGY9 + pm?] @k d3*#c2_1; //deactivation of C2 2 with dissociation of ATGY9 from complex, eq 15
94 MemSrc[C2_1:c2_1 + pm?] -> MemSrc[C3_1 + pm?] @ k mod*#c2_1; //activation of C2 2 to C3_3 eq 14
95 MemSrc[C3_: 3_1 + pm?] -> MemSrc[WIPI_PtdIns35P2 + ATGY9 + pm?] @k_d3*#c3_1; //deactivation of C3_3 with dissociation of ATGY9 from complex, eq 15

96

97 //phagophore formation

98 MemSrc[C3:c3 + pm?] -> (1)PG + MemSrc[CO + pm?] @k_nuc*#c3; // PG formation eq 9

99 MemSrc[C3_1:c3_1 + pm?] -> (1)PG + MemSrc[CO_l1 + pm?] @k _nuc*#c3_1; // PG formation eq 16

100

101//Phagophore compartment

102ATGComp + PG[sol?]:pg -> PG[ATGComp+sol?] @ k_flux*#pg; //recruit ATGComp (enzyme X) from cytoplasm to phagophore, eq 17

103ATG4 + PG[sol?]:pg -> PG[ATG4 + sol?] @k _atg*#pg; //recruit ATG4 from cytoplasm to phagophore, eq 18

104

105//1ipidation of LC3I to LC3II

106LC3I:1c3i + PG[ATGComp+ sol?]:pg -> PG[LC3I_ATGComp + sol?]@ k_ad*#pg*#lc3i; //association, eq 19

107PG[LC3I_ATGComp:la + sol?]:pg -> LC3I + PG[ATGComp + sol?] @k_d4*#la*#pg; //dissociation, eq 19

108PG[LC3I_ATGComp:la + sol?]:pg -> PG[LC3II + ATGComp + sol?] @k _cat3*#la*#pg; //LC3II production, eq 19

109PG[LC3II:1c3ii + sol?]:pg -> (1)AV[LC3II +sol?] @ if (#1lc3ii > thrsh) then k av*#lc3ii*#pg else 0; //threshold level of LC3II needed for formation of autophagosomes, eg 20
110

111//Autophagosome compartment

112AV[ATG4 + LC3II:lc3ii +sol?] -> AV[ATG4 +sol?] + LC3I @k_rel*#lc3ii; //ATG4 mediated conversion and release of LC3II -> LC3I on an AV, eq 21
113avV[sol?]:av + AV[sol?]:av -> AVDim[sol?] @ k_dim*#av*#av; //pseudo-dimerization eq 22

114AaVDim[sol?]:avd -> AV[sol?] + AV[sol?] @k _splt*#avd; //splitting of pseudo-dimer eq 22 12
115AVDim[sol?] :avd -> AV[sol?] @2*k degr*#avd; //account for potential for degradation of pseudo-dimer components

116aV[sol?]:av -> @ k_degr*#av; //degradation, eq 23

117




[Approaches]

Control: Test ML-Rules language by simulating simple model using SESSL and comparing against
published data.

SESSL: Simulation Experiment Specification via a Scala Layer

[ NON )  SampleExperiment.scala ~

object SampleExperiment extends App {

execute {

replications = 19|
parallelThreads = -1

stopTime = 300

//scan{"k_extraction" <~ range(0.02, 0.01, 0.08))

— ) : ! Membrane P OOC\)/OO = > Lysosome
ObSEr‘Ve("AV" Fos "*/AV“) Source _|_ o O OO —l— (Slnk)
observe("AV_baf" ~ "x/AV_baf") Inhibitor __| ToRGH BaEFAT
observe("AV_azd" ~ "x/AV_azd") (AZD8055)

observe("AV_both" ~ "x/AV_both")

1

observe("Dimer" ~ "x/Dimer")

SestesTaswsictos SeliesTaswsistas

observe("Dimer_both" ~ "x/Dimer_both"

observeAt(range(0.0, 1.0, 300)) |

=2
—

withExperimentResult(r => {

// this overwrites existing files
writelo ile(r, "./results”™, append = false
1L

I/

}
¥

K BN ~ RunSampleExperiment.sh ~
W!/usr/bin/env bash

rm —-rf SampleExperiment.jar results
scalac —-classpath "../*:../libs/*" SampleExperiment.scala -d SampleExperiment.jar
java —-classpath "x:../*:../libs/*" SampleExperiment




Control matches published data [Resuls]

AV Count Under BafAl Treatment
(Avg 100 ML-Rules Simulations of Simple Model)
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Control matches published data
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AV Count (Copy Number)
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AV Count Under AZD8055 and BafAl Treatment
(Avg. 100 ML-Rules simulations of simple model)
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[Results]

AV Count (copy number)

AV Count under AZD8055 Treatment
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O
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w
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[Results]
Control matches published data

Basal conditions

Autophagosome Count Under Basal Conditions
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AV Count (copy numbar)
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Control matches published data
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15

AV Count (copy numibar)
=

[}

Control matches published data
BafA1l Treatment

Autophagosome Count Under BafA1 Treatment
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Control matches published data [Resuls]

AZD8055 and BafA1 Treatment

Autophagosome Count Under BafA1 and AZD8055 Treatment
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. e g [Results]
Next, simulate mechanistic model

e oo 9y iy < * B DMSO (-BafA1)
i ' | ' ' = 1007 — Al vesicles
mmm— e ki @ | —Visible Vesicles
a0l — Phagophore . ') 90 —PG
E S
80| = 80 ]
S 70
E ol Y60
P S 50
g O 407
£y - ®
© 307
30 F 7))
L 20-
20 (% 10 _W
10 = e 0+ /\_\'\,—\/\/—\ P an S
B , | 0 10 20 30 40 50 60 70
0 100 200 300 400 500 Treatment Time (min.)
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Published data Martin et al.
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[Approaches]

Approach to P#2: Expanding Simple Model

1. Expanded Model: four stages of autophagy

e | r . r - r Cargo
7 \| Initiation E> Nucleation |\ Maturation Belivery

2. Solve ODEs and fit parameters a and b using MATLAB and Data2Dynamics [D2D]

A X B diff(X)
—a 0 0 O I P PP 0
a —b 0 0) (N} (O)_(N) — ~_|[O
0 b —c 0 M 0 M’ 0
0 0 ¢ 0 D 0 D’ 0
eqn = diff(X) == A*X + B; dsolve(eqn, C);

21



[Approaches]

" 1| DESCRIPTION
. . 2 | "Autophagy model with four compartments”
Data2 Dynamics Overview 3
; « | PREDICTOR
autophagy_simple_model.def B 1 SO,
&
7| COMPARTMENTS
1 % Load models & data :
2 - clear all; o | STATES
. 10| M_state C "unitsicell" "conc."
3 - arlnit | M_state_baf C "unitsicell’ "conc.”
4 12 | M_state_azd C  “unitsicel” "conc.”
Ay . M_state both C  “units/cel® “conc.”
5 - arLoadModel('simple_model2'); 1? el PR e
B - arLoadData( 'autophagy_model_data'); 15
TE arLoadData{'autophagy_model_data_baf"); ’f INFYRS
8 - arLoadData('autophagy_model_data_azd'}; 15 | ODES
g - arLoadData( ‘autophagy_model_data_both'); - .Ef’ MAin
16 - arCompileAll(); 21| "(142.9)"P - ¢'M_state_azd"
11 72 | "(1+2.9)"P"
23
T arsetPars{'sd M _count',[],2); 24
13 - arSetPars{'sd M_count_baf',[],2); - BERWELD
14 - arsetPars(’'sd M count_azd',[1,2);: »7 | OBSERVABLES
it i i M_count C  "units" "amount" 0 O  "M_state”
15 arSetPars('sd_M_count_both’, 1,2 M_count baf C  "units" "amount" 0 0  "M_state baf"
16 - T T T T T T s s 1 M_count azd C  “units" "amount" 0 0  “"M_state_azd"
17 - arF i't{ }; | M_count_both C  “units" “amount” 0 0  “M_state_both®
; I
18 - : arPrint(); I
19 - | arPLECalc([1, 2], 1@@); ! EREICE
g - | figure 1 M_count "sd_M_count"
1 a5 | M_count_baf  “sd_M_count_baf®
I — e ar " ama’
21 -, arPlotPLE{[1, 2], falﬁe};: 37 m_ﬂﬂunz_ngh 'Sg_m-ﬁw"}dﬁr‘;
count_both s coun "
22 - = arPlot(false, true); | | ks T
23 -, arTuner(); ' 40
: I 41| CONDITIONS
24 I 1 42 | init_M_state "0
——————————————————— J 43 | init_M_state baf "
44 | imit_M_state_azd "
A5 | init_M_state_both "0
4F




[Results]

Control: test D2D on simple model; recover published parameter estimations
[P=0.18 min'and ¢ =0.037 min™

: [fw Count Under Basal Conditions

== k3 o B
o O o O o

AV Count [copy number]
(=]

=

40 50 60 7O
Treatment Time [min.]

AV Count Under BafA1 and
AzdB8055 Treatment

0 10 20 30 40 50 €0 7O
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=

Py W B
o o o

—
[ )

AV Count [copy number]

0 10 20 30 40 50 60 7O
Treatment Time [min.]

&]U Count under AZD8055 Treatment

£ on
L B ]

P=0.19 min™
¢ = 0.037 min™’

=]
[=]

AV Count [copy number]
=] S

=
%

0 10 20 30 40 50 &0 7O
Treatment Time [min.]

Profile Likelihood for Parameter P
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3.2158 -

3.2156 -

-2*log(L)

3.2154 -

3.2152 -

-0.7192

-0.719 -0.7188 -0.7186

log(P)

Profile Likelihood for Parameter ¢

3.216

3.2158 |-

3.2156 -

-2"log(L)

3.2154 |-

3.2182 -

-1.437 -1.436

-1.435 -1.434 -1.433 -1.432 -1.431
log(c)
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[Results]

Estimate parameters a and b in expanded model

AV Count Under Basal Conditions
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AV Count [copy number]
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[Approaches]

Approach to P#3: Incorporating Effects of IAV

Proteins
v Initiation - Nucleation
(I) (N)
“ . N —
: :
AN
|
B.) A X B
= L I P
a —=b—d; 0 0} [N) (O
0 b —c 0 M 0
0 0 c 0 D 0
eqn| = diff(X) == A*X + B;

~

4

-

Maturation
(M)

D.’

)

e

Cargo
Delivery
(D)

P = initiation rate = 0.18 min-1

a = 1000 min-1

b =1000 min-1

¢ = degradation rate = 0.037 min-1

) -

dsolve(eqn, C);




[Results]

Results for P#3. parameter scan of d
(avg. 10 simulations)

AV Count {copy number)

Autophagosome Population [Expanded model of 1A Infection]
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Time (rmin.)
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Initiation Nucleatlon Mat_urz_ltmn Deliverv

k,
V4V eeee2(V V)
split
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d

d

d
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[Results]
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n

Autophagosome Count [Expanded Model of IAV Infection] [Results]
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d=500

d=1000

10

AV Count {copy numb ar)
tn

10

AV Count {copy numb ar)
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[Results]

Autophagosome Count [Expanded Model of IAV Infection]
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Now tune P and c in conjunction with d

s b Cargo
Initiation Nucleation Maturqtlon Delivery
(1) (N) (M) (D) z

|

kag
V+Veee=2(V V)

split

[Results]
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Autophagosome Count [Expanded Model of IAV Infection]

P = initiation rate = 0.18 min-1
a =1000 min-1

b =1000 min-1

¢ = degradation rate = 0 min-1
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20

18

16

14

Autophagosome Count [Expanded Model of IAV Infection]
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P = initiation rate = 0.71 min-1
a =1000 min-1
b =1000 min-1

¢ = degradation rate = 0.037 min-1
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P = initiation rate = 0.71 min-1
a =1000 min-1

b =1000 min-1

¢ = degradation rate = 0 min-1

Autophagosome Count [Expanded Model of IAV Infection]
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Copy number

Are a and b really that large?

Autophagosome Count [Expanded Model of AV Infection]

P = initiation rate = 0.18 min-1

a =5 min-1

b =5 min-1

¢ = degradation rate = 0.037 min-1

T
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Conclusions

® Mechanistic model closely fits autophagosome count data from Martin et al.;
® ML-Rules and D2D are reliable packages for further analytical work
® No conclusive values for a and b parameters in expanded model of IAV

infection. They need not be on the order of 1e3!
® Need experimental data of IAV infection to better understand |A model
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Future Directions

® Simulate mechanistic model in ML-Rules with effects of AZD8055 & BafA1 and
to longer times

® Determine precise initial conditions in mechanistic model in ML-Rules during
time span before steady state

® Continue adding more details of influenza A infection to expanded model

o Compare against data once available
o Collaboration with experimentalists

® Add more chemical species to mechanistic model for a more complete model
of autophagy
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What | learned Experiences

® How to model ® 10th annual g-Bio Summer School;
o Heuristic -> computational University of New Mexico, Albuquerque
o Approaches O  Lectures on computational biology tools
B Rule based modeling O Introduction to ongoing investigations
B Deterministic ® 10th annual g-bio Conference;
Bm Stochastic Vanderbilt University, Nashville, TN
o Tools o Keynote speakers:
B RuleBender Jim Collins, MIT
B ML-Rules Terry Sejnowski, Salk Institute
m D2D
m SESSL
B Loads more MATLAB in a

different context
® Molecular mechanisms of autophagy
® Influenza A Viral dynamics & mechanisms
of infection
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Plasma treatment of cancer:
Selective electrostatic disruption of cancer cells

Kathleen Weichman', Gian Luca Delzanno?, Kim
Rasmussen® and Marlene Rosenberg®

'University of Texas at Austin
’Los Alamos National Laboratory
*University of California San Diego

Plasma exposure

- =

Bacteria

@® (orcells)

After

Membrane
rupture

O. Lunov et al., Biomaterials 82, 71 (2016)



Outline

What is plasma medicine”? What does it hope to
accomplish?

Mechanisms of interaction between plasma and cells

— Chemistry

- Electric fields and plasma physics

Electrostatic disruption

- Plasma charging

- No electrostatic disruption predicted for healthy cells
— Selective disruption of cancer cells

Future work



Plasma medicine

e Motivations

- Resistance to conventional therapies
- Enhanced selectivity and fewer side effects

» Cold atmospheric (non-thermal) plasma (CAP)

Treatment Target

-ithe Floating Electrode

Cold — safe for healthy tissue

FE-DBD Insulated Electrode

G. Fridman et al., Plasma Chem Plasma Process R. Guerrero-Preston et al., Int J Mol Med
26, 425 (2006) 43,941 (2014)



Plasma medicine

e Motivations

- Resistance to conventional therapies
- Enhanced selectivity and fewer side effects

» Cold atmospheric (non-thermal) plasma (CAP)

ol ettt s 5T
Destroys bacterla ﬁ?/‘ é’; Kills cancer cells

OUW 4 4
& N ole g vy

%’. \. .‘ Jt’é “ | ;6 »
f‘.'t. F- :» N
r..v o @@ ¥ ~§W¥g : - : -
Qe ‘; p 3 %” S 4 reate Untreated
b - . gt ﬁﬁﬁ : Before
'3. ‘.. 1??::;.’ , Hﬁwl

K. KeIIy Wlntenberg et aI JVSTA 17, 1539 (1999) M. Keidar et aI., Brit J Cancer 105, 1295 (2011)



Chemical and physical effects of
cold atmospheric plasma

Plasma — water

r To high voltage
Teflon coating »

Z-Micro Y

positioners ™~ .
4

. Copper electrode
Plasma particles e
uminum ai
stopped by water /" with growth media

| | T T D Melanoma cells

G. Fridman et al., Plasma Chem Plasma
Process 27, 163 (2007)

Explanation of plasma medicine

Plasma-water interface . .
community for cancer cell killing and

. C_hemlstry: re_actlve oxygen and selectivity
nitrogen species (ROS, RNS)
e Device electric fields (ROS/RNS generation also a feature

of conventional treatments)



Chemical and physical effects of
cold atmospheric plasma

B.nTAP Therapy

Plasma — water

. To high voltage

Plasma — cells

Teflon coating
Z-Micro Y

positioners \ -
LY
Quartz dielectric

Plasma particles ceet
Aluminum dish

St0pped| by watell’\ * g W N ature of direct

e A ek Melanoma cells . . . .
I @G@@ﬁﬁ.@ﬂ.ﬁﬁﬁmg_l interaction with tissue?

G. Fridman et al., Plasma Chem Plasma

Copper electrode

Process 27, 163 (2007) R. Walk et al., J Pediatr Surg 48, 67 (2013)
Plasma-water interface Plasma contacts tissue
« Chemistry: reactive oxygen and e Plasma physics effects:
nitrogen species (ROS, RNS) charging and plasma-
e Device electric fields mediated electric fields

Could plasma charging lead to cell death?




Electrostatic disruption due to
plasma charging

1. Plasma charging — surface potential

Plasma

e and Surface charge

ions

Electrostatic
/ pressure
Electric field
Absorption radius R.V. Kennedy and J.E. Allen, J. Plasma Physics 69, 485 (2003)
2. Failure

- Electrostatic pressure > cohesive force (F

max)

_ Plasm_a charg_lng — critical o] > \[\/qu/m
potential for disruption actor

elongated cells disrupt more easily -~

plasma vacuum




|s disruption of cells possible?

* Expected surface potential: -4 to-20V

 Critical potential with vacuum capacitance: - 270 V
(based on bursting force given in [1,2])

Typical CAP device parameters

Electron density n_~10%cm™
Neutral gas density n =2x10"cm”
Electron temperature T = 1-5 eV

[1] Z. Zhang et al., Appl Microbiol lon temperature T.=1/40 eV

Biot 36, 208 (1991)

[2] V. Lulevich, et al., Langmuir 22, Electron mean free path | =0.5 um

815 (2006)

[3] G.-L. Delzanno and X.-Z. Tang, lon mean free path |i =0.125 ym

Phys Plasmas 22, 113703 (2015)



|s disruption of cells possible?

Expected surface potential: -4 to - 20V

Critical potential with vacuum capacitance: - 270 V

[/C ~5-10 [Ref 3] Neglected by plasma

plasma  vacuum

medicine community!

Critical potential with capacitance correction: - 27 to - 55V

Healthy cells are
not expected to
disrupt!

[1] Z. Zhang et al., Appl Microbiol
Biot 36, 208 (1991)

[2] V. Lulevich, et al., Langmuir 22,

815 (2006)

[3] G.-L. Delzanno and X.-Z. Tang,

Phys Plasmas 22, 113703 (2015)

Typical CAP device parameters

Electron density n_~10%cm™
Neutral gas density n =2x10"cm”
Electron temperature T = 1-5 eV

lon temperature T.=1/40 eV
Electron mean free path | =0.5 ym

lon mean free path | =0.125 ym



Physical selectivity of CAP
treatment to cancer cells

10

Cancerous cells are:

- Less stiff

co
T

- More elongated/irregular

e Spindle-shaped cells are
especially invasive

» Also especially favorable
for disruption!

Electron temperuatre [eV]

Surface potential: - 4 to - 20 V

Critical potential for a cancer cell:
-3to-18V

Regions of electrostatic disruption
T ' B v — T T

[=)]
T

s
1

M
T

— Healthy spherical cell

— Cancerous cell (lower bound)
Cancerous cell (upper bound)

L —_1! Healthy cell parameters |

L--! Cancerous cell parameters

10" 10°
Maximum cohesive force [uN]

Selective electrostatic disruption of cancer cells is possible!




Future work

» Verify plasma capacitance by simulation

» Effect of higher order shape and surface
roughness

* How does the device electric field contribute?

- (Irreversible) electroporation?

» Can deformation lead to failure (such as
occurs for water droplets)?



Conclusions

» Cold atmospheric plasma treatment destroys
bacteria and kills cancer cells

- Chemical effects are typically implicated in cancer cell
death

- Plasma charging can also selectively kill cancer cells

» Future work focuses on shape and surface
roughness effects and the role of device electric
fields

! KW is supported by the DOE CSGF under Grant No.
D O E 0 CSG F) DE-FG02-97ER25308



A STOCHASTIC OPTIMIZATION MODEL FOR
ELECTRIC VEHICLE FAST-CHARGING STATION

FEI WU
THE OHIO STATE UNIVERSITY

THE OHIO STATE UNIVERSITY




THE OHIO STATE UNIVERSITY

1. Motivation

2. Stochastic Optimization Model

3. Case Study and Analysis



EV PENETRATION

THE OHIO STATE UNIVERSITY

U.S. Plug-In Car Sales
Inside EVs

Oct Nov Dec

2010 N 2011 2012 2013 2014 2015 W 2016

Source: InsideEVs(http://insideevs.com/monthly-plug-in-sales-scorecard/)




EV RANGE AND CHARGING STANDARD

THE OHIO STATE UNIVERSITY

EV Ranges

EV Brand Range (miles)
Tesla Models 265
Toyota RAV4 EV 103
FIAT 500e 87
Nissan Leaf 84
Chev. Spark EV 82
Ford Focus Electric 76
Smart fortwo electric drive 68
Mitsubishi i-MiEV 62
Scion iQ EV 48

AC/DC charging levels from SAE J1772-2011

Power level types | Voltage level(v) Power cap.(kW) Times
AC L1 120 VAC 1.4/1.9 17 h
AC L2 240 VAC 19.2 7h/35h
AC L3 - - -
DC L1 200-500 VDC up to 40 kW 1.2 h
DC L2 200-500 VDC up to 100 kW 20 min
DC L3 200-600 VDC up to 240 kW -




TRANSFORMER LOAD PROFILE WITH EVS

THE OHIO STATE UNIVERSITY

Load Profile of #101

2000 T T I I
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— PEV added load (60%)
1800 - —— PEV added load (80%r) N
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Charing Effect on Current Transmission Syste Mz oo s usversiry

500kW Transformer Age Means (120kW Charger)

Years

0.3
0.2

Anxiety Factor (State of Discharge) 01 3 EV percentage(%)



Rel |ef TranSfO rmer Ca paCIty COﬂStralntS THE OHIO STATE UNIVERSITY

v'Distributed energy resources
1. Photovoltaic solar panels
2. Energy storage
v'Reschedule EV charging load
1. EV charging strategies

2. Energy storage charging/discharging strategies

v'Challenges
1. Uncertain EV arrival

2. Stochastic solar generator output



2-Stage Stochastic Optimization e

Stage 2: Sample Paths
From the next time unit to
the end of optimization

m n n m horizon
> « Based on forecasting:
= " " . « Solar output
« EV arrival
« Non-EV load

Q Q Q o Q} » Electricity price




SAA and Sequentlal ApprOXImathn THE OHIO STATE UNIVERSITY

v'Sample Average Approximation

= original large-scale problem < a smaller problem with randomly generated

scenario samples

v’ Sequential Approximation
» Use a different sample to evaluate the SAA solution quality
» Create optimality gap confidence interval

» Decide a sample size of the next iteration



Case Study

THE OHIO STATE UNIVERSITY

A medium EV-flow-density station
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O pe ratl O n P e rfO rm a n Ce THE OHIO STATE UNIVERSITY
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Compare Wlth Other heUFIStIC methOdS THE OHIO STATE UNIVERSITY
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Station-Control Model Station-Control Model
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Sensitivity analysis

THE OHIO STATE UNIVERSITY
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Q U e Stl O ﬂ S ? THE OHIO STATE UNIVERSITY
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Pinning Effects on Granular Particles

Yang Yang
(Wabash College)
Mentors:
Dr. Cynthia J. Olson Reichhardt and Dr. Charles Reichhardt
(T-1 Group)
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Granular Materials

Properties
e Repulsive Short-Range Interaction
* Energy Dissipation

e Unusual Phase State

Applications to Studying Granular
Materials

e Landslide and Erosion

e Industrial Transport

Interacting with Substrate

images from: http://guernseydonkey.com (top)

http://www.marshallnews.com (bottom)


http://guernseydonkey.com/
http://www.marshallnews.com/

Approach to Simulation

Initialization
» System Size: 60X60 Particle Diameters
 Placing Particles on Square Lattice
 Randomly Placing Pinning Sites
Tuning Parameters
* Density of Particles/Packing Fraction ®

e Number of Pinning Sites

* Driving Force F D

6x 6 Particle-Diameter System
$=0.785



Approach to Simulation

Driving Force Direction

R

Initialization

» System Size: 60X60 Particle Diameters

 Placing Particles on Square Lattice

 Randomly Placing Pinning Sites
Tuning Parameters

* Density of Particles/Packing Fraction ®

e Number of Pinning Sites

* Driving Force F D

6x 6 Particle-Diameter System
®=0.785



Simulation Model

Overdamped Langevin Dynamics

dR. o oL
i —F Partlcle_l_F Pmmng_l_F flrlve
n dt 1 1 1
Particle-Particle Interaction: Particle-Pinning Interaction:
Spring Interaction Harmonic Potential Wells

F’. particle
J

Driving Force F

=




Jamming VS Flowing at Low Particle Density

e Packing Fraction: ®=0.3 F, >
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Jamming VS Flowing at High Particle Density

 Packing Fraction: ®=0.61 F, >
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Phase-Separation at Depinning Phase

e Driving Force: F,=1.05 F, >
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Depinning and Clustering Phases

2

0.6

(V) Average Horizontal Velocity
C, Largest Cluster Size

F, Driving Force

Packing
Fraction P
= (0.85
o— 0.71

0.61
** 0.95
0.43
0.3
0.25
+—+0.15



Super-Diffusion

Diffusion Fit Coefficient: o is defined as (A y*)oct*

 Normal Diffusion: a=1

* Super-Diffusion: a.>1 Packing Fraction ®=0.61
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Super-Diffusion

Diffusion Fit Coefficient: o is defined as (A y*)oct*

 Normal Diffusion: a=1

e Super-Diffusion: a>1 Packing Fraction ®=0.30
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Grain Boundaries

* Order of perfect lattice disrupted
during recrystallization

* Usually only 1-2 atoms wide

* Determine performance and
integrity of material

* Limit dislocation migration

* Lattice mismatch causes broken
+ bonds between the atmos.

* Large excess free energy

* Nucleation sites for voids




Some Traditional Approaches to
Describe Grain Boundaries

Geometric Dislocation
* Coincidence Site Lattice (CSL) e Started by Read-Shockley model
* Source of commonly used _ _
>-values. * Frank-Bilby and Bollmann’s O-lattice
* X2 assignment according to 2D structure, expand on Read-Shockley
no information about boundary L : : -
odlllme e * Distribution of dislocations facilitating

. ! : small misorientations
* Does not provide information on

energy * Simple linear GB energy model




Current Approaches to Determine
GB Energy and their Limitations

Molecular Dynamics (MD)

* Most accurate method to date for single boundaries

* Time consuming

* Not suitable for mesoscale analysis due to time constraints

Multi-Scale Models

* In development

* Large scale models using small scale physics
* Enable fast analysis of large data sets



Formal Definition of Excess Free Energy

For two clusters of atmos (b, w) interacting through interatomic energy,
Total free energy of general incoherent surface (Gibbs):

E i = f Eb(x)dx+f EW(x)dx+f vy (x)dH*?
Qb Qw QAbNOQw

.. rearranging, substituting, and taking the limit to get free excess energy:

Y = Ll_l)rjloo_(hm (Etot(xLerLH) NLHEcoh NLHEcoh

total energy at equilibrium Number of atoms x cohesive energy per atom

Goal: define y as a function of the interface geometry.



Lattice Matching Energy and
Thermalization (Brandon Runnels et al)

What is the “cost” from white to
perfect gray lattice?

* Define local energy density as (minimized) cost of
transformation

* Integrate over Q to get total Energy

ey, Z) = int'|' Cig. R£ +7.2): Rel3), re R"'I. E(y. i) = Jl':_._t‘ﬂr. z)dz.

* Thermalization process based on the principal of
maximum entropy

* Energy and morphology of interfaces are temperature
dependent

* Enables approximation of energy by L2-bound.

Local energy density bound:

ey, z) < inf{cf Iﬂf(x_) — ffmf(x)lzg(x —z)dx: ReS0@3), € [Rfs},
By(z) i



Interfacial Energy
(Brandon Runnels et al)

Two lattices with different rotation and translation. Assumptions:

* Both rigid > cost of transformation will give upper bound for energy
density.

* Local rotation and translation about z is of reference lattice
 L2bound from thermalization

Below an expression for upper bound of grain boundary energy.
Does not account for relaxation mechanisms.

2

> w,y — p)| 6z - p)dp|dz
yerbar3,

2

y,(y —p)| 6z —p) dp|dz]|.




Summary
(Brandon Runnels et al)

* Model achieves reasonable qualitative agreement to MD

* Location of all significant
energy cusps recovered.

* General shape of the
energy function recovered.

* Significant outliers:
FCC (111)(212) and BCC(0o11)(011)

* Does not consider relaxation




Experimental Observations in Copper
(J. P. Escobedo et al)

» Effect of grain boundary structure on void nucleation




Void Nucleation at Grain Boundaries
(J.P. Escobedo et al)

Boundaries excluding low angle and 23 parallel to shock
30 um 60 um 100 um 200 um

Most voids at ~15°- 55°
misorientation

* Low angle and 23 seem immune

What is the reason voids |
Breferen_tlally nucleate at certain
oundaries?

* Can we get more detailed
information about the energy state
of these particular boundaries?




Propensity for Void Nucleation
(J.P. Escobedo et al)

* "Experimental evidence suggests that there is no demonstrable
relationship between misorientation and probability for pore nucleation
within the 10 to 58 degree range — equal probability within that
misorientation range.”

slope = 2.15, R=0.90

‘ -+--HAGB B GB with void
':{ ® 3GB _ B GB annealed

o
[N

* "The probability of grain
boundary pore nucleation is
greater for boundaries that
have normal vectors which
form smaller angles with the

tensile loading.” I ‘ J

principal direction of
0 01 02 03 04 05 06 07

GB probability GB line angle (bin size 22.5°)
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Summer 2016: Python Code

Uses OIM Analysis output files to

==
5
- 5
o L -

* Analyze simplified GB geometry

* Allow user to select boundaries of 5 v
interest (around voids) for bulk operations

* Run different operations such as

 Energy calculations using Brandon
Runnels’ model

* Statistics about grain boundary

distribution T e ——
* Comparison of sample averages and =k =
selected GBs N R - —

S0-55] 0 584 |
g F171

S l!!

GOAL: Create a powerful tool to exa large R
data sets quickly | T



Summer 2016: Results and Observations

* More detailed analysis of misorientation angle distribution




Summer 2016: Results and Observations

* Peak of 35-40° misorientation angles inversely proportional to
grain size.




Summer 2016: Results and Observations

30 micron samples

30mic2 sample

80 — ! . ! ! ! ! ' ! ' ' ' '
: : : : : : : : HE all GB
B GE close to void
?0 | . : . |
GF Propensity Energy min | Energy avg
0-5 3.0 311.271 382.761
60 L .|5-10 2.0 373.952 418.867
10-15 14 394.34 425.86
2 15-20 2.0 369.08 416.79
= |20-25 1.4 384.763 42973
] 25-30 1.1 402.027 433.509
E 30-35 1.3 387.093 426.509
= a0l [35-40 0.7 398429 | 433.949
c 40-45 1.3 384.651 426.917
o 45-50 1.1 394.331 427.941
E 50-55 1.8 403.239 434.28
2 30 ~[55-60 0.9 387.415| 426.659
a 60-65 0.8 356.026 407.353
65-70 nan 0.0 0.0
20 - ~-[70-75 nan 0.0 0.0
75-80 nan 0.0 0.0
: : : : : : : : : : : : : : : 80-90 nan 0.0 0.0
10 bbbt O e
| | |
0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 B60-65 B5-70 T0-75 T5-80 80-90

Misorientation angles in degrees



Summer 2016: Results and Observations

60 micron samples

60micll sample

80 — . ! ! . ! ! ! ! ! . ! ! ' ' '
: : : : : : : : : : : : : E zll GB
: : : : : : : : : : : : : B GB close to void
: : : : : : : : : : : : : : : : GF Propensity Energy min | Energy avg
0-5 6.5 361.148 420.514
..|5-10 5.7 368.049 418.505
10-15 3.4 379.512 421.755
2 15-20 1.0 374.49 415.628
c |20-25 1.5 378.989 419.2
= 25-30 1.9 407.713 433.16
j§ 30-35 15 406.188 434.976
5 3540 1.0 408.045 434.96
s 40-45 1.8 394.593 430.143
o 45-50 1.4 394.815 429.623
E 50-55 1.6 390.962 426.468
e 155-60 0.7 302.339 429,377
a 60-65 1.2 383.088 424.59
65-70 nan 0.0 0.0
~170-75 nan 0.0 0.0
75-80 nan 0.0 0.0
80-90 nan 0.0 0.0
| i i
0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 FO-75 75-80 80-90

Misorientation angles in degrees



Summer 2016: Results and Observations

200 micron samples

Proportion of total in %

200mic8 sample

80 — ! . ! ! . ! ' ! ' ' ' '
; ; ; ; ; ; ; ' EN all GB
B GB close to void
?0 | . . . i
LF Propensity Energy min | Energy avg
; ; ; ; ; ; ; ; ; ; ; 0-5 0.7 363.75 419.778
5T 0 S S S U O P SR - 15-10 2.0 370.865 419.964
: 10-15 1.6 386.577 423.625
: : : : : : : : : : : 15-20 2.3 395.943 425315
71Y S SUUREN HNUUU SUUTO: SOUNON SOt SO OSSO USRI AU SO S [2025 17| 394722 | 430.605
: 25-30 1.3 406.821 439.476
30-35 0.7 358.635 416.054
101 [35-40 0.8 373.117 424.467
40-45 1.1 389.855 429.718
45-50 2.1 377.54 428.878
50-55 2.4 393.993 431.809
30 - ~[55-60 0.0| 389.608 | 426.157
60-65 1.4 399.769 434721
65-70 nan 0.0 0.0
20 -1 70-75 nan 0.0 0.0
75-80 nan 0.0 0.0
80-90 nan 0.0 0.0
10 .
i i i
0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 b0-65 B5-T0 70-75 75-80 B80-90

Misorientation angles in degrees




Summer 2016: Results and Observations

100 micron samples

Proportion of total in %

100mic8 sample

80 — ! ! ! . ! ! ! ' ' '
: : : : : : : : B all GB
I GB close to void
?0 | . j . |
LF Propensity Energy min | Energy avg
0-5 2.8 371.283 428.752
60 L ~|{5-10 3.2 365.937 414.663
10-15 31 376.12 417.051
: : : : : : : : : : : 15-20 2.4 301.507 427.054
50 L b [2025 1O | 390.126 | 426.716
: 75-30 0.9 376.014 423.728
30-35 1.7 302.976 428.325
a0l 3540 1.0 | 396.61 430.25
40-45 1.6 396.444 428.346
45-50 1.7 301.581 426.922
50-55 2.2 408.002 436.024
30 155-60 0.7| 391.588 | 428.467
oU-65 1.8 4IT.171 437.207
: : : : i : : i i i 5 65-70 nan 0.0 0.0
: 75-80 nan 0.0 0.0
80-90 nan 0.0 0.0
i i i
0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-T0 70-75 75-80 B80-90

Misorientation angles in degrees




Summer 2016: Results and Observations

Summary:
* 55— 60° more resilient
* Peak of 35— 40° boundaries, decreasing with grain size

* Close to voids, high concentration of 40 — 55° misorientation
boundaries

* 50-55° degrees highest concentration

* GB energy results so far inconclusive
* Further improvements needed



Challenges

* Solving a 3D problem with 2D information
* Missing boundary inclination

* No information on pre-shock geometry
» Difficult to estimate where void initially nucleated

* Verification of results demanding
* No MD values widely available for boundaries between 2-values

* Analysis still cumbersome
* Missing enclosed grains
* Grain Boundary anisotropy is not the only factor in void nucleation



Future steps

* Improve data handling and expand functionality

* Incorporate
* Trace angles with respect to shock loading direction
* Analyze geometry of boundary in more detail
* Triple points and their relation to voids (especially large grain samples)
 Surroundings of boundaries (increased density of boundaries to average)

* Verify multi-scale model results with MD
* Improve accuracy of the model

* More experiments targeted towards void nucleation

* Appropriate grain size and low peak stresses to reveal and preserve initial
nucleation site

* Chose material with consistent known properties
» Keep grain structure as “simple” as possible to reduce other factors for failure



ThankYou!

e Curt Bronkhorst, T-3

* Irene Beyerlein, T-3

* Brandon Runnels, UCCS

* Eric Hahn, UC San Diego
 Pierre Schnarz, TU Clausthal
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