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Accelerating RPMD with 
Hyperdynamics

Luke Adams (UGS)
Whitman College

Mentor: Arthur Voter, T-1
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Outline

● Infrequent event systems
● Hyperdynamics
● Ring polymer molecular dynamics (RPMD)
● Example system
● Results and challenges
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Infrequent Event Systems

The system spends most of its time vibrating in a 3-N 
dimensional basin before finding an escape path.

We would like spend less of our computational budget on 
simulating this boring vibrational activity, so that we can observe 
more interesting events.
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Hyperdynamics

Procedure:

– design bias potential

– run simulation on biased surface (V + ΔV)

– accumulate hypertime as

V + ΔV

V
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Hyperdynamics

Assumptions:

– infrequent events

– no recrossings

– bias potential ΔV is zero at dividing surface

V + ΔV

V
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Ring Polymer MD (RPMD)

Replaces each atom with a ring of n beads; exact equilibrium 

quantum results in the infinite bead limit.

Each set of beads evolves in its own 'universe' while also 
interacting with its two neighboring universes.
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Ring Polymer MD (RPMD)

Each bead is connected to its two neighbors by a spring with a 
spring constant given by

The spring frequency often limits the length of timesteps in the 
simulation.
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RPMD and Hyperdynamics

The most difficult part of adapting hyperdynamics to RPMD is 
choosing an appropriate bias potential.

We must choose a bias that gives a significant boost, but is zero 
along all dividing surfaces.
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RPMD and Hyperdynamics

We define the bias force as the gradient of the bias potential at the 

centroid of the ring, and assign each bead 1/n of the bias force.

We assume that the centroid will be near the dividing surface when 
the system is making a transition.
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Example System

Symmetric Eckart barrier:
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Results



14

Results
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Active Matter

I Nonequilibrium particle-based systems with internal,
propulsion.

I Possible collective behaviors



Simulation

System parameters:

I number of particles:
Ns = 8000� 20000

I particle radius: Ri = 1.0

I system size: L = 300⇥ 300

Equation of motion:

⌘
dri
dt

= F i
inter + F i

m (1)

I repulsive disk-disk
interaction force:
Fi
inter = ⇥(d�2R)k(d�2R)

I particle motor force :
Fi
m = 1.0

I run length: lr = 300� 600

Run-and-thumble dynamics:

Run

Tumble



Random Pinning Substrate

Equation of motion:

⌘
dri
dt

= F i
inter + F i

m + Fi
p (2)

I pinning force:
Fi
p = ⇥(r � Rp)r/RpFp

System parameters:

I number of particles:
Ns = 8000� 20000

I number of pinning sites:
Np = 8000

I pinning site force:
Fp = 0� 8

Nr. particles = 16000
pinning force = 1.0

Nr. particles = 16000
pinning force = 2.25

Nr. particles = 16000
pinning force = 8.0

Nr. particles = 10000
pinning force = 8.0



I a.: Cl/Ns : fraction of
particles in the largest
cluster

I b.: P
6

/Ns : fraction P
6

of
sixfold coordinated disks
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I I. dewetted phase

I II. partially wetted phase

I III. wetted labyrinth phase

I IV. pinned liquid phase



Drift Force

Equation of motion:

⌘
dri
dt

= F i
inter + F i

m + Fi
d (3)

I drift force: Fi
d = 0� 7

I number of particles:
Ns = 6000� 24000

I number of pinningsites:
Np = 8000

I pinning force: Fp = 5.0

Nr particles = 16000
drift force = 0.0

Nr particles = 16000
drift force = 6.0

Nr particles = 16000
drift force = 1.5

Nr particles = 10000
drift force = 0.0

Nr particles = 16000
drift force = 3.25

Nr particles = 10000
drift force = 1.5

(a)

(b)

(c)

(d)

(e)

(f)



Phases:
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Outline

1. Motivation and Tools

2. Graph Representation
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1. Motivation and Tools



Classical Molecular Dynamics

From Ab Initio Calculation to Md: a scaling issue

H = E 
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Motivation of Numerical Potentials

Md requires the computation of forces for many configurations

Atomic environment

Objective
Estimate for the central particle:
• the energy V(C)

• the forces �rV(C)
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Motivation of Numerical Potentials

Potential at an intermediate level

Ab Initio Calculation
Accurate, long to compute, depends on the number of electrons

Numerical Potentials and Forces
Ab Initio accuracy with lower computational cost

Classical Potentials and Forces
Unable to reproduce all the properties of a complex material
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Machine Learning Tools

Database:
• atoms’ positions, configurations (Ci ) for i = 1, . . . ,N

• associated forces (rV(Ci )) for i = 1, . . . ,N

Grégoire Ferré, Kipton Barros & Gabriel Stoltz Cnls – Enpc

Kernels over graphs for fitting potential energy landscape 7 / 18



Machine Learning Tools

Database:
• atoms’ positions, configurations (Ci ) for i = 1, . . . ,N

• associated forces (rV(Ci )) for i = 1, . . . ,N

Regression methods
• Support Vector Machine
• Neural Networks
• Kernel methods

• invariant polynomials ...

Grégoire Ferré, Kipton Barros & Gabriel Stoltz Cnls – Enpc

Kernels over graphs for fitting potential energy landscape 7 / 18



Machine Learning Tools

Database:
• atoms’ positions, configurations (Ci ) for i = 1, . . . ,N

• associated forces (rV(Ci )) for i = 1, . . . ,N

Regression methods
• Support Vector Machine
• Neural Networks
• Kernel methods

• invariant polynomials ...

Kernel methods

For two configurations C1 and C2, a kernel K(C1,C2) is ameasure of

similarity between C1 and C2.
Result: if we can compare, we can interpolate.
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Di�culties

Physical properties:
• the number of atoms may vary,
• invariance with respect to ordering of atoms,
• rotation invariance.
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Di�culties

Physical properties:
• the number of atoms may vary,
• invariance with respect to ordering of atoms,
• rotation invariance.

Extensive literature on this problem:
• symmetry functions (Behler et al., 2007),
• Smooth Overlap of Atomic Position (Soap, Csanyi et al., 2010),
• Internal Vector coordinates (Li, Kermode, De Vita, 2015)
• scattering transform (Mallat et al., 2015),
• Moment Tensor Polynomials (MTP, Shapeev, 2016)
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2. Graph Representation



Graph Representation

Define an adjacency matrix :

Ai ,j =«weight between particles i and j»= '�(|qi �qj |)
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Graph Representation

Define an adjacency matrix :

Ai ,j =«weight between particles i and j»= '�(|qi �qj |)

Idea
Rotation invariant description of the system
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Graphs in the Literature

Important interest in the last 15 years:
• web/internet,
• social networks,
• disease propagation,
• chemoinformatics.
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Graphs in the Literature

Important interest in the last 15 years:
• web/internet,
• social networks,
• disease propagation,
• chemoinformatics.

Many graph kernels have been developed (Gärtner, 2002):
• spectral properties (Kondor et. al, 2002),
• shortest paths (Borgwadt et al., 2005),
• graphlets (Shervashidze & Vishwanathan, 2009),
• random walks (Vishwanathan, Schraudolph, Kondor & Borgwardt,

2010),
• functional embedding (Shrivastava & Li, 2014).
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Graph kernels and random walks

Adjacency matrix (Ai ,j )
n
i ,j=1 as generator of a Markov process.
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Graph kernels and random walks

Adjacency matrix (Ai ,j )
n
i ,j=1 as generator of a Markov process.

Random walk from an initial
distribution x0 2 Rn

x1 = Ax0

x2 = A2x0

. . .

xk = Akx0.
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Graph kernels and random walks

Adjacency matrix (Ai ,j )
n
i ,j=1 as generator of a Markov process.

Random walk from an initial
distribution x0 2 Rn

x1 = Ax0

x2 = A2x0

. . .

xk = Akx0.

Bonus: if x0 is chosen uniform, graph properties are made
permutation invariant, so we use x0 = e = (1, . . . ,1).
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Toy application

Fitting the pair interaction between a central atom and 4 neighbors
with random perturbations.
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Conclusion & Tracks

Conlusion
New methodology for fitting potential energy landscapes:
• represent a configuration by a graph,
• random graph theory for kernel design,
• proof of principle.

Ongoing work
• test on DFT database,
• insert more physics into the graph,
• discrepancy between tight-binding and DFT,
• approximation of the graph’s probability density.
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Rkhs: Kernel

Definition - Kernel
We consider a compact metric space X .
A positive definite kernel is a function K : X ⇥X 7! R, that verifies:
• K is symmetric: 8(x ,x 0) 2 X 2, K(x ,x 0) = K(x 0 ,x),
• for all N 2N⇤, (x1, . . . ,xN ) 2 XN , the matrix K(xi ,xj )i ,jN is positive

semidefinite, or for all (a1, . . . ,aN ) 2 RN ,

NX

i=1

NX

j=1

aiajK(xi ,xj ) � 0.

In this context

For data (xi )
n
i=1, K(xi ,xj ) is a matrix of correlation.

Typically,

8x ,y 2 Rm , K(x ,y) = e
� (x�y)2

2�2 .
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Rkhs : basics

Reproducing Kernel Hilbert Spaces

Consider a space of real functionsH ⇢ RX forming a Hilbert space
with inner product h· , ·iH. A kernel K is a reproducing kernel ofH if:
• H contains all function of the form

8x 2 X , Kx : t 7! K(x , t)

• for all x 2 X and f 2H,
f(x) = hKx , fiH.

Example

f(x) =
Z

Rm
K(x ,y)f(y)dy .
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Understanding Rkhs

Consider the operator:

LK : L2 ! L2

f 7!
Z

Rm
K(· ,y)f(y)dy ,

and associated eigenvalues (�k , k ), �k ! 0. Any L2 function reads

f(x) =
X

k�1
ck k (x) with ck =

Z

Rm
f(x) k (x)dx .

Alternative definition

H=

8>><>>:f =
X

k�1
ck k

�������

X

k�1

c2k
�k

<+1
9>>=>>;

Functions of finite energy

L2 =

8>><>>:f =
X

k�1
ck k

�������

X

k�1
c2k <+1

9>>=>>;
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Gabriel’s Graph

Taking into account the angular information

(Source: Wikipedia)
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Embedding parallel LIBSVM in Julia for 
SVR analysis  

Vesselin Grantcharov  
and LANL T-1 Group 



Outline 

•  Support Vector Machines (SVM) and Support 
Vector Regression (SVR) models 

 
•  LIBSVM 

•  JULIA language 
  
•  LIBSVM JULIA embedding in MADS.Julia 



Support Vector Machine (SVM) models 



SVM:  Linear Separators  

Binary classification is a task to separate classes 
in the feature space: 

wTx + b = 0 

wTx + b < 0 
wTx + b > 0 

f(x) = sign(wTx + b) 



Classification Margin 
•  Distance from xi to the separator is  
•  Examples closest to the optimal hyperplane are support 

vectors.  
•  Margin ρ of the separator is the distance between support 

vectors. 

w
xw br i

T +
=

r 

ρ =
2
w

b
w



Linear SVM: Mathematically 

A quadratic optimization problem:  
 

 
Which can be reformulated as:  

Find w and b such that 

                is maximized  

 

and for all (xi, yi), i=1..n :     yi(wTxi + b) ≥ 1 

ρ =
2
w

Find w and b such that 

Φ(w) = ||w||2=wTw  is minimized  

and for all (xi, yi), i=1..n :    yi (wTxi + b) ≥ 1 



Non-linear SVMs:  Feature spaces 

•  General idea: the original feature space can always be 
mapped to some higher-dimensional feature space 
where the training set is separable: 

Φ:  x → φ(x) 



The Kernel Trick 





Support Vector Regression (SVR) models 



Linear Support Vector Regression (SVR) 





SVR: Mathematically 

Given a training set                                               , the linear 
SVR finds an optimal linear function by solving the 
    following constrained convex optimization problem 



The Kernel Trick 



LIBSVM, JULIA and MADS 



LIBSVM – The best Library for Support 
Vector Machines 
Chih-Chung Chang and Chih-Jen Lin 

LIBSVM is an integrated parallel software for support vector 
classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and 
distribution estimation (one-class SVM). It supports also multi-class 
classification. 
 
Main features of LIBSVM include 
    Different SVM\SVR formulations 
    Efficient multi-class classification 
    Cross validation for model selection 
    Probability estimates 
    Various kernels (including precomputed kernel matrix) 
    Weighted SVM for unbalanced data 
    Both C++ and Java sources 
    Python, R, MATLAB, Perl, Ruby, Weka, Common LISP, CLISP, Haskell,       

implementations 





²  MADS (Model Analysis & Decision Support) is an open-source high-
performance parallel computational framework for model analyses, 
developed in Computational Earth Science Group at LANL, and supported by 
DOE Office of Science (LA-CC-11-035). 

 

²  MADS includes advanced adaptive computational techniques: 
o  Sensitivity analysis (local / global); 
o  Uncertainty quantification (local / global);  
o  Optimization / calibration / parameter estimation (local / global); 
o  Model ranking & selection 
o  Decision support (Bayesian, GLUE, Info-gap, BIG-DT) 

²  MADS allows external coupling with any existing physics simulator 

http://madsjulia.lanl.gov 
 

 
Computational Framework MADS 



LIBSVM embedded in Mads.Julia 

•  Runs and controls parallel code 
•  Calls python that calls Julia (grid regression) 
•  Wrappers that allow for easy interactive mode rather 

than writing C code, compiling, running, debugging 
•  Integrate software from LIBSVM which is downloaded or 

modified separately from the standard library – grid 
search for regression, dense data version, etc. 

•  More flexible code to predict data in different formats 
than standard LIBSVM data format and read more than 
one file to make predictions, thus reducing constraints 
due to memory size 



Thank you for your time  
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Formulation Equation

Diffusion equation

Stationary diffusion equation

�div (Krp) = f

Examples: conductivity (electrical, thermal), chemical di↵usion, etc.

Mixed formulation with boundary conditions

u = �Krp in ⌦,

divu = f in ⌦,

p = g on @⌦.

p – potential (unknown scalar)

u – flux (unknown vector)

⌦ ⇢ R2

K – di↵usion tensor (symmetric positive definite matrix)
3 / 18



Formulation Discretization

Weak Formulation and Discretization

Weak formulation

Find (u, p) 2 H(div ,⌦)⇥ L2(⌦) such that

hK�1u, vi⌦ � hp, divui⌦ = �hg , v · ⌫i@⌦ 8v 2 H(div ,⌦),

hdivu, qi⌦ = hf , qi⌦ 8q 2 L2(⌦).

Mimetic Finite Di↵erence method: discretization scheme that mimics
important calculus properties (Divergence Theorem, Green’s formula, etc.).

Discrete mixed formulation

[uh, vh]Xh
� [ph,DIVvh]Qh

= �hgh, vh · ⌫ih 8vh 2 Xh,

[DIVuh, qh]Qh
= [fh, qh]Qh

8qh 2 Qh.

h – size of the mesh ⌦h

Xh – discrete space for fluxes uh

Qh – discrete space for potentials ph 4 / 18



Formulation Meshes

Meshes
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Formulation Implementation

Implementation of MFD Scheme

Discrete mixed formulation

[uh, vh]Xh
� [ph,DIVvh]Qh

= �hgh, vh · ⌫ih 8vh 2 Xh,

[DIVuh, qh]Qh
= [fh, qh]Qh

8qh 2 Qh.

Implementation

All matrices are constructed additively from their local analogs for each element E 2 ⌦h.

Construct the matrix MXE that corresponds to the bilinear form that defines the

mimetic inner product on XE :

hMXE uh, vhi = [uh, vh]XE
⇡
ˆ
E

hK�1u, vidx

Construct the matrix MQE that corresponds to the bilinear form that defines the

mimetic inner product on QE :

hMQE ph, qhi = [ph, qh]QE
⇡
ˆ
E

pq dx

Construct the discrete divergence operator DIVE using commutation property:

DIVE vI = (div v)I on E 2 ⌦h

6 / 18



Original Arbitrary Order MFD Method Degrees of Freedom

Degrees of Freedom (original)

Local interpolation – discretization uI and pI for one element E 2 ⌦h.

Pk(E ) – the space of all polynomials on E with degree less or equal to k .

DoF of potential p

the polynomial coe�cients of the approximation of p in the space
Pk�1(E )

Figure: Degrees of freedom for potential on a quadrilateral element (k = 2)
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Original Arbitrary Order MFD Method Degrees of Freedom

Degrees of Freedom (original)

DoF of flux u

the moments of u with respect to r�E ,i , basis of Pk�1(E ):

uIE ,i :=
1

|E |

ˆ
E
hu,r�E ,i idx for i = 1, . . . , nk�1

the moments of hu, ⌫E ,ei with respect to �e,i , basis of Pk(e):

uIe,i :=
1

|e|

ˆ
e
hu, ⌫E ,ei�e,i (s)ds for i = 0, . . . , k 8e 2 EE

Figure: Degrees of freedom for flux on a quadrilateral element (k = 2)
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Improvement and Comparison of the Methods New Degrees of Freedom

Moving Edge DoF to Vertices

Locally: one-to-one correspondence for elements with no hanging nodes

Figure: Old and new degrees of freedom (locally)

Globally: the number of degrees of freedom is reduced

Figure: Old and new degrees of freedom (globally)
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Improvement and Comparison of the Methods Comparison

DoF on Perturbed Square Mesh
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Figure: Ratio of number of new DoF to number of old DoF
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Improvement and Comparison of the Methods Comparison

Properties

Locally: same number of DoF, nothing changes for the elements with no
hanging nodes (vertices with parallel adjacent edges).

Pros (globally):

Fewer degrees of freedom:

Additional continuity of the flux:

Cons: Discontinuous di↵usion coe�cient requires special consideration.
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Results Test Problem

Test Problem

The results below were calculated for the following problem:

⌦ = [0, 1]2

K =


2 + x2 0

0 2 + y2

�

p(x , y) = sin⇡x cos⇡y

The perturbed square mesh is used.
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Results Convergence

Error Comparison

Old method New method
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Figure: Error for flux
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Results Convergence

Error Comparison

Old method New method
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Results Convergence

Rate of Convergence (New Method)

Flux Potential
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Figure: Rate of convergence

Numerical experiment shows the following rate of convergence:
k + 1 for flux
k + 2 for potential when k � 2
k + 1 for potential when k = 1
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Results Condition Number

Condition Number (New Method)
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(a) Perturbed square mesh
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(b) Regular hexagonal mesh

Figure: Condition number of a global coe�cient matrix for [u, p]T for
(a) perturbed square and (b) regular hexagonal meshes

The condition number of a coe�cient matrix for a fixed order k does not
grow much in the new method.
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Conclusion

Conclusion

Conclusion

The new method gives the same convergence results as the original
method.

The performance is increased due to decrease of number of variables:
up to 40% in the low-order case;
up to 10� 18% in the high-order cases.

The new method adds the additional continuity of the discrete
approximation.

Future work

Special consideration of discontinuous di↵usion tensor (e.g., add
additional degrees of freedom to the vertices where K is
discontinuous).

Find problems where additional continuity plays an essential role.
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Thank you!

Acknoledgement: ASC Hydro



Appendix Discontinuous Case

Discontinuous Case

Di↵usion coe�cient K can be discontinuous.

Analytical solution: flux is continuous through the edges where K jumps
(normal component) but its tangential component may have jumps.

The edge DoFs possess this property automatically. The vertex DoFs force
the approximation uh to be continuous at each vertex (cannot have
tangential jumps).
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Optimization of interatomic potentials 
using machine learning 

Aditi Krishnapriyan 
Mentors: Marc Cawkwell, Ping Yang 

August 23, 2016 
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!  Fast, parameterized electronic structure 
models (DFTB) 

!  Covalent bonding and charge transfer 
!  LANL-developed open-source code: 

–  Extended Lagrangian Born-
Oppenheimer MD 

–  Fast, parallel O(N) and O(N3) algorithms 
for the density matrix, P  

Reactive quantum MD with LATTE 

Slide 2 

H: 1 × s 
C, N, O: 1 × s + 3 × p 

   
U (R;P) = 2Tr PH⎡⎣ ⎤⎦ +

1
2

qiq j

R∑ + Epair
Potential energy:  

Electronic 
energy Electrostatics Repulsion 

Orbital overlap 
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Automatically tuning parameterizations 

Slide 3 

hll 'τ (R) = hll 'τ (R0 )exp(A1(R − R0 )+ A2 (R − R0 )
2 )

φ(R) = φ0 exp(BiR
i )

i=1

4

∏

Noints= 7
Element1 Element2  Kind     H0   B1      B2        B3           B4         B5  R1     Rcut H0   B1      B2        B3           B4         B5  R1     Rcut
H C sss  -8.569940 -1.463764 -0.280323 0.000000 0.000000 1.100000 3.000000 3.500000 0.393139 -1.559300 -0.659087 0.074430 -0.017004 1.100000 3.000000 3.500000
H C sps  7.892364 -1.079786 -0.288107 0.000000 0.000000 1.100000 3.000000 3.500000 -0.469300 -1.018870 -0.997495 0.301138 -0.081795 1.100000 3.000000 3.500000
C C sss  -7.893027 -1.531314 -0.482302 0.000000 0.000000 1.500000 3.000000 3.500000 0.275515 -1.688130 -0.523751 0.041905 -0.010372 1.500000 3.000000 3.500000
C C sps  8.004860 -1.184291 -0.525113 0.000000 0.000000 1.500000 3.000000 3.500000 -0.332137 -1.243440 -0.739495 0.176080 -0.049828 1.500000 3.000000 3.500000
C C pps  5.659036 -0.800774 -0.503255 0.000000 0.000000 1.500000 3.000000 3.500000 -0.331087 -0.460593 -1.562450 0.924350 -0.298106 1.500000 3.000000 3.500000
C C ppp  -2.611850 -2.008940 -0.163584 0.000000 0.000000 1.500000 3.000000 3.500000 0.155671 -2.073180 -0.432304 0.024030 -0.011508 1.500000 3.000000 3.500000
H H sss  -8.827050 -1.119400 -0.440439 0.000000 0.000000 0.740000 3.000000 3.500000 0.563921 -1.450000 -0.756144 0.000000 0.000000 0.740000 3.000000 3.500000

Nopps= 3
Ele1  Ele2  A0        A1      A2      A3       A4      A5       A6      C    R1  Rcut
C H 622.109477 -7.494398 4.304384 -3.176901 0.000000 0.000000 0.000000 0.000000 1.500000 1.700000
C C 4.719818 20.460516 -40.187100 28.078400 -7.506860 0.000000 0.000000 0.000000 1.800000 2.000000
H H 25.489000 7.692560 -52.078700 79.678800 -48.738600 0.000000 0.000000 0.000000 1.000000 1.200000

bondints.nonortho

ppots.nonortho

H S 

Pair potentials: 

Bond integrals: 

Overlap matrix from wavefunction overlap 
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Reference data from DFT for optimization 

Slide 4 

CH4 H3C CH3

C4H6

C4H8

C4H10

•  32 molecules 
•  200 distortions per 

molecule 
•  Species + coordinates 
•  Atomization energy 
•  Forces 
•  Dipole moment 
+…. e.g. stresses 
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Objective function measures error in 
parameterization 

Slide 5 

•  Stress, ionization potentials, HOMO-LUMO gap, 
polarizibility… 

•  Normalized per molecule by standard deviation: 
dimensionless  
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EPO (“Empirical Potential Optimizer”): 
Python + MPI (mpi4py) 

Slide 6 

Read in parameter files and reference table 

Write input and parameter files 

Loop over reference tables 

Run LATTE, a tight-binding energy code to 
get new energies, forces, etc.  

Build objective function 

Accept/reject parameter update via steepest 
descent or simulated annealing algorithm 

Parallelized step 
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Parallel Scaling 

Slide 7 

1 2 4 8 16 32
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640 structures in reference data 

LANL: Wolf 
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Steepest Descent: Number of iterations 
vs. Objective Function for perturbed 
parameters 

Slide 8 
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Steepest descent 
optimization of 28 
parameters 
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Perturbed Parameters Error  

Slide 10 
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Error in atomization energy 

Slide 11 
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0 
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molecule) 

Pre-optimization 
No Perturbation 
Perturbation = 1% 
Perturbation = 5% 
Perturbation = 10% 

Error in molecular geometry 

Slide 12 
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RMS Error (eao/
molecule) 

Pre-optimization 
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Perturbation = 10% 

Error in molecular dipole moment 

Slide 13 
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Future work: EPO 

Slide 14 

!  Release code 
!  New optimizers  

–  differential evolution  
–  neural networks 

!  Improve portability and compatibility with other codes via modules/
functions 

!  Additional objective functions  
–  stress tensors 
–  polarizability 
–  ionization potential 
–  HOMO/LUMO eigenstates 
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Schema5c	representa5on	of	physical	processes	taking	place	in	
deep	water	(open	ocean)	and	shelf	water	(coastal)	polynyas.		

Reviews	of	Geophysics	
Volume	42,	Issue	1,	RG1004,	18	MAR	2004	DOI:	10.1029/2002RG000116	
h[p://onlinelibrary.wiley.com/doi/10.1029/2002RG000116/full#rog1583-fig-0001	



Model	details	
q  High	resolu5on	run:	

§  Accelerated	Climate	Modeling	for	Energy	(ACME)	v0.1	baseline	simula5on.	
§  Horizontal	resolu5on	of	0.1°	for	the	ocean	(POP)	and	sea-ice	components	(CICE).	
§  0.25°	for	the	atmosphere	(CAM)	and	land	model	components.		
§  95	years	run	(pre-industrial	scenario).	

q  Low	resolu5on	run:	
§  Horizontal	resolu5on	of	1°	for	the	ocean	(POP)	and	sea-ice	components	(CICE).	
§  1°	for	the	atmosphere	(CAM)	and	land	model	components.		
§  197	years	run	(pre-industrial	scenario).	



2	loca5ons	for	Open	Ocean	Polynyas	in	the	Weddell	Region	
(OOP)	

•  Maud	Rise	Polynyas	(MRP)	:	
Ø 	Over	Maud	Rise	Seamount	

•  Weddell	Sea	Polynyas	(WSP)	
Ø 	Over	Central	and	Eastern	Weddell	Sea.	

Maud	Rise	
Polynya		

(pink	circle)	

Weddell	Sea	
Polynya	

(pink	circle)	

(Image:		
www.wikipedia.org/wiki/	
Weddell_Gyre)	













Comparison	of	Bathymetry	in	Observa5on	vs.	model	(high-resolu5on	&	low-resolu5on	simula5on)	
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Mentor: Thomas K Leitner 
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T-6 Theoretical Biology and Biophysics 
 
Reconstructing HIV Populations from Population Sequences 

 
Direct population sequencing is a molecular biology technique that collapses the genomes of a whole 
population into a single file, yielding scope at the cost of resolution. In epidemiology, sequencing a 
patient’s viral population is preferable to sequencing individual clones because physicians need to scan 
the entire population for drug resistance. Recently however, we found that phylogenetic analysis is 
greatly enhanced by the inclusion of many individual viral sequences from each patient. Since 
population sequences are widely available in regional databases, we are now interested in developing 
computational methods for reconstructing the viral populations of patients from their population 
sequences. First, we formulated into rules the logic used by humans to interpret sequencing 
chromatograms, both at the level of determining bases from peaks and at the level of determining 
consensuses from multiple reads. Second, we began efforts to optimize this logic for our application of 
obtaining phylogenetic signal while rejecting noise. We are validating these algorithms on a dataset in 
which patient viral samples were sequenced as clones and as populations, and we plan to include next-
generation sequencing data from the same patients as well. 



	 
Title:	Alpha	to	Omega:	Modelling	phase	transformations	in	Ti	under	

shock	loading	
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Abstract:	Under	shock	loading	conditions	resulting	in	pressures	>	7	

GPa,	Ti	experiences	a	phase	transformation	from	the	ambient	stable	

alpha	phase	to	the	brittle	and	metastable	omega	phase.	Although	

experimental	work	on	this	topic	spans	several	decades,	there	remains	

much	to	uncover	concerning	the	interaction	between	the	phase	

transformation	and	plastic	mechanisms.	As	a	step	towards	further	

insight,	the	focus	of	this	work	is	to	incorporate	a	previously	developed	

model	into	an	FEM	implementation	via	a	VUMAT.	Current	features	of	

the	model	include	an	EOS	to	account	for	elastic	property	changes,	

twinning/slip,	and	phase	transformation	adapted	from	martensitic	

theory.		A	brief	overview	of	the	model	will	be	presented	in	addition	to	

preliminary	results	of	a	pseudo-1D	FEM	simulation. 
	 
	 



Photon induced 
Excited-State 
Dynamics
Lightning Talk 7/28/2016

By: Levi Lystrom, Tammie Nelson, Shawn McGrane, David Chavez, 
Jason Scharff, Sergei Tretiak
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Ground State and Linear Absorption
• Optimization of Ground State

� AM1 semiempirical
� Ground State Dynamics

� AM1 semiempirical
� Thermalized for 6ps with !t=0.5fs 

classical time steps /w 3 electron 
steps.

• Absorption
� CIS level of theory for static and 

thermalized geometries. 0.00
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Pathways

3



Branching Pathway Algorithm
Vibration 

Frequency (cm-1)
Convert cm-1 to fs 
Δt = haft period Print Time Step

Trajectory list Extract coordinated from 
time steps NΔt, N = 1, 2,….. 

Save coordinates 
as XYZ file

Compute interatomic 
distances (D) for NΔt

D < threshold 
Yes No

Save data as not 
bound at NΔt

Save data as 
bound at NΔt 

Save trajectory, times and 
which bond(s) cleave Find when bonds are broken

Find trajectories where the 
bond cleavage are the same

Save quantum yield and time 
scales for branching pathway

Find representative trajectory 
for each pathway

Save representative 
trajectory for pathways

Read final temp. for 
each trajectory 

Save average 
temp.

Save average temp. for 
each pathway(s) 4
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Conclusions
• The Branching Pathway Algorithm Performs

� Extraction of time resolved XYZ coordinates
� Saves in XYZ formatted files
� Find interatomic distances

� Classifies All trajectories into Branching Pathways
� Finding Bond(s) cleaving events

� Finds represented trajectory for each Pathway
� Finds temperature dependency

� Average Temperature for various pool
� Dress the distribution of temperature 

with Gaussian distribution
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Conclusions
• The Branching Pathway Algorithm Performs

� Extraction of time resolved XYZ coordinates
� Saves in XYZ formatted files
� Find interatomic distances

� Classifies All trajectories into Branching Pathways
� Finding Bond(s) cleaving events

� Finds represented trajectory for each Pathway
� Finds temperature dependency

� Average Temperature for various pool
� Dress the distribution of temperature 

with Gaussian distribution
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Outline 

2	

Ø Introduc+on	to	skyrmions,	system	
descrip+on,	and	experiment	results	

Ø Par+clelike	skyrmion	model	and	interac+on	
of	skyrmions	with	parabolic	pin	

Ø Collec+ve	transport	proper+es	of	skyrmions	
with	a	conformal	pinning	array 
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Dzyaloshinskii-Moriya	Interac&on	(DMI):							B​C ∙(D× ​C ) 

(a)	Real-space	observa+on	of	
helical	state	and	(b)		skyrmion	
crystal	state.	(c)	a	magnified	
skyrmion	from	(b)	[2].	(d)	
schema+c	spin	configura+on	
of	helical	state	[3].	(e)	
schema+c	configura+on	of	a	
skyrmion	[4]. 
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(d
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(e
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The dynamics of a single skyrmion i [5] [6]
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​​: ↓-↑JK 	non-overlapping	harmonic	
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​​: ↑L 	Lorentz	force	from	applied	

current	

Hall	angle:	\= ​?=/↑−1 ( ​​G↓8 /​G↓'  )  
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from	Magnus	term 
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Isolated	Skyrmion	within	a	Harmonic	Trap	with	
AC	Drive	(x	direc&on) 

6	

(a
) 

(b
) 

(c) (d
) 

(b)	Fac=0.05,							
						​P↓T /​P↓Q 
=10	

(a)	Fac=0.03,	
	 ​     P↓T /​P↓Q 
=10	

(c)	Fac=0.03	
      ​P↓T /​
P↓Q =1	

(d)	Fac=0.03,			
						​P↓T /​P↓Q 
=30	

Fac Fac 

Fac Fac 



Isolated	Skyrmion	within	a	Harmonic	Trap	with	
AC	Drive	(x	direc&on,	 ​P↓T /​P↓Q =10) 

7	

(b)	Fac=0.05,	
						Frand=0.02	

(a)	Fac=0.05,		
						Fdc=0.04	
 

(c)	Fac=0.05,	
						Frand=0.05	
 

Fac 

Fdc 

Fac 

Frand 

Fac 

Frand 

Fac 

Frand 

(d)	Fac=0.05,	
						Frand=0.09	
 

(a
) 

(b
) 

(c) (d
) 



Conformal	Pinning	Array	
[7] 

8	

System size:  HI×HI

Same density: ​C↓^ = ​C↓_ =J.H

 ​M↓^T`a =J.L ​      b↓^ =J.H

	
 

[7]	C.	Reichhardt,	D.	Ray,	C.	J.	Olson	Reichhardt,	Phys.	Rev.	B	91,	184502,	2015		

Hook’s	law:	​M =−c∙ ​b , c= ​J.L/J.H , |​b |≤J.H 

Parabolic	
pinning	site 



DC	property	( ​P↓T /​P↓Q =9.962) 

9	

drive	in	x	
direc&on 

Hall	angle:	
​N`C↑−L ​|< ​
d↓⊥ >|/| ​
<d↓QbSRe 
>|  

​|<d↓QbSRe, a >| 

|< ​d↓⊥, f >| 

drive	in	y	
direc&on 

​|<d↓QbSRe, f >| 

|< ​d↓⊥, a >| 
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(a
) 

(b
) 

(c) (d
) 

AC	Property	&	Ratchet	Effect	

ratchet 

drive 

ratchet 

drive 

ratchet 

drive 

ratchet 

drive 



Strongly	Pinned	Region	(​P↓T /​P↓Q =9.962) 

11	

AC	drive	in	x	direc&on	with	amplitude	0.03.	(a)	trajectory	in	posi&ve	half	cycle,	
(b)	trajectory	in	nega&ve	half	cycle. 

(a
) 

(b
) 

drive drive 



Strongly	Pinned	Region	(​P↓T /​P↓Q =9.962) 

12	

AC	drive	in	y	direc&on	with	amplitude	0.013.	(c)	trajectory	in	posi&ve	half	cycle,	
(d)	trajectory	in	nega&ve	half	cycle. 

(c) (d
) 

drive drive 



Strongly	Pinned	Region	(​P↓T /​P↓Q =9.962) 
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“Skyrmion	Wall” 

drive	in	y 

drive	in	x 



Conclusion 

14	

Ø Interac&on	of	an	isolated	skyrmion	within	a	

parabolic	pinning	site	

Ø Collec&ve	transport	proper&es	with	a	

conformal	pinning	array,	ratchet	effect	

Ø Ratchet	effect	due	to	different	depinning	

process 
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● No Apparent Electrical Resistance

● Zero-point energy levitation

● Critical current is important!

Superconductors

http://www.ccas-web.org/superconductivity/#image1

https://en.wikipedia.org/wiki/Superconductivity#/media/File:Stic

kstoff_gek%C3%BChlter_Supraleiter_schwebt_

%C3%BCber_Dauermagneten_2009-06-21.jpg



Quantum Vortices in 
Type-II Superconductor

http://www.mmp.ph.qmul.ac.uk/~drew/?p=110 http://www.ims.demokritos.gr/people/mpissas/superconductivity.htm
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Vortex Pinning

• The movement of the vor%ces creates resis%ve mixed state in 

type-II superconductors.

• Enhancement of pinning mechanisms via ar%*cial pinscapes.

Electrical

Current

 



Vortex Pinning
• E+ec%ve channels created by periodicity.

• Distribu%ng the pinning force evenly through out the system 

 Limits on long-scale varia%on of density ,uctua%on of a Disordered Structure.

E�ec
ve 

Channels

 



Hyperuniformity

•            : Number of points in Region Ώ

•

• For a Poisson Random Process,                         .

• If                          and         , the system is said to 

have a hyperuniform structure. 

S. Torquato and F. H. S%llinger, Phys. Rev. E 68, 041113 (2003)

N (R)

Var (N (R))=⟨N2(R)⟩−⟨N (R)⟩2

Var (N (R))∼R
2

Var (N (R))∼R
α α<2



Disordered Hyperuniform 
Pinning Array

Pinning Sites

Principle 

guidelines 

for a perfect 

square 

la;ce

Unit Cell

Regions where 

the center of 

the pinning 

site is allowed 

to be in 



Disordered Hyperuniform 
Pinning Array

Disordered Hyperuniform Poisson Random



Model of Superconducting Vortices

• London approximation where quantum vortices can be 

treated as classical particles.

• Molecular Dynamics (Langevin Dynamics):

Net Force on Vor%ces

Repulsive Vortex-

Vortex interac%on

Spring-like pinning 

force with cut-o+ 

range 

Thermal Force to 

simulate Brownian 

mo%on 

Overdamped mo%on, 

thus the velocity is 

propor%onal to the 

net force

Viscosity of the 

surrounding media

F⃗i = F⃗i
vv + F⃗i

vp + F⃗i
th + F⃗i

d = η v⃗i

Induced Lorentz 

Driving Force



Enhancement of Critical Current

Nv: Number of Vortices

Np: Number of pinning

sites



Structural Analysis
● Voronoi Algorithm
● Polygon-6

https://en.wikipedia.org/wiki/Voronoi_diagram



Local Induced Disorder

Nv: Number of Vortices

Np: Number of pinning

sites



Suppression of Plasticity

Nv: Number of Vortices

Np: Number of pinning

sites



Conclusion

• Disordered Hyperuniform Pinning Array enhances the critical 

depinning current of the vortex lattices by effectively inducing 

more local disorder than the Poisson Random Pinning Array.

• Plasticity in moving vortex lattices is suppressed by Disordered 

Hyperuniform Pinning Array.

 Provide insights for the study of plasticity in percolation theory. 
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New State of Matter: 
Disordered Hyperuniform

h#ps://en.wikipedia.org/wiki/Re%na#/media/File:ConeMosaics.jpg

Hyperuniformity in point patterns and two-phase random heterogeneous media, 

Chase E Zachary and Salvatore Torquato, Journal of Statistical Mechanics: 

Theory and Experiment, Volume 2009, December 2009

h#p://globe-views.com/dreams/eye.html

h#p://www.backyardchickens.com/t/264409/chicken-

eyes-let-me-see-your-pics

Random

Disordered

Hyperuniform



Meissner Effect in 

type-II Superconductors

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/meis.html



Clogging	of	bi-disperse	disks	driven	through	
periodic	landscape	

Hong	Nguyen	
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Theore5cal	Division,	Los	Alamos	Na5onal	Laboratory	

	



Background

Jamming/Clogging:	flowing	->	stuck	state	

beans	in	funnel	

Traffic	flow	

				Hopper	
(	K.	To,	P.	Lai,	and	H.	Pak,	PRL	01’	)	

o  Presence	of	obstacles	
o  Role	of	parCcle	density		
->	ability	to	predict	clogging	?	

2D	bi-disperse	model	



Method


Red:	pinned	disks	(obstacles)	
Green,	Blue	:	mobile	disks	 CharacterizaAon	

x	

y	



Clogging & flowing states


steady	flowing	

clogged	

FracCon	of	the	largest	cluster	Same	system	but	different	realiza5on	

steady	flowing	

clogged	



clogged	

IniAal	state	

	
clogged	

steady	flowing	

				(	C.	O’Hern,	et	al	PRE	03’	)	



Effect of obstacle spacing


				(	K.	To,	P.	Lai,	and	H.	Pak,	PRL	01’	)	

Hopper	

a	:	laOce	constant	of	obstacle	array		



Effect of the direc=on of the drive 


Clogged	region	

x	



Conclusion

l  Periodic	array	of	obstacles	reduces	jamming	density	
l  Contact	number	is	significantly	smaller	than	in	the	clean	limit	
l  Clogging	probability	monotonically	increases	with	the	parAcle	density	
l  Exhibit	some	features	found	in	2D	jamming	flowing	through	an	aperture	

THANKS! 



Arctic Riverine CDOM and its Effects on 
the Polar Marine Light Field

San Diego State University  /  Undergrad  /  Environmental Engineering /  Mentors: Wilbert Weijer and Scott Elliott
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OUTLINE

¾ The Importance of Phytoplankton and CDOM (Chromophoric Dissolved Organic Matter)

¾ Baseline Model

¾ Preliminary Conclusions

¾ Future improvements 

2



Our model of the Arctic RegionA map of the Arctic Region

3



4

¾ Absorb same 
visible 
wavelengths of 
light

¾ Visible in high 
numbers

CDOMPhytoplankton

¾ Defined as microscopic, 
autotrophic organisms that 
inhabit the photic zone in 
oceans and fresh water.

¾ Obtain energy through 
photosynthesis

¾ Absorbs violet-blue and 
orange-red light best

¾ Foundation of food chain

¾ Open ocean

¾ Defined as the optically 
measurable component of 
dissolved organic matter in water.

¾ Has a limiting effect on 
photosynthesis 

¾ Can absorb UV radiation, absorbs 
best in blue and violet

¾ Dissolved detrital material

¾ Riverine inputs



NASA SATELLITE IMAGES OF 
PHYTOPLANKTON BLOOMS

Although this bloom in the Barents Sea does not originate from a river, it complements our data quite nicely.  

5

AugustJuly



NASA SATELLITE IMAGE OF MACKENZIE RIVER PLUME

6
High concentrations of CDOM appear brown and then green as the plume spreads out. 



PARAMETERS

7

¾ PAR (Photosynthetically Available Radiation W/m^2)

¾ Dynamic mixed layer depth (meters)

¾ Appropriate wavelength (443 nm)

¾ Attenuating factors (see left table)

¾ CDOM decay timescale (316 days)

¾ Concentrations and dilution factor (0.3)

These factors were used in calculating and plotting the 
average intensity in Watts per meter squared over the 
mixed layer of the Arctic Ocean.



BASELINE MODEL: JUNE

8
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CONCLUSIONS

11
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FUTURE REFINEMENTS

13

Individual Rivers

Suspended Sediments

The Ob is completely blocked by ice in June 
unlike other major rivers



PICTURES CITED
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In order of appearance 

¾ http://sailorsforthesea.org/programs/ocean-watch/searching-phytoplankton (phytoplankton)

¾ https://nordpil.com/portfolio/mapsgraphics/arctic-topography/ (map of arctic)

¾ http://www.nasa.gov/feature/goddard/nasa-study-shows-oceanic-phytoplankton-declines-in-
northern-hemisphere (July bloom 2014)

¾ http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=51765 (August bloom 2011)

¾ http://visibleearth.nasa.gov/view.php?id=52586 (Ob river June)

¾ http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html (scattering types)
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Dielectric Barrier Discharge Model Problem

Oxidizer
O - Ar; Air2

Fuel
H  ; CH2 4

• Goal: Calculate electric field (r · ✏r� = f ) in dielectric

barrier discharge

• Application: Electric field processed as body force on cross

flow

2



E-field Calculation r · ✏r� = f

• Accurate discretization leads to ill-conditioned S.P.D. matrix

• E�cient solution requires multilevel solvers

Multilevel Solver Design

• Challenge: Jump in di↵usion coe�cient (✏)

• Approach: Operator-induced interpolation

3



E-field Calculation r · ✏r� = f

Multilevel Solver Design

• Challenge:

• Electrodes at coarse levels

• Applied potentials in domain

• Approach:

• Operator-induced interpolation

• Krylov solvers

4



E-field Calculation r · ✏r� = f

Multilevel Solver Design

• Challenge:

• Electrodes at coarse levels

• Applied potentials in domain

• Approach:

• Operator-induced interpolation

• Krylov solvers

4



E-field Calculation r · ✏r� = f

Multilevel Solver Design

• Challenge: Stretched meshes

• Approach: Line/plane relaxation with standard coarsening

5



Black Box Multigrid (BoxMG)

Robust multigrid for discretizations on structured grids

Robust

• Operator-induced
interpolation

• Discontinuous coe�cients

• Variational coarsening

• Minimize CGC error in

range of interpolation

• Line/Plane relaxation

• Anisotropic problems

Structured Grids

• Fixed coarsening pattern

• Stencil operators on each

level

• Direct memory access

6



Distributed BoxMG

• Point-relaxation and intergrid

transfer use e�cient stencil

operators

• Coarse grid correction requires

solve on coarsest level

• At some level in the coarsening we

run out of local work

• Initial approach:

• Gather data to one processor

• Serial BoxMG cycle

• Scatter solution and continue

7
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Distributed BoxMG

• Point-relaxation and intergrid
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Redistribution

• Coarsest grid grows with number of processors
• Best case: 3 ⇥ 3 = 9 or 3 ⇥ 3 ⇥ 3 = 27 d.o.f. per core

• Redistribute problem on subset of processors
• Using redundancy: opportunity for resilience
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Algorithm

• Subset enumeration

• Group processors into blocks that

will share the same data

• Start with one agglomerate and

refine greedily by dimension

• Redistribution search

• Known structure of coarse-grid

operators enables global search

over recursive redistribution

• Path cost given by predictive

performance model

proc grid
coarse grid

16 x 8
1136 x 71

1 x 1
71 x 5

2 x 1
71 x 5

4 x 1
71 x 5

8 x 1
71 x 5

16 x 1
142 x 9

16 x 2
284 x 18

16 x 4
568 x 36
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Weak Scaling on BlueWaters

1

• Local problem: 568 ⇥ 71 ⇡ 40, 000 d.o.f. per core

• Processor grid ratio: 2 ⇥ 1

32 128 512 2048 8192 32768 131072
Cores

10�4

10�3

10�2

10�1

100

T
im

e
(s

)

Residual

Agglomerate

Solve

Relaxation

cg-solve

Remainder

Interpolation

1

Cray XE/XK hybrid with 22,640 XE compute nodes with two AMD

“Interlagos” processors (NCSA) https://bluewaters.ncsa.illinois.edu

10
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Weak Scaling on Mira

2

• Local problem: 568 ⇥ 71 ⇡ 40, 000 d.o.f. per core

• Processor grid ratio: 2 ⇥ 1

32 128 512 2048 8192 32768 131072 524288
Cores

10�4

10�3

10�2

10�1

100

101

T
im

e
(s

)

Residual

Agglomerate

Solve

Relaxation

cg-solve

Remainder

Interpolation

2

IBM BlueGene/Q with 49,152 compute nodes with PowerPC A2 processors

(Argonne) https://www.alcf.anl.gov/mira

11
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Conclusions & Future Work

Conclusions

• Redistribution extends the scalability of BoxMG

• Global search guided by performance model templates

robust/flexible redistribution

• Logarithmic setup cost can be avoided by local search and

heuristics

Future Work

• Line/plane relaxation

• Study accuracy of performance estimation

• Improve baseline performance model

12



Thank You!

Questions

This material is based in part upon work supported by the

Department of Energy, National Nuclear Security Administration,

under Award Number DE-NA0002374
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Predic'ng*the*Crystal*Structures*of*Layered*
Materials*with*an*Evolu'onary*Algorithm*

•  Evolu&onary+algorithm+
–  How+it+works+

•  Layered+materials+
–  Island+approach+to+layered+
structure+predic&on+

•  Preliminary+results+
–  SnSe+–+VSe2+layered+system+

•  Future+work+
–  Variable+composi&on+search+

Benjamin Revard, Sven Rudin 

1"

http://gasp.mse.ufl.edu!
https://github.com/henniggroup/gasp+

top+view+

side+view+



Evolu'onary*Algorithm:*How*it*works*

⇒+

http://gasp.mse.ufl.edu +

2"

W.+W.+Tipton+&+R.+G.+Hennig.+J.+Phys.:+Cond.+MaLer+25,+495401+(2013)+
B.+C.+Revard,+W.+W.+Tipton,+and+R.+G.+Hennig.+Topics+in+Current+Chemistry+(2014)+

1.  Make+random+ini&al+structures+and+
evaluate+their+energies+with+VASP+

+
2.  Select+two+relaxed+structures+to+act+

as+parents+
+
3.  Combine+parent+structures+together+

to+form+offspring+structure+
+
4.  Repeat+step+2+and+3+



Island*Approach*to*Layered*Structure*Predic'on*
3"

S.+P.+Rudin+and+D.+C.+Johnson.+Physical+Review+B+91.14,+144203+(2015)+

•  Layered+materials+have+unique+proper&es,+can+be+precisely+synthesized+
•  Approximate+one+layer+with+a+finite+island,+leave+the+other+infinite+

Advantages:+
•  Exploring+new+systems+

+ +_>+No+constraints+on+rela&ve+orienta&ons+of+the+layers+
+ +_>+Iden&fy+energe&cally+favorable+ion+posi&ons+

•  Computa&onally+less+expensive+
•  Provides+guidance+to+experimentalists+

+ +_>+Applied+to+[(SnSe)1+y]m(VSe2)n+layered+system+



4"
SnSe*Islands*between*VSe2*Sheets*

•  SnSe+–+VSe2+layered+materials+have+recently+been+synthesized+
•  Island+approach+previously+used+to+elucidate+layers’+orienta&on++
•  Good+test+case+for+evolu&onary+algorithm+island+search+

R.+Atkins+et"al.+Chemistry+of+Materials+26.9,+2862_2872+(2014)+
S.+P.+Rudin+and+D.+C.+Johnson.+Physical+Review+B+91.14,+144203+(2015)+

Bulk+structures+

VSe2+

SnSe+

V+

Se+

Sn+

Lowest+energy+island+structure+
found+by+the+algorithm+so+far…+

Promising+start!+



Predic'ng*the*Crystal*Structures*of*Layered*
Materials*with*an*Evolu'onary*Algorithm*

Benjamin Revard, Sven Rudin 

5"

http://gasp.mse.ufl.edu!
https://github.com/henniggroup/gasp+

top+view+

side+view+

•  Evolu&onary+algorithm+
–  How+it+works+

•  Layered+materials+
–  Island+approach+to+layered+
structure+predic&on+

•  Preliminary+results+
–  SnSe+–+VSe2+layered+system+

•  Future+work+
–  Variable+composi&on+search+



Evolu'onary*Algorithm:*Why*it*works*

•  Poten&al+energy+surface+divided+into+basins+of+aLrac&on+
•  Hypervolume+increases+with+the+basin+depth+
•  Physical+constraints+reduce+size+of+search+space+
•  Short_range+interac&ons+contribute+most+to+energy+

3N+3 configurational degrees of freedom

Enthalpy
Effective potential energy
surface of local minima

Potential energy
surface

Basin of
attraction

Local minimum

Local
optimization

C.+P.+Massen+&+J.+P.+Doye+(2007),+W.+W.+Tipton+&+R.+G.+Hennig+(2013),+
B.+C.+Revard,+W.+W.+Tipton,+and+R.+G.+Hennig+(2014),+J.+K.+Cockcrol+(1995)+

6"

Cast+structure+predic&on+as+a++
global+op&miza&on+problem++
+

Minimize+the+enthalpy+(per+
atom)+as+a+func&on+of+the+
structural+parameters++

Exploit+features+
of+the+poten&al+
energy+surface+
+

lamce+vectors+
++++&+

atomic+loca&ons+



Modifica'ons*for*Layered*Crystal*Structure*Predic'on*

Sandwich+it+between+
sheets+to+create+an+island+++

Once+a+structure+has+been+
generated…+

Remove+
sandwiching+sheets++

Pass+to+
energy+code+

VASP 
PAW-PBE 

z"

x,"y"

7"



Texture completion using
a pre-trained convolutional
neural network
By :  Julien Roy,   Nicholas Lubbers,  

Kipton Barros   &  Brendt Wohlberg



Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Introduction

Convolutional Neural Networks : The stars of computer vision

-> Perform tasks like : classification, localization, segmentation, etc.

-> Recently exceeded human-level performance

-> Can be used for new tasks beyond the scope of their training (transfer learning)

2



Texture model

Outline

Texture completionCNNs

?

3Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion 3



Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Artificial Neural Networks (ANN)

: inputs

: outputs

F(z)

4



Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Convolutional neural networks (CNNs)

Convolutional layer
(Filtering)

Pooling layer
(Step back)

Input image

5
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Convolutional neural networks (CNNs)

Convolutional layer
(Filtering)

Pooling layer
(Step back)

Input image
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Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Convolutional neural networks (CNNs)

Convolutional layer
(Filtering)

Pooling layer
(Step back)

Input image
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Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Gatys’ texture representation

Input

VGG

6

L = 1 L = 2 L = 3 L = 4 L = 5



Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Gatys’ texture representation

𝐺𝑖,𝑗
𝐿 =  

𝑥

𝐹𝑖,𝑥
𝐿 𝐹𝑗,𝑥𝐿

𝐸 = 𝐺 −  𝐺 𝑙2
2

Gram Matrix :

Loss Function :

Input L = 1 L = 2 L = 3 L = 4 L = 5
Reference Target

6

𝐹1 𝐹2 𝐹3 𝐹4 𝐹5



Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Texture synthesis

Reference Target
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Texture synthesis

Reference Target
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Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Texture synthesis

Reference Target
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Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Texture synthesis

Reference Target
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Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Texture completion

Reference

Reference

8
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Texture completion

Reference

Reference
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Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Texture completion

Reference

Reference
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Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Texture completion

Reference

Reference
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Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Texture completion

Reference

Reference

8



Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Masking

Input mask Conv 4Conv 1 Conv 2 Conv 3

A way of keeping track of : 
� neurons that have only seen the reference
� neurons that are looking at the target

9



Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Results
Source ReconstructionInitialization Source ReconstructionInitialization

10



Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Successes
Source ReconstructionInitialization
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Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Successes
Source ReconstructionInitialization
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Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Failure modes : Highly constrainted patterns
Source ReconstructionInitialization

13



Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Failure modes : Critically degraded images
Source ReconstructionInitialization

14



Texture modelCNNS . . . . . . . . . . . . . . . . . . . . . . Texture Completion

Thank you from the bottom of our hearts !
(pun)

15



Rule-based modelling of autophagy 
with dynamic compartments allows 
incorporation of effects of Influenza A 
infection

Kalina Slavkova
advised by Dr. Bill Hlavacek
and Dr. Ruy Ribeiro

1



Background

      Problems

            Approaches

        Results

             Future Directions
2



What is autophagy?
Autophagy = “self-eating”
Macroautophagy = “Macroautophagy is a process in which cellular contents are degraded by lysosomes or 

vacuoles and recycled.”  
Starvation-induced(http://www.nature.com/subjects/macroautophagy) 

Microautophagy = Direct engulfment of small particles by the lysosome

Important in viral and cancer pathways

Fig. 1: Trends in Neurosciences, Vol. 38, Issue 1, p26–35

[Background]

3

Phagophore
[PG]

Autophagosome
[AV]

ER

http://www.nature.com/subjects/macroautophagy


What is rule-based modelling?

        Implicitly describe mathematics of reactions with a set of rules

Languages

● RuleBender

● ML-Rules

4

[Background]



Key Publications

Martin, K. R., Barua, D., Kauffman, A. L., Westrate, L. M., Posner, R. G., Hlavacek, W. 
S., & MacKeigan, J. P. (2013). Computational model for autophagic vesicle dynamics 
in single cells. Autophagy, 9(1), 74-92. 

● Count AV’s via GFP labelled LC3-II
● Computational model of autophagy under different conditions
● AZD8055 - stimulates autophagy
● BafA1 - inhibits autophagy

Zhirnov, O. P., & Klenk, H. D. (2013). Influenza A virus proteins NS1 and 
hemagglutinin along with M2 are involved in stimulation of autophagy in infected 
cells. Journal of virology, 87(24), 13107-13114.

● NS1 and M2 stimulate autophagy
● NS1 may downregulate apoptosis

5

[Background]



Deterministic Model of Autophagy (Martin et 
al.)
[simple model]≠=

[Background]

P = initiation rate = 0.18 min
k = augmentation of P = 2.94
c = degradation rate = 0.037
δa = presence of AZD8055 = 0 or 1
δb  = presence of BafA1 = 0 or 1

Fig. 2: Simple deterministic model of autophagy, modelled by one ODE (Fig. 3 A in  Martin et al.)

6



Mechanistic model of autophagy (Martin et al.)

Key Players:
*PI3KC3: Class III phosphatidylinositol 3-kinase
*PtdIns3P: Phosphatidylinositol 3-phosphate 
*LC3-I: Microtubule-associated protein 1A/1B-light chain 
3
*LC3-II: phosphatidylethanolamine conjugated LC3
*ATG Proteins: Autophagy related proteins

[Background]

7

Fig. 3: Mechanistic model of autophagy, stochastically simulated as reactions  (Fig. 5  in  Martin et al.)



Effects of IA Proteins on Autophagy (Zhirnov et al.)
[influenza model]

8

Fig 4. Autophagy pathway under IA infection. 
NS1 stimulates amplified production of M2 and 
HA, which in turn block fusion of autophagosome 
with lysosome. M2 recruits LC3 to the plasma 
membrane, effectively redistributing 
phospholipids (Fig. 7 Zhirnov et al.)

[Background]

Key Players:
*NS1: Nonstructural Protein 1
*HA: Hemagglutinin
*M2 Microtubule-associated protein 1A/1B-light chain 3



Problems of Interest

9

[Problems]

1.) Martin et al. models not executed with a system capable of dynamic 
compartments; hard-coded in C instead. We want an easily expandable model

Solution: ML-Rules rule-based language with dynamic compartments

2. Deterministic model in Martin et al. is very simples; not many degrees of 
freedom to explore

Solution: create an expanded model with four stages of autophagy

3.) Martin et al. models do not explicitly describe effects of Influenza A proteins
Solution: add relevant parameters/rules to expanded model

Main Motivation: Develop ML-Rules as useful tool in this context, get 
some results on IAV infection



Approach to P#1: Modelling with ML-Rules

1. Convert SBML of simple and mechanistic models to ML-Rules syntax
2. Run and average many simulations using SESSL modelling package

a. Simple model will serve as control

3. Plot autophagosome count averages and compare to published data

10

[Approaches]

Fig 5. Screen shot from Martin et al mechanistic model and corresponding ML-Rules syntax
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Translate Simple Model (Martin et al.) into ML-Rules

AVI

[Approaches]
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Translate Mechanistic Model (Martin et al.) into ML-Rules [Approaches]
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Control: Test ML-Rules language by simulating simple model using SESSL and comparing against 
published data. 

SESSL: Simulation Experiment Specification via a Scala Layer

[Approaches]
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Published data Martin et al.

[Results]
Control matches published data
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Control matches published data

Published data Martin et al.

[Results]
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Control matches published data
Basal conditions

[Results]
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[Results]
Control matches published data

AZD8055 Treatment
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[Results]
Control matches published data

BafA1 Treatment
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[Results]
Control matches published data

AZD8055 and BafA1 Treatment
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Next, simulate mechanistic model

Published data Martin et al.

[Results]



Approach to P#2: Expanding Simple Model

1. Expanded Model: four stages of autophagy

2. Solve ODEs and fit parameters a and b using MATLAB and Data2Dynamics [D2D]

21

[Approaches]



Data2 Dynamics Overview
autophagy_simple_model.def

[Approaches]



Control: test D2D on simple model; recover published parameter estimations 
[P = 0.18  min-1 and c = 0.037 min-1]
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P = 0.19 min-1

c = 0.037 min-1

[Results]
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a = 1000 min-1

b = 1000 min-1

Estimate parameters a and b in expanded model
[Results]



Approach to P#3: Incorporating Effects of IAV 
Proteins

Add sink at nucleation (N) step and simulate stochastically

25

[Approaches]

d P = initiation rate = 0.18 min-1
a = 1000 min-1
b = 1000 min-1
c = degradation rate = 0.037 min-1
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Results for P#3: parameter scan of d 
(avg. 10 simulations)

d

[Results]
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d=0.1

d=0.2

d=0.3

[Results]
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d=0.4

d=0.5

[Results]
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d=500

d=1000

[Results]
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Now tune P and c in conjunction with d

d

[Results]
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P = initiation rate = 0.18 min-1
a = 1000 min-1
b = 1000 min-1
c = degradation rate = 0 min-1
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P = initiation rate = 0.71 min-1
a = 1000 min-1
b = 1000 min-1
c = degradation rate = 0.037 min-1
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P = initiation rate = 0.71 min-1
a = 1000 min-1
b = 1000 min-1
c = degradation rate = 0 min-1
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P = initiation rate = 0.18 min-1
a = 5 min-1
b = 5 min-1
c = degradation rate = 0.037 min-1

Are a and b really that large?
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Conclusions

● Mechanistic model closely fits autophagosome count data from Martin et al.; 
● ML-Rules and D2D are reliable packages for further analytical work
● No conclusive values for a and b parameters in expanded model of IAV 

infection. They need not be on the order of 1e3!
● Need experimental data of IAV infection to better understand IA model



Future Directions

● Simulate mechanistic model in ML-Rules with effects of AZD8055 & BafA1 and 
to longer times

●  Determine precise initial conditions in mechanistic model in ML-Rules during 
time span before steady state

● Continue adding more details of influenza A infection to expanded model 
○ Compare against data once available
○ Collaboration with experimentalists

● Add more chemical species to mechanistic model for a more complete model 
of autophagy

36



What I learned

37

● How to model
○ Heuristic -> computational
○ Approaches

■ Rule based modeling
■ Deterministic 
■ Stochastic

○ Tools
■ RuleBender
■ ML-Rules
■ D2D
■ SESSL
■ Loads more MATLAB in a 

different context
● Molecular mechanisms of autophagy
● Influenza A Viral dynamics & mechanisms 

of infection

● 10th annual q-Bio Summer School; 
University of New Mexico, Albuquerque

○ Lectures on computational biology tools

○ Introduction to ongoing investigations

● 10th annual q-bio Conference; 
Vanderbilt University, Nashville, TN

○ Keynote speakers: 
Jim Collins, MIT
Terry Sejnowski, Salk Institute

Experiences
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Plasma treatment of cancer: 
Selective electrostatic disruption of cancer cells

Kathleen Weichman1, Gian Luca Delzanno2, Kim 
Rasmussen2 and Marlene Rosenberg3

1University of Texas at Austin
2Los Alamos National Laboratory

3University of California San Diego

O. Lunov et al., Biomaterials 82, 71 (2016) 

Before AfterPlasma exposure

(or cells)

Membrane 
rupture



  

Outline

● What is plasma medicine? What does it hope to 
accomplish?

● Mechanisms of interaction between plasma and cells

– Chemistry

– Electric fields and plasma physics

● Electrostatic disruption

– Plasma charging

– No electrostatic disruption predicted for healthy cells

– Selective disruption of cancer cells

● Future work



  

Plasma medicine

● Motivations

– Resistance to conventional therapies

– Enhanced selectivity and fewer side effects

● Cold atmospheric (non-thermal) plasma (CAP)

G. Fridman et al., Plasma Chem Plasma Process 
26, 425 (2006)

Cold → safe for healthy tissue

R. Guerrero-Preston et al., Int J Mol Med 
43, 941 (2014)



  

Plasma medicine

● Motivations

– Resistance to conventional therapies

– Enhanced selectivity and fewer side effects

● Cold atmospheric (non-thermal) plasma (CAP)

K. Kelly-Wintenberg et al., JVST A 17, 1539 (1999)

Destroys bacteria

M. Keidar et al., Brit J Cancer 105, 1295 (2011)

Kills cancer cells



  

Chemical and physical effects of 
cold atmospheric plasma

Plasma-water interface
● Chemistry: reactive oxygen and 

nitrogen species (ROS, RNS)
● Device electric fields

G. Fridman et al., Plasma Chem Plasma 
Process 27, 163 (2007)

Plasma particles 
stopped by water

Plasma → water

Explanation of plasma medicine 
community for cancer cell killing and 
selectivity

(ROS/RNS generation also a feature 
of conventional treatments)



  

Chemical and physical effects of 
cold atmospheric plasma

G. Fridman et al., Plasma Chem Plasma 
Process 27, 163 (2007)

Plasma → cells

R. Walk et al., J Pediatr Surg 48, 67 (2013)

Plasma contacts tissue
● Plasma physics effects: 

charging and plasma-
mediated electric fields

Could plasma charging lead to cell death?

Plasma → water

Plasma particles 
stopped by water Nature of direct 

interaction with tissue?

Plasma-water interface
● Chemistry: reactive oxygen and 

nitrogen species (ROS, RNS)
● Device electric fields



  

Electrostatic disruption due to 
plasma charging

2. Failure

– Electrostatic pressure > cohesive force (F
max

)

– Plasma charging → critical 
potential for disruption

1. Plasma charging → surface potential

Plasma 
e- and 
ions

C
plasma

  ≠ C
vacuum

R.V. Kennedy and J.E. Allen, J. Plasma Physics 69, 485 (2003)

shape 
factor• 

elongated cells disrupt more easily

Electrostatic 
pressure

Electric field

Surface charge



  

Is disruption of cells possible?

● Expected surface potential: - 4 to - 20 V

● Critical potential with vacuum capacitance: - 270 V 
(based on bursting force given in [1,2])

[1] Z. Zhang et al., Appl Microbiol 
Biot 36, 208 (1991)
[2] V. Lulevich, et al., Langmuir 22, 
815 (2006)
[3] G.-L. Delzanno and X.-Z. Tang, 
Phys Plasmas 22, 113703 (2015)

Electron density n
e
 ~ 1013cm-3

Neutral gas density n
n
 = 2x1019cm-3

Electron temperature T
e
 = 1-5 eV

Ion temperature T
i
 = 1/40 eV

Electron mean free path l
e
 =0.5 μm

Ion mean free path l
i
 =0.125 μm

Typical CAP device parameters



  

Is disruption of cells possible?

● C
plasma

/C
vacuum

 ~ 5 – 10 [Ref. 3]

● Critical potential with capacitance correction: - 27 to - 55 V

[1] Z. Zhang et al., Appl Microbiol 
Biot 36, 208 (1991)
[2] V. Lulevich, et al., Langmuir 22, 
815 (2006)
[3] G.-L. Delzanno and X.-Z. Tang, 
Phys Plasmas 22, 113703 (2015)

Electron density n
e
 ~ 1013cm-3

Neutral gas density n
n
 = 2x1019cm-3

Electron temperature T
e
 = 1-5 eV

Ion temperature T
i
 = 1/40 eV

Electron mean free path l
e
 =0.5 μm

Ion mean free path l
i
 =0.125 μm

Typical CAP device parameters

Healthy cells are 
not expected to 
disrupt!

● Expected surface potential: - 4 to - 20 V

● Critical potential with vacuum capacitance: - 270 V

Neglected by plasma 
medicine community!



  

Physical selectivity of CAP 
treatment to cancer cells

Cancerous cells are:

– Less stiff

– More elongated/irregular

● Spindle-shaped cells are 
especially invasive

● Also especially favorable 
for disruption!

Selective electrostatic disruption of cancer cells is possible!

Surface potential: - 4 to - 20 V

Critical potential for a cancer cell:
- 3 to - 18 V



  

Future work

● Verify plasma capacitance by simulation

● Effect of higher order shape and surface 
roughness

● How does the device electric field contribute?

– (Irreversible) electroporation?

● Can deformation lead to failure (such as 
occurs for water droplets)?



  

Conclusions

● Cold atmospheric plasma treatment destroys 
bacteria and kills cancer cells

– Chemical effects are typically implicated in cancer cell 
death

– Plasma charging can also selectively kill cancer cells

● Future work focuses on shape and surface 
roughness effects and the role of device electric 
fields

KW is supported by the DOE CSGF under Grant No. 
DE-FG02-97ER25308



A STOCHASTIC OPTIMIZATION MODEL FOR 
ELECTRIC VEHICLE FAST-CHARGING STATION 

 

FEI WU 
THE OHIO STATE UNIVERSITY 



Agenda 

1.  Motivation 

2.  Stochastic Optimization Model 

3.  Case Study and Analysis 



EV PENETRATION 

Source: InsideEVs(http://insideevs.com/monthly-plug-in-sales-scorecard/) 
 



EV RANGE AND CHARGING STANDARD 



TRANSFORMER LOAD PROFILE WITH EVS 



Charing Effect on Current Transmission System 



Relief Transformer Capacity Constraints 

ü Distributed energy resources 
1.  Photovoltaic solar panels 

2.  Energy storage 

ü Reschedule EV charging load 

1.  EV charging strategies 

2.  Energy storage charging/discharging strategies 

ü Challenges 
1.  Uncertain EV arrival 

2.  Stochastic solar generator output 



2-Stage Stochastic Optimization Model 

Stage 1: Current Problem 
•  Station Status is realized 
•  The optimal solution is 

implemented immediately 

Stage 2: Sample Paths 
•  From the next time unit to 

the end of optimization 
horizon 

•  Based on forecasting: 
•  Solar output 
•  EV arrival 
•  Non-EV load 
•  Electricity price 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. . . 

. . . 

. . . 
Infinite Sample Paths/Scenarios: 
•  Forecast parameter vectors is infinite 

support 



SAA and Sequential Approximation 

ü Sample Average Approximation 

§ original large-scale problem ß a smaller problem with randomly generated 

scenario samples 

ü Sequential Approximation 

§ Use a different sample to evaluate the SAA solution quality 

§ Create optimality gap confidence interval 

§ Decide a sample size of the next iteration 



Case Study 



Operation Performance 



Compare with other heuristic methods 

The minimum time length a EV in the station 

30 mins 40 mins 



Sensitivity analysis 



Questions? 

• References 
q F. Wu and R. Sioshansi, "A Two-Stage Stochastic Optimization Model for 

Scheduling Electric Vehicle Charging Loads to Relieve Distribution-System 
Constraints," submitted to Transportation Research Part B: Methodological. 

• Acknowledgments 
q This materials of this research is based upon work financially supported by the U.S. 

Department of Energy under Award Number DEPI0000012 and by the National 
Science Foundation through Grant Number 1029337. 



  

Pinning Effects on Granular Particles
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Granular Materials

Properties

● Repulsive Short-Range Interaction

● Energy Dissipation

● Unusual Phase State

Applications to Studying Granular 

Materials

● Landslide and Erosion

● Industrial Transport

Interacting with Substrate

images from: http://guernseydonkey.com (top)                      

                     http://www.marshallnews.com (bottom)

http://guernseydonkey.com/
http://www.marshallnews.com/


  

Approach to Simulation
   Initialization 

● System Size:              Particle Diameters 

● Placing Particles on Square Lattice

● Randomly Placing Pinning Sites

Tuning Parameters

● Density of Particles/Packing Fraction 

● Number of Pinning Sites

● Driving Force

60×60

Particle-Diameter System6×6

F⃗D

Φ

Φ=0.785



  

Approach to Simulation
   Initialization 

● System Size:              Particle Diameters 

● Placing Particles on Square Lattice

● Randomly Placing Pinning Sites

Tuning Parameters

● Density of Particles/Packing Fraction 

● Number of Pinning Sites

● Driving Force

60×60

Particle-Diameter System

Driving Force Direction

6×6

F⃗D

Φ

Φ=0.785



  

Simulation Model
Overdamped Langevin Dynamics

η
d R⃗i

dt
=F⃗ i

particle
+ F⃗ i

pinning
+ F⃗ i

drive

F⃗ i

particle
F⃗ j

particle
k

F⃗ i

pinning

R⃗ pinning−R⃗i

Pinning Site

Particle

F⃗ D

Particle-Particle Interaction:

Spring Interaction

Particle-Pinning Interaction:

Harmonic Potential Wells

Driving Force 



  

Jamming VS Flowing at Low Particle Density

● Packing Fraction:

FD=0.15 FD=2.00

Φ=0.3 F⃗D



  

Jamming VS Flowing at High Particle Density
● Packing Fraction:

FD=0.2 FD=2.00

Φ=0.61 F⃗D



  

Phase-Separation at Depinning Phase

● Driving Force:    

Packing  Fraction Packing  Fraction

FD=1.05 F⃗D

Φ=0.3 Φ=0.61



  

Depinning and Clustering Phases

〈V x〉

CL

Average Horizontal Velocity

Largest Cluster Size

FD Driving Force Depinning Phase

Cluster Phase

F pinning=1



  

Super-Diffusion

Diffusion Fit Coefficient:     is defined as       

● Normal Diffusion:

● Super-Diffusion:

● Sub-Diffusion:

α 〈Δ y
2
〉∝t

α

α>1

α<1

Packing  Fraction Φ=0.61

α=1



  

Super-Diffusion

Diffusion Fit Coefficient:     is defined as       

● Normal Diffusion:

● Super-Diffusion:

● Sub-Diffusion:

α 〈Δ y
2
〉∝t

α

α>1

α<1

α=1

Packing  Fraction Φ=0.30



  

Summary
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Diffusion Coefficients under Different 
Particle Densities

0.25 0.30

0.43 0.55

0.61 0.71

● Diffusion Fit Coefficient:          corresponds to normal diffusionα=1 〈Δ y
2
〉∝t





• Nucleation sites for voids
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30 μm 60 μm 100 μm 200 μm



Boundaries excluding low angle and Σ3 parallel to shock 
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GOAL: Create a powerful tool to examine large 
data sets quickly  
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