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Course Information (1)

NE 462 - Monte Carlo Techniques for Nuclear Systems - Description

Theory: Solving particle transport problems with the Monte Carlo method is simple - just simulate the
particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the
theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte
Carlo simulation methods, covering the transport equation, random sampling, computational geometry,
collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality
simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio
calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and
Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR
modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion
calculations, parallel calculations, and parameter studies.

Practice: This portion of the class focuses on using MCNP to perform criticality calculations for reactor
physics and criticality safety applications. It is an intermediate level class, intended for those with at least
some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting
both geometry and results, and understanding the code output. The class includes lectures & hands-on
computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review
LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at http://
mcnp.lanl.gov under "Reference Collection") prior to the class.

Computing: No Monte Carlo class can be complete without having students write their own simple
Monte Carlo routines for basic random sampling, use of the random number generator, and simplified
particle transport simulation.
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Course Information (2)

NE 462 - Monte Carlo Techniques for Nuclear Systems - Description

* Three Credit Hours; One 170-minute lecture per week.

« Textbook: None
Supplemental materials: a DVD provided to all students, containing:
Lecture notes for 17 lectures on the theory of Monte Carlo methods
Lecture notes for 19 lectures on the practical use of Monte Carlo methods
Lecture notes for 16 lectures on computing methods related to Monte Carlo
186 example problems for practical use of MCNP

737 technical reports on Monte Carlo methods, including tutorials, a complete introductory book,
technical workshops, and references

Supplemental materials: MCNP6 Monte Carlo code package. Students are required to obtain this (at
no cost) from the US DOE computer code center, RSICC. The code is used for the practical part of
the course in learning to apply Monte Carlo methods to nuclear engineering problems.

» Specific Course Information

Catalog description: Monte Carlo methods for nuclear criticality and reactor analysis and radiation
shielding calculation using production Monte Carlo codes, understand basics of probability and
statistics and of particle transport in the context of Monte Carlo methods.

Corequisite: NE 410.
Restriction: admitted to School of Engineering.

Required course in the program
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Course Information (3)

NE 462 - Monte Carlo Techniques for Nuclear Systems - Specific Goals

« Students should develop a basic understanding of Monte Carlo simulation techniques and be
able to explain and discuss the following topics:

— Random number generation and random sampling methods used in the Monte Carlo simulation of radiation
transport

— Basic statistical concepts including mean, variance, probability density function, cumulative distribution function
— 3-dimensional computational geometry used to represent physical systems

— Simulation of the basics physics interactions for particle collisions with the nuclides in problem materials

— Obtaining engineering results from tallies performed during the Monte Carlo simulation

« Students should develop a basic understanding of how Monte Carlo methods are applied to
realistic nuclear systems and be able to explain and discuss the following topics:
— How Monte Carlo methods can be used to determine basic physical quantities including scalar flux, nuclear cross-
sections, material reaction rates with radiation

— How Monte Carlo methods can simulate basic aspects of nuclear systems, including the production of neutrons
from fission, the slowing down process due to collisions with moderator material, and the capture and fission of
neutrons in the thermal and resonance energy ranges

— General principles for applying Monte Carlo methods to realistic models of nuclear reactor systems and criticality
safety analyses

» Students should develop a basic understanding of how Monte Carlo methods are implemented
into computer codes:

— Demonstrate the ability to write simple Monte Carlo programs using a programming language they know (e.g.,
Matlab, C++, Fortran, etc.)

— Demonstrate the ability to perform realistic Monte Carlo calculations using an industry-standard Monte Carlo code
(e.g., MCNP6)
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Course Information (4)

LA-UR-16-

NE 462 - Monte Carlo Techniques for Nuclear Systems - Topics to be covered

* Overview of Monte Carlo methods

* Theory:
— Basics - Nuclear Engineering & Monte Carlo
— Random Numbers & Random Sampling
— Computational Geometry
— Collision Physics
— Tallies & Statistics
— Eigenvalue Calculations — Parts |, Il
— Variance Reduction

* Practical:
— Introduction to MCNP
— MCNP Basics
— Criticality Calculations
— Advanced Geometry
— Sources
— Tallies
— Physics & Nuclear Data
— Point Kinetics Parameters
— Sensitivity-Uncertainty Analysis

* General:
— Eigenvalue Calculations — Part Il
— Parallel Monte Carlo
— Parameter Studies
— Doppler Broadening
— Monte Carlo Depletion

7
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Preliminaries (1)

LA-UR-16-

 Monte Carlo Techniques for Nuclear Systems

— Introduction to Monte Carlo methods for particle transport simulation
— Limited to neutrons & photons
— Roughly 2/3 theory & 1/3 practical

Understand basic MC simulation techniques
— Random number generation, random sampling

— 3D computational geometry

— Basic physics simulation & collisions

— Tallies

Application to nuclear systems
— Flux, cross-sections, reaction rates
— Simple models
— Reactor models
— Criticality safety

Computing
— Simple DIY MC programs
— Using MCNP for realistic models

8
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Preliminaries (2)

Useful references & websites

MCNP6 User Manual, part of MCNPG6 distribution
MCNPS5 Theory Manual (Volume 1), on class DVD & MCNP website
Carter & Cashwell book, on class DVD & MCNP website

MCNP website - mcnp.lanl.gov
RSICC website - rsicc.ornl.gov
For ordering MCNP, SCALE, .....
MCNP Forum email-list - see MCNP website

National Nuclear Data Center, Brookhaven National Lab. - nndc.bnl.gov
ENDF nuclear cross-sections & plotting
Chart of the Nuclides

Wikipedia ??? Maybe for class, not for work or papers

Note
— In class or at work, you should always cite the sources for any physical data you

use - cross-sections (ENDF/B-VI, -VII.0, VIl.1, ...), masses, isotopic abundances,
etc.

9
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Outline

LA-UR-16-

Introduction

Review of Nuclear Engineering basics
— Flux

— Cross-sections

— Reaction rates

Monte Carlo — intro

— Linear Boltzmann Transport Equation
— Monte Carlo Simulation

— Criticality Calculations

Review of statistics

— Basic Random Sampling

— Probability Density (PDF)

— Cumulative Distribution (CDF)
— Statistics

1
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Introduction

« John Von Neumann invented scientific computing in the 1940s
— Stored programs, "software"
— Algorithms & flowcharts
— Assisted with hardware design as well
— "Ordinary" computers today are called "Von Neumann machines”

« Von Neumann invented Monte Carlo methods for particle transport
in the 1940s (with Ulam, Fermi, Metropolis, & others at LANL)

— Highly accurate - no essential approximations
— Expensive - typically the "method of last resort”

— First MC code for ENIAC in 1947

— Monte Carlo codes for particle transport have been proven to work
effectively on all types of computer architectures:

SIMD, MIMD, vector, parallel, supercomputers, clusters,
workstations, PCs, netbooks, tablets,
CPUs, GPUs, MICs, ...
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Introduction

 Two basic ways to approach the use of Monte Carlo methods for
solving the transport equation:

— Mathematical technique for numerical integration
— Computer simulation of a physical process

=» Each is "correct”

— Mathematical approach is useful for:

Importance sampling, convergence, variance reduction,
random sampling techniques, eigenvalue calculation schemes, .....

— Simulation approach is useful for:
collision physics, tracking, tallying, .....

 Monte Carlo methods solve integral problems, so consider the
integral form of the Boltzmann equation
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Introduction

LA-UR-16-

Simple Monte Carlo Example

1
Evaluate G= J g(x)dx, with g(x)=+1-x?
0

 Mathematical approach:
For k=1, ...,N: choose X, randomly in (0,1)

N N
G~ §2.9%) = 42 1-%
k=1

k=1

- Simulation approach, "darts game":
For k=1, ..., N:
if X°+y> <1, tally a"hit"

number of hits
N

G =

choose X, Y, randomly in (0,1),

g(x)

+ hit

+ I

niss

14
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Review of NE Basics

* Flux
O=nv
— n = particle density, particles/cm3 function of position
— v = particle speed, cm/sec
— ® = scalar flux, particles/cm?2-sec function of position & energy

(but not direction)
— Most textbooks:
Scalar flux is the total distance traveled by all particles, per cm3, per sec

- Thought experiment:
— Suppose we could watch all particles as they fly around & have collisions
- Keep track of all the portions of flight distances
/ within a region G, for all the particles, for a second
G  The total distance traveled divided by the volume
, & 1 second is the scalar flux in the region
\

x = This is how MC estimates the flux in a region.
This is the basis for a “pathlength estimator”
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Mean Free Path & Macroscopic Cross-section

« Mean Free Path, A
— A = average distance to collision

- Macroscopic Cross-section, X

> =1/A = No

— Probability of interaction with a material, per unit distance traveled
No-m _N,-p
AV A
— 0 = microscopic cross-section, target area per nuclide
units: barns, 1 barn =1024cm?
— 2 = [nuclides/barn-cm] * [barns/nuclide] = 1/cm

— N = nuclide density, atoms/barn-cm, N =

— For a mixture of nuclides, add X's for each nuclide

U02 _  AfU235 U235 U238 5 U238
2 N""7"o + N

0165016
’ N

_I_

+...

16
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Macroscopic Cross-sections

- Material Cross-section nuclides
in material

] t ' i

— Add No for each nuclide, 20 = Z N'-o.

for a particular reaction x
(x: T,A,F,S,C,N-2N, .....)

¥0% = XU + X0 + X2+

— NU235(7;]235 + NU2386;]238 + N016G?16 +

J
— ZT
mat
ZT

— Given that a collision occurs in a material, mat
the probability that it will involve nuclide J is: pJ

= This is how MC selects a particular nuclide,
given that a collision occurs in a material
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Macroscopic Cross-sections

+ If a neutron collision occurs in UO, fuel, find the probability that
the collision is with U23>, U233 or O16

ZJT‘uel — NU23SG;]235 + NU238G;]238 + N016G;)16 — Z;]BS + ZLT]238 + 2216

Probability that collison is with

ZU235 ZU238 2016
U23s: P="L_, U238: P=——", 016: P=_—,
2 27 2y

« If a neutron collision occurs in UO, fuel, find the probability that
the neutron is absorbed

Z]Ztel — NU23502]235 + NU238(7§238 + N016Ggl6 — 22235 + 23238 + 2216
Z{;uel — NU23SG§]235 + NU23SG§]238 + N016GSOI6 — 25235 + 25238 + 2316
quel — quel + Zﬁwl

T A S

Probability that neutron is

quel quel
Absorbed: P, = ——, Scattered: P,=——, P, +P =1
Zﬁ‘el Z fuel
T T
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Microscopic Cross-sections

- Microscopic Cross-section, o

— o = Target area of single nuclide for an interaction

— Units: barns 1 barn = 1024 cm?
— Examples: 0,U2%5, ogh, Opn.onU238 \Isotope
— Microscopic cross-section data:

+ Measured in experiments Type of reaction

« Determined from theory (eg, quantum mechanics)

« Experiment + theory + judgement used by CSWEG to produce ENDF/B
datasets

- Absorption vs Capture
— For NE’ s and this class: O, = Oc + Of
O; = Oc +0 + Og

O, +0g
— Absorption = fission + capture
— Physicists often interchange “capture” & “absorption”

19
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U235 Fission Cross-section, oY235
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Nuclear Data - Where to Find It

« Use the MCNP built-in cross-section plotter
— Generally, MCNP uses latest ENDF/B-VII.0 nuclear data
— Can plot any isotope & reaction (if available) in a problem
— Will be covered in Practical Lecture on Nuclear Data

« LANL T-2 Nuclear Information Service

— t2.lanl.gov
— Nuclear Data Viewer & ENDF data

- National Nuclear Data Center, Brookhaven National Lab.
— nndc.bnl.gov - has ENDF data & plotting utilities
— Isotopic abundances - AMDC
— Chart of the Nuclides

21
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Microscopic Cross-sections

- Thought experiments:

— Given that a collision occurs with nuclide J,
what is the probability of the incoming particle surviving the collision?

* Notethat o) = o,’ +0¢’ Absorption = particle disappears
Scatter = particle survives
 Probability of surviving
the collision = og'/ oy

— Given that a collision occurs with nuclide J,
what is the probability of fission?

* Notethat o) =0 + o) + og’

- Probability of fission = o’/ oy’

= In MC codes, “given that a collision occurs with nuclide J”,
probabilities based on ratios of partial o’ s for nuclide J
are used in sampling what reaction takes place with that nuclide

22
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Beam Attenuation

- For a beam of particles
- ¥(r, E, Q) = angular flux at r, direction Q ¥,
 Directional quantity EE——
+ Integrate over all Q to get scalar flux @

— If a beam of particles is directed at a
purely-absorbing infinite slab,
what is the beam strength at penetration x? -

y) =y, e

— Probability of traveling distance x without collisionis €

— Probability of colliding at distance x is

[prob of colliding at x per-unit-dist] * [prob of reaching x w/o collision]

f(x) = T,

= MC codes use this relation to sample the distance to the next collision

23
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Reaction Rates

- Most of the time, nuclear engineers don’t care about flux.
The important & useful quantities desired include:

absorption in a region, fission in a region, heating in a region,
absorption in U23% U238 py239 B10 Hf Xel3 Zr....., etc.

 Reaction rates

— Collision rate = X0
— Fission rate = pIN ()
— Neutron production rate = VO
— Absorption rate in U3 = X85 @

— Reaction rate = [reactions / cm] * [total cm traveled / cm3sec]
= reactions / cm3sec
— To get total reactions/sec for a region, integrate over the region volume

— For reaction rates in a material, use X for the material
— For reaction rates for a nuclide, use X for the nuclide (in the material)

24
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Another Flux Estimator

- Thought experiment:
— Suppose we could watch all particles as they fly around & have collisions

- Keep track of all the collisions within a region G,
for all the particles, for a second

! - [collision rate] = Z;®

! - Solve for flux: ® = [collision rate] / =

= MC uses this to estimate the flux in a region.
This is the basis for a “collision estimator”

— We have seen that MC can estimate the flux in a region in several ways:
+ Pathlength estimator - [total distance traveled in region] / (Volume x time)
+ Collision estimator - [total collisions in region] / X; / (Volume x time)

*  Which is correct? Both

+  Which is better? Depends on physics & geometry of problem

+ Are there other flux estimators? Yes (flux at point, flux on surface, .....)
+  Which one should be used? If available, all (statistically combined)

« MCNP only provides pathlength flux estimators for a region.
Some MC codes only provide collision estimators; some provide both.



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16-

Monte Carlo - Introduction

- Goal: Simulate nature,

particles moving through physical objects

Flight

Random sampling using
X & exponential PDF:
+ Free-flight distance

to next collision, s

Ray-tracing in 3D
computational geometry

Collision

Simulate absorption:
- absorb, or
- reduce weight

Random sampling
using nuclear data:

- Collision isotope

- Reaction type

- Exit E' & Q'

- Secondary particles

During analysis of both flights & collisions,
tally information about distances, collisions, etc.
to use later in statistical analysis for results

26
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Monte Carlo Simulation - Assumptions

Assume:
— Neutrons & photons are particles, not waves
— Particles move in a straight line between collisions (neutrons, photons)
— Collisions occur instantaneously, at a point in space

— Particle speeds are small enough to neglect relativistic effects
— Particle speeds are high enough to neglect quantum effects

— Particle collisions do not change the properties of a material
(ie, no feedback, no material heating, no depletion)

— Material properties are fixed for the duration of the simulation
(geometry, densities, temperatures, material compositions, .....)

Why?
— Want to solve the linear Boltzmann transport equation
— Want to apply the superposition principle
— Want the Central Limit Theorem to apply for computing statistics
- Statisticians love the term “IID” - Independent, Identically Distributed

(Any or all of the above assumptions can be relaxed, with careful analysis & extra computing cost.)
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Linear Boltzmann Transport Equation

- Time-dependent linear Boltzmann transport equation for neutrons,

with prompt fission source & external source
External source Scattering

JHEER) _ QREQY + [[WREQDIFE S EQ &) dE
Vv
Multiplication
X(F,E) r F’ Y 7 ’
v L Ve (L)W E QY )Y dE
Leakage Collisions
_ [Q.V + ZT(F,E)]-w(F,E,Q,t)
1aW(r’aE’Q,t) =Q+ [S+Mly - [L+Tlvy
Y t Gains Losses

- This equation can be solved directly by Monte Carlo, assuming:

— Each neutron history is an lID trial (independent, identically
distributed)

— All neutrons must see same probability densities in all of phase space
— Usual method: geometry & materials fixed over solution interval At
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Time-dependent Diffusion

 Monte Carlo codes solve the transport equation

* For comparison, the multigroup diffusion equation is an
approximation used by many codes & taught to undergrads:

External source Scattering Multiplication
1 9@, (T, ) _ _ (F) _ _
1 9%6(1,Y = Qq(r,t) + Ezs,e'ee(r)'q)ef(r,t) ¢ fe ZVZF,G’(r)'(I)G’(r’t)
V at G/¢G 4TC G’
Absorption Leakage
—[ Zp6(f) = V-DgV |- @4(T,1)
18@;:’” - Qg+ [StM]-® — [L+T]-®
v Gains Losses

 Many approximations - angle, energy, D, .....

29
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Monte Carlo & Transport Equation

* Derive integral equation, in kernel form
— Start with integro-differential equation

Use integrating fact t - 5
— Use Integrating ractor exp —IZT(F—RQ,E)dR’}, where RQ=7r—F

— Define

— A

E=F-Q
Collision density: Y(F,E)=X,(7,E)w(7,E)

Transport kernel: T(F —7F, E)= ZT(?,E)-exp{— J. 2. (r '+ 5Q E)ds}
0

. . X(F,E—E) x(FEWVZ.F.E)
isi - C(E'—>E, 7)== + E
Collision kernel: ( ) s G.E) s (FLE)

— Then
Y .E)= | U‘P( E")-C(E' = E.FYdE’ + O(F *')]T(?'a?,z?j)d?'

D.C. Irving, "The Adjoint Boltzmann Equation and Its Simulation by Monte Carlo™

Reference:
Nuclear Engineering & Design 15, 273-292 (1971)
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Monte Carlo & Transport Equation

Basis for the Monte Carlo Solution Method
¥ .E)= | [ [w( EN-C(E - EF)dE’ + Q(?’,E’)} T — 7, E)dF

Let p=(f,E) and R(p’ = p)=C(E’ - E,F) - T(* — T,E)
Expand ¥ into components having 0,1,2,....,k collisions

¥(p) = i‘Pk(p), with  ¥,(p) = [Q(F,E)- T(¥' — F.E)d¥’

By definition,
¥, (p) = [ ¥, 4(p")-R(p’ = p)dp’

Markovian: collision k depends only on the results of collision k-1,
and not on any prior collisions k-2, k-3, ...
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Monte Carlo & Transport Equation

Histories
 After repeated substitution for ¥,
¥, (p) = [ ¥, ,(p)-R(p’ — p)dp’
= [...] ¥5(po)-R(P, = P,)-R(p; = P,)---R(P,_, = P)dp,-..dp,

* A "history” is a sequence of states (py, P4; P2, P3y ----- )
— P2

P P,
P, b P3 History 1

\/ History 2

P1 oF P4

* For estimates in a given region, tally the occurrences for
each collision of each "history" within a region

32
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Monte Carlo & Transport Equation

P (p)= [ ¥, (po)-R(P, = P,)-R(P; = P,)-. RO, = P)AP,-.dp,

Monte Carlo approach:

* Generate a sequence of states (p,, p4; P2, P3; -----) [i-€., @ history]
by:
— Randomly sample from PDF for source: Wo(Po)
— Randomly sample from PDF for k' transition: R(p,.1—p})

* Generate estimates of results by averaging over states for M
histories:

A = [A(p)-¥(p)dp = ﬁE(iA(ka))
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Fixed-source Monte Carlo Calculation

Random Walk for a particle

Track through geometry, Collision physics analysis,

_ A ) Secondary
— select collision site randomly ) Select new E,Q randomly - -

- tallies - tallies Particles

t |

Particle Histories

History 1 Random R%\r;dlcia(m I—P R%\r;dom |->
S Walk a alk

Source Random
- select r,E,Q Walk Random Random
Walk Walk
History 2 Random

S I_’ Random Walk Random |_>
- ;aligc(::terE Q Walk Random Random |/v Walk
— Walk |" Walk

History 3 Random Jemp| Random Ly,

Walk Walk

Source Random

- select 1,E, Q Walk Random Random [l Random |-
Walk Walk Walk

T




Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16-

K. Eigenvalue Equation

For problems with fission multiplication, another approach is to create a
static eigenvalue problem from the time-dependent transport equation
(the asymptotic or steady-state solution)

Introduce K, a scaling factor on the multiplication (v)

Assume:

1. Fixed geometry & materials

2. No external source: Q(r,E,Q,t)=0
3. d¥/ot =0: v = v/Ky

- Setting J¥/0t =0 and introducing the K ; eigenvalue gives

IL+T]¥, (FEQ) = S+Ki|v| Y,

eff

— Steady-state equation, a static eigenvalue problem for K ; and ‘¥,
- K, = effective multiplication factor
— Critical: K=1, subcritical: k<1, supercritical: k>1

35
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K.+ Eigenvalue Equation

Leakage Collisions Scatterlng

[QV + 2.(FE) | w( = [Jw(f.E.Q)Z(FE >EQ Q)dYdE

Multiplication

i k1 X(r.E) [[ Ve (FE )y E,Q)d dE
eff

[L+T]®, =[S + 1/kM] W,

 The factor 1/k changes the relative level of the fission source, to
balance the equation & permit a steady-state solution

 Criticality
Supercritical: K> 1
Critical: Keis = 1

Subcritical: Koir < 1
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Monte Carlo Eigenvalue calculation

LA-UR-16-

Initial Cycle 1 Cycle 2 Cycle3 : Cycled4 :

1 . 2 - 4 -

Guess Kl 1 K Keg® i Kes™ :

: : Random : Random ,L’

: | Rancom Walk ‘ P wak |
Source |_> Random 7 - Rando :

- select r,E,Q . Walk u m

: ﬁ: Ao Walk | :

: : Random | - -

: Walk : : Random .

Source lesp Random T: L_____1: bﬂl Walk =

- select 1,E,Q . Walk = Random | = .l Random . -
: : walk | : Walk | :

Random _|_’l Random _’_

: : Walk . Walk .

Source : Random : : :

- select r,E,Q . Walk . Random R?’:'Ildlci)(m Random I .

: Pl walk | a Pl owalk |

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
Source Source Source Source Source

Iterate (cycle) until converged, then more to accumulate tallies
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K.+ Eigenvalue Equation

« A common misinterpretation: K. >1 means “power is rising”
— Not true !

— The factor 1/K_4 in the transport equation is the eigenvalue required to
make the equation balance for a steady-state solution (stationary
eigenfunction)

— Reactor designers & analysts instead think of reactivity:
k—1
p =
K
— Think of reactivity as a “potential” for power to rise or fall

« If it is not cancelled out by some control, then power would rise.

* In practice, positive reactivity is cancelled out by negative reactivity
from control rods, soluble boron, fission product poisoning,
temperature changes, etc.

— The job of reactor designers is:
« Calculate the reactivity for a specific reactor configuration.

+ If the reactivity is positive, some changes need to be made to
introduce negative reactivity. Conversely for negative reactivity.
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- Probability Density Function & Random Sampling
- Continuous PDF & CDF
- Discrete PDF & CDF

- Mean, Standard Deviation, Standard Deviation of the Mean
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Introduction

Probability ?

What are the odds of .....

- Being audited by the IRS this year 100 to 1
- Losing your luggage on a U.S. flight 176 to 1
- Being dealt 4 aces on an opening poker hand 4,164 to 1
- Being struck by lightning in your lifetime 9,100 to 1
- Being hit by a baseball at a major league game 300,000 to 1
- Drowning in your bathtub this year 685,000 to 1
- Winning the Powerball jackpot with 1 ticket 292,201,338 to 1

Yet we all still keep buying Powerball tickets, but don’ t worry too much about lightning...
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Simple Random Sampling (1)

- Suppose we have 3 items, A, B, and C
— P, = probability of randomly picking item A = 25% = 0.25
— Pg = probability of randomly picking item B = 50% = 0.50
— P, = probability of randomly picking item C = 25% = 0.25

I P.=.25
.75

- Random sampling - pick Aor Bor C

Generate a random number R

in the range (0,1) .25
I P,=.25
If R < .25 - select A 0
Elself.25 <R < .75 =» select B
Otherwise =» select C T
Cumulative

Probabilities
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Simple Random Sampling (2)

LA-UR-16-

- Random sampling - pick Aor BorC
— P, = probability of randomly picking item A = 25% = 0.25
— Pg = probability of randomly picking item B = 50% = 0.50
— P, = probability of randomly picking item C = 25% = 0.25

.50
.25 1 T
0
A B C
1.0
Generate a
.75

random number R

in the range (0,1), | .50
Pick A,B,orC 25 |
0

Discrete
Probabilities

42

Cumulative
Probabilities
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Probability Density Functions
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- Continuous Probability Density
f(x) = probability density function (PDF)

f(x) >0

b
Probability{a <x <b} = [f(x)dx

Normalization: jf(x)dx =1

-0

- Discrete Probability Density

{f. }, k=1..,N, where f =1(x,)
f,=0
Probability{ x=x,} = f,

N
Normalization: » f, =1
k=1

f(x)

f(x)

X1

X3

43
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Random Sampling

The key to Monte Carlo methods is the notion of random sampling.

- The problem can be stated this way: )
Given a probability density, f(x), produce a sequence of X's.
The X's should be distributed in the same manner as f(x).

f(x)

X—>

- Use of random sampling distinguishes Monte Carlo from other methods

- When Monte Carlo is used to solve the Boltzmann transport equation:

— Random sampling models the outcome of physical events
(e.g., neutron collisions, fission process, sources, ..... )

— Computational geometry models the arrangement of materials
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Continuous PDF & CDF

* Probability Density Function (PDF)

= probability density function (PDF)
f(x)>0 t(x)

b
Probability{a <x <b} = [f(x)dx

X—

[e o]

Normalization: jf(x)dx =1

-0

- Cumulative Distribution Function (CDF)

F(x) =] f(x")dx’ 4

0< F&) <1

dF(x) _ F (X)A
dx

F(-)=0,  F(eo)=1 0
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Direct Sampling

Direct solution of X =F(&)

Solve for X &= f(x)dx

Sampling procedure
— Generate &
— Determine X suchthat F(x)=¢&

> Vo4

X—

Advantages
— Straightforward mathematics & coding

— "High-level" approach

Disadvantages
— Often involves complicated functions
— In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)
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Rejection Sampling

« Von Neumann:
N e it seems objectionable to compute a
transcendental function of a random number. "

Select a bounding function, g(x), such that
« c-g(x) >f(x) forallx
* g(x) is an easy-to-sample PDF

cg (X)

AANANANNANANNANAANN

?
>
>

Sampling Procedure:

- sample x' from g(x): x' < G1(E,) * reject

f(x)

«test: &, - cg(x') <f (x)

if true, acceptx', done
if false, reject x', try again X—

Advantages
— Simple computer operations

Disadvantages
— “Low-level” approach, sometimes hard to understand



- Given a set of random samples, X, X,, ..., Xy

Monte Carlo Techniques for Nuclear Systems — Theory Lectures

Mean & Standard Deviation

LA-UR-16-

B 1<

— Mean X = = 2%

N <

— Population variance & standard deviation

N N

2
1 1 1 & _ 1
o’ = N;_lx?_(ﬁ E x,-j = N;:{x? - x’ c = \/ﬁ ]E:lx]'

J=1

— Variance & standard deviation of the mean

2 o 1 1 < 2 =2
o. = — 0. = : X:—X
! N * JN \/NJE; !

Monte Carlo codes calculate mean values for tallies,
& report the standard deviation of the mean

In the definitions above, some of the “N” terms should really be “N-1".
MCNP & many other codes ignore that, since N is very large.
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Introduction

The key to Monte Carlo methods is the notion of random sampling.

« The problem can be stated this way:
Given a probability density, f(x), produce a sequence of X's.
The X's should be distributed in the same manner as f(x).

f(x)

X—

 Random sampling distinguishes Monte Carlo from other methods

 When Monte Carlo is used to solve the Boltzmann transport equation:

— Random sampling models the outcome of physical events
(e.g., neutron collisions, fission process, sources, .....)

— Computational geometry models the arrangement of materials
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Monte Carlo & Random Sampling

Categories of random sampling

Random number generator - uniform PDF on (0,1)
Sampling from analytic PDFs - normal, exponential, Maxwellian, ...
Sampling from tabulated PDFs - angular PDFs, spectrum, ...

For Monte Carlo codes...

Random numbers, §, are produced by the RN generator on (0,1)

Non-uniform random variates are produced from the €’ s by:
— Direct inversion

— Rejection methods

— Transformations

— Composition (mixtures)

— Sums, products, ratios, ...

— Table lookup + interpolation

— Lots (!) of other tricks

Typically < 5-10% of total CPU time
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Random Number Generators

"Randomness is a negative property; it is the absence of any pattern.”
Richard W. Hamming, 1991

Numbers are not random; a sequence of numbers can be.

Truly random sequences are generally not desired on a computer.

RNG

— Function which generates a sequence of numbers which appear to
have been randomly sampled from a uniform distribution on (0,1)

— Repeatable (deterministic)
— Pass statistical tests for randomness 1
f(x)

— Typical usage in codes: r = rang()
— Also called "pseudo-random number generators™ 0 1

All other random sampling is performed using this basic RNG

Note that the probability of something occurring also
varies between 0 & 1 .....
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Random Number Generators

Most production-level Monte Carlo codes for particle transport use
linear congruential random number generators:

Si,q4 = S;,°g + ¢ mod2m

S,=seed, g = multiplier, c = adder, 2™ = modulus

- Simple, fast, robust, over 50 years of heavy-duty use
 Theory is well-understood (e.g., DE Knuth, Vol. 2, 177 pages)

* Not the "best" generators, but good enough - RN's are used in
unpredictable ways during particle simulation

 To achieve reproducibility for vector or parallel calculation, there
must be a fast, direct method for skipping ahead (or back) in the
random sequence
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Simple RNG - Example #1

Syy1 = [ g-S, + C ] mod p, with g=47, C=1, S,=1, P=100

s(0) =1

s(1l) = (47x1 + 1) mod 100 = 48 mod 100 = 48
s( 2) = (47x48 + 1) mod 100 = 2257 mod 100 = 57
s( 3) = (47x57 + 1) mod 100 = 2680 mod 100 = 80
s( 4) = (47x80 + 1) mod 100 = 3761 mod 100 = 61
s( 5) = (47x61 + 1) mod 100 = 2868 mod 100 = 68
s( 6) = (47x68 + 1) mod 100 = 3197 mod 100 = 97
s(7) = (47x97 + 1) mod 100 = 4560 mod 100 = 60
s( 8) = (47x60 + 1) mod 100 = 2821 mod 100 = 21
s( 9) = (47x21 + 1) mod 100 = 988 mod 100 = 88
s(10) = (47x88 + 1) mod 100 = 4137 mod 100 = 37
s(ll) = (47x37 + 1) mod 100 = 1740 mod 100 = 40
s(12) = (47x40 + 1) mod 100 = 1881 mod 100 = 81
s(13) = (47x81 + 1) mod 100 = 3808 mod 100 = 8
s(1l4) = (47x8 + 1) mod 100 = 377 mod 100 = 77
s(15) = (47x77 + 1) mod 100 = 3620 mod 100 = 20
s(16) = (47x20 + 1) mod 100 = 941 mod 100 = 41
s(17) = (47x41 + 1) mod 100 = 1928 mod 100 = 28
s(18) = (47x28 + 1) mod 100 = 1317 mod 100 = 17
s(19) = (47x17 + 1) mod 100 = 800 mod 100 = O
s(20) = (47x0 + 1) mod 100 = 1l mod 100 = 1
s(21) = (47x1 + 1) mod 100 = 48 mod 100 = 48
s(22) = (47x48 + 1) mod 100 = 2257 mod 100 = 57



Example #2:

Example #3:

0)
1)
2)
3)
1)
5)
6)

0)
1)
2)
3}
4)

Monte Carlo Techniques for Nuclear Systems — Theory Lectures

Simple RNG - Examples #2 & #3

LA-UR-16-

(5x1
(5x6
(5x31
(5x56
(5x81
(5x6

(5x1 )
(5x5 )
(5x25)
(5x25)

+ 4+ + + + +

Sg41 = [ 9S4+ C ] mod p,
with g=5, c=1, S,=1, p=100

1)
1)
1)
1)
1)
1)

Sk+1

mod
mod
mod
mod
mod
mod

mod 100
mod 100
mod 100
mod 100

100
100
100
100
100
100

6 mod
31 mod
156 mod
281 mod
406 mod
31 mod

100
100
100
100
100
100

6
31
56
81

6
31

[ g-S, + C ] mod p,

with g=5, c=0, S,=1, p=100

5
25
125
125

mod 100
mod 100
mod 100
mod 100

5
25
25
25
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Typical Linear Congruential RNGs

* Multiplicative congruential method - Lehmer

S, = gS5,,+c mod 2™,

& =S, /2m,
« Typical parameters

RACER (KAPL)
RCP (BAPL)
MORSE (ORNL)
VIM (ANL)
RANF (CRAY)
G. Marsaglia
MCNP6 (default)
MCNP6 (opt)

247
248
247
248
248
232
248
263

Period
245
248
245
246
246
232
246
263

0 < S, < 2™, integer

0 =g <1, real

g C
84,000,335,758,957 0
2%9+1 59,482,192,516,946
515 0
519 0
44,485,709,377,909 0
69069 1
519 0

(6 options) 1 or0
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MCNPS5S & MCNP6 RNG

MCNP5 & MCNP6 Linear congruential generator (LCG)
S,;1=9S, +c mod 2™

— See Knuth for rules for selecting g,c,m so that period is maximized & correlation
minimized

— 7 different LCGs are available -- chosen based on the spectral test, Knuth's
tests, & Marsaglia's DIEHARD tests

— LCG(g,c,2m):
« Traditional MCNP, period = 246 = 7x1014
— LCG( 5, 0, 248)
« L'Ecuyer 63-bit Mixed LCGs, period = 263 = 9x1018

— LCG(9219741426499971445, 1, 263)
— LCG(2806196910506780709, 1, 263)
— LCG(3249286849523012805, 1, 263)
« L'Ecuyer 63-bit Multiplicative LCGs, period =21 =2x1018
— LCG(3512401965023503517, 0, 263)
— LCG(2444805353187672469, 0, 263)
— LCG( 1987591058829310733, 0, 263)
[L” Ecuyer, Math. Comp., 68, 249-260 (1999)]
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Using RNGs in Particle Transport MC Codes

* Naive use, in many older codes & student codes

® > o >0 >
RNs for RNs for RNs for
particle 1 particle 2 particle 3

— Problem: Can't start Particle-2 until Particle-1 is finished, etc.
Can't do parallel processing of different particles

« MCNP, VIM, RACER, MC21, & many other production codes

— Partition RN sequence into equal-length subsequences, one for each
particle

> » »
P» N » ¥« »

[ > C— ° >
RNs for RNs for RNs for
particle 1 particle 2 particle 3

— Can process all particles in parallel
— Length of each subsequence is called the stride
— Must have a fast way to skip-ahead in the RN sequence
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Using RNGs in Particle Transport MC Codes

LA-UR-16-

 Histories vs particles

— With splitting &/or secondary particle creation,
the number of particles in a given history is
not known in advance

— Need to partition RN sequence by history,
not by particle

©
oe ¢\ c’ - P ‘0 ' ’ » ¢u
0% gotes® (\'3’ oo 0{\"' e%% 06 o s
, , , — — _>_>_>

< - <& N & x
<€ >» X 7> X >

@ > | C >
RNs for RNs for RNs for
history 1 history 2 history 3

— With this scheme, can process histories in parallel,
but not particles in same history

— Must have a predictable scheme for banking/unbanking particles in a
given history (e.g., LIFO)
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Random Sampling

"Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin."

John Von Neuman, 1951
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Introduction

Probability ?

What are the odds of .....

- Being audited by the IRS this year 100 to 1
* Losing your luggage on a U.S. flight 176 to 1
« Being dealt 4 aces on an opening poker hand 4164 to 1
* Being struck by lightning in your lifetime 9,100 to 1
« Being hit by a baseball at a major league game 300,000 to 1
* Drowning in your bathtub this year 685,000 to 1
 Winning the Powerball jackpot with 1 ticket 292,201,338 to 1

Yet we all still keep buying Powerball tickets, but don’ t worry too much about
lightning...



Simple Random Sampling (1)

 Suppose we have 2 items, A and B

Monte Carlo Techniques for Nuclear Systems — Theory Lectures

LA-UR-16-

— P, = probability of randomly picking item A = 25% = 0.25
— Pg = probability of randomly picking item B = 75% = 0.75

« Random sampling - pick A or B

Generate a random number R

in the range (0,1)

If R < .25=

Otherwise

->

select A
select B

1.0

25

)

1

Cumulative
Probabilities
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Simple Random Sampling (2)
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 Suppose we have 3 items, A, B, and C

— P, = probability of randomly picking item A = 25% = 0.25
— Pg = probability of randomly picking item B = 50% = 0.50
— P = probability of randomly picking item C = 25% = 0.25

Random sampling - pick AorBorC

Generate a random number R
in the range (0,1)

If R < .25 - select A
Else If 25<R < .75 - select B
Otherwise - select C

1.0

A5

.25

0

1

Cumulative
Probabilities
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Simple Random Sampling (3)
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« Random sampling - pick AorBorC
— P, = probability of randomly picking item A = 25% = 0.25
— Pg = probability of randomly picking item B = 50% = 0.50
— P = probability of randomly picking item C = 25% = 0.25

Generate a
random number R

in the range (0,1), |—

Pick A, B, or C

.00
.25

Discrete
Probabilities

0

1.0

>ﬁ

oy,

O

75

.50

25 |
0

Cumulative
Probabilities
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Probability Density Functions
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« Continuous Probability Density

f(x) = probability density function (PDF) f(%)
f(x)>0

b
Probability{a < x <b} = [f(x)dx

(o]

Normalization: [ f(x)dx = 1

-0

* Discrete Probability Density

{f. }, k=1..,N, where f_=1(x,)
f,=0
Probability{ x=x,} = f,

N

Normalization: ka _
k=1

f(x)

X1

X3

)
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Continuous PDF & CDF

* Probability Density Function (PDF)
f(x) = probability density function (PDF)
f(x)=0 f(x)

b
Probability{a <x <b} = [f(x)dx

X—

[e o]

Normalization: jf(x)dx =1

-0

« Cumulative Distribution Function (CDF)

F(x) =] f(x")dx’ { cremeeesraeesessassessssaeeesessensy
0< F&) <1
dF(x) _ F(x)
dx
F(-)=0, F(eo)=1 0

Note: convention is to use f(x) for PDF, F(x) for CDF



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16-

Discrete PDF & CDF

Discrete PDF’s

 Probability Density Function (PDF)

{fk }, where fk= f(Xk), k=1,...,N

f, =0
f(x)
N
j=1 Xy X2 X3 XN x—o
- Cumulative Distribution Function (CDF) 1 Fy
{Fk }, Where Fk - zfjs k=1’ seny N-1 F
j= 1 F (x) F2 ?
and Fy
Fo=0, 0
X—
Fn=1 Fy

Note: convention is to use f; for PDF, F,for CDF
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Fundamental RNG

« Random Number Generator
— Not strictly "random™, but good enough £(%)
» Pass statistical tests for randomness
» Reproducible sequence
— Uniform PDF on (0,1)

— Must be easy to compute 1
F(x)
» Linear Congruential Method
— Algorithm 0 1
S, = initial seed, odd integer, <M
S, =GS,;,+c modM, k=1,2,.....
S =Sk/M
 Usage
— In algorithms, usually denote RN uniformon (0,1) by ¢ ( "xye")
— In codes, invoke basic RN generator by: r = rang()

— Each new usage of ¢ or rang() generates a new RN
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Random Sampling

The key to Monte Carlo methods is the notion of random sampling.

 The problem can be stated this way: )
Given a probability density, f(x), produce a sequence of X''s.
The X's should be distributed in the same manner as f(x).

Given f(x),
Randomly choose x

f(x)

X—>

 The use of random sampling distinguishes Monte Carlo from other methods

 When Monte Carlo is used to solve the integral Boltzmann transport
equation:

— Random sampling models the outcome of physical events
(e.g., neutron collisions, fission process, sources, .....)

— Computational geometry models the arrangement of materials
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Direct solution of x=F(¢)

70

X
Solve for x: &:J f(y)dy 1

- E ssssnhansssssssssssees
Sampling procedure F (x)
— Generate § .
— Determine x suchthat F(x)=¢§ 0 :

X— X

Advantages

— Straightforward mathematics & coding
— "High-level” approach

Disadvantages

— Often involves complicated functions
— In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)
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Discrete PDFs

« Sampling from Discrete PDF's - Conventional Procedure

1 Fn
Direct Solution of x' < F-(¢) E “““l

TSRRARRRRRRRRRRRRO-

(1) Generate & F(x)
(2) Determine k suchthat F,, = § <F
(3) Return x'=x, 0 i
Xy Xz X3 XN
X

« Step (2) requires a table search
— Linear table searches require O(N) time - use when N small
— Binary table searches require O(InN) time - use when N large

« For some discrete PDFs, F,’ s are not precomputed.
— Use linear search, with F,'s computed on-the-fly as needed
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Discrete Uniform PDF
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 Example - Sampling from Discrete Uniform PDF

* Discrete Uniform PDF

f(x)
~f,=1/N, k=1,..,N 1/N
—~ F,=k/IN, Fy=0, Fy=1 I
X

« Sampling procedure:
— Could use table search method, ....
— Easier, for this special case: 1 L

where |y | is the "floor" function,
largest integer <y

— Fortran: k =1+ int( N*rang() )
C: k =1 + floor( N*rang() )

— Note: must be surethat 1< ks N

1 2

—

g ECCCU AR CE R RN\
k<—1+|_N§J, F(x)l d
0

w
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Discrete PDFs - Examples

 Example — Pick 1 Powerball number, uniform integer in [1,60]
k=int( 1+ 60*rang() )

« Example - loaded die, faces show 2,2,3,4,5,5 — simulate 1 roll

pdf(1:6) [ 0./6., 2./6., 1./6., 1./6., 2./6., 0./6. ]
cdf(1:6) = [ 0./6., 2./6., 3./6., 4./6., 6./6., 6./6. ]

r = rang()
do j =1, 6
if( r < cdf(j) ) then

k =3 This coding is a simple linear search to
exit determine an integer k in the range [1,6]
endif Search for the first occurrence of & < cdff(j)
enddo

{result is k}
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Random Sampling -- Discrete PDFs
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* Multigroup Scattering

— Scatter from group g to group g', where 1= g'<s G

g~ G
EGQHK
k=1

» Selection of scattering nuclide for a collision

— K = number of nuclides in composition
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Y% % % % Direct Sampling Y% %%k %

LA-UR-16-

Direct solution of x=F(¢)

75

X
Solve for x: &= f(y)dy 1

"o R R
Sampling procedure F (x)|
— Generate ¢ .
— Determine x suchthat F(x)=¢§ 0 :

X — X

Advantages

— Straightforward mathematics & coding
— "High-level” approach

Disadvantages

— Often involves complicated functions
— In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)
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Continuous PDFs - Exponential

LA-UR-16-

Examples - Sampling from an Exponential PDF

PDF: f(x)=X-e =, x>0
CDF: F(X) = J‘f(y)dy = JZ e Y dy — _e Y Z —1_ e =X
0 0

Direct sampling:
Solve forx: F(x)=¢§

Solving &=1-e* gives: X « -—In(1-§)/X
or

X « —InE/X
Although (1-§&) # &,

both £ and (1-&) are uniformly distributed on (0,1),
so that we can use either in the random sampling procedure.

i.e., the numbers are different, but the distributions are the same
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Continuous PDFs — Power Law on [0,1]

Example - Sampling from power law PDF in range [0,1],
Note: (n+1) isnecessary, so thatif f(xHdx' =1

PDF: f(x) =(n+1) x", n>0, 0=<x=<1

=0 x<0, or x>1
X X yn+1 X
CDF: F(x):jf(y)dyzj(n+1)-y"dy=(n+1)- =" 0<x<l1
0 ) n+l|
Sampling scheme: F(x) = §  solve for x
xn+1 — g
X « & Vn+1)
For power laws on [0,1]:
n=1:  f(x) = 2x, F(x) = x2, X — V€
n=2: f(x) = 3x2, F(x) = x3, X «— 3¢

n=3:  f(x) = 4x3, F(x) = x4, x — 4§
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Continuous PDFs - Uniform

Example - Sampling from uniform PDF in range (a,b),
Histogram with 1 bin

PDF: f(x)=1/(b-a), asx=<b
1/b-a) =0 Xx<a, or x>b
f(x)
CDF: F(x)=(x-a)/(b-a), asx<b
a X > b
Sampling scheme: F(x) = §  solve for x

(x-a)/(b-a) = §
X «— a + (b-a)¢

Note: Often implemented as:
f=2¢
x «— (1-f)a + fb

I£:
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Continuous PDFs - Histogram

Example - Sampling from histogram with 2 bins

Ay = (X4-Xo) f(x)
Ay = (Xo=X4) 5

Bin 1 Bin 2

oF Prob{ X, <x<Xx4} = A,/ (A+A,)
P, = Prob{ x; <x<x,} = A/ (A*A,)
P+ py = 1

Two-step sampling procedure:
1. Select a bin, b:

If $, < py, select b = bin 1
otherwise, select b =bin 2
2. Sample x uniformly within bin:

X — Xpq * &r(Xy-Xp.q)
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Continuous PDFs - Histogram

Example - Sampling from Histogram PDF

fs
o
f(x) f
f
‘ fy
Xq Xy X X3 X4 X5

Two-step sampling: (1) Sample from discrete PDF to select a bin
(2) Sample from uniform PDF within bin

* Discrete PDF: Py = fi (X, =Xy.1)5 k=1,...,N, 2p, =1
— Generate &,
— Use table search to select k
* Uniform sampling within bin k
— Generate &,
— Then, X — Xpq + (X=X 4)S;
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Continuous PDFs — Linear (1)

Example - Sampling from an increasing linear PDF in range [0,1]

2
PDF: f(x)=2Xx, 0sx=s1
f(x)
CDF: F(x) = x2, 0<sx=<1
0 XS 1
Sampling scheme: F(x) = §  solve for x
x2=§
X — sqrt(g)

While not obvious, 2 alternative schemes for sampling x are:
X «— max(§,3,)
X < 1-abs(§—-3,)
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Continuous PDFs — Linear (2)

LA-UR-16-

Example - Sampling from a decreasing linear PDF in range [0,1]

f(x)

2

PDF: f(x) =2 - 2x, 0sx=s1

CDF: F(x)=2x - x?, 0<x<1

o

X->
Sampling scheme: F(x) = §  solve for x
2x-x2 = §
x2-2x+1=1-¢§
(x-1)2=1-8

x—1= tsqrt(1-5)

Choose the minus sign for correct range in x:
X «— 1-sqgrt(1-¢)

Or, since ¢ and 1-§ have the same distribution:

X «— 1-sqrt( <)
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Continuous PDFs — Linear

(3)

Increasing linear PDF

2/(b-a)

f(x)

X->

Random sampling can be done
with a simple shifting & scaling
of the unit PDF:

X «— a + (b-a)sqrt(¢)

Decreasing linear PDF

2/(b-a)

f(x)

X->
Random sampling can be done

with a simple shifting & scaling
of the unit PDF:

X «— a + (b-a) (1 -sqrt())
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Continuous PDFs — Linear (4)
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Example - Sampling from linear PDF in range [a,b], 1 bin

f
f(x) i
fa
a X > b
PDF: f(x) = f, + m (x-a), m = (f -f,)/(b-a), as<x<b
CDF: F(x) = (m/2) x? + (f,-ma) x + (ma?/2 -f,a)
= Ax% + Bx + C

Sampling scheme: F(x)=¢&  solve for x

x = {-B + sqrt(B2-4AC)} / 2A

= Awfully complicated, and sensitive to numerical roundoff
=» There must be a simpler scheme (thereis ...)
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Continuous PDFs — Linear (5)

Example - Sampling from linear PDF in range [a,b], 1 bin

Composition method #1 f(x)

Decompose the original PDF into the fa
sum of 2 PDFs, uniform + linear:

f(x) = p, u(x) + p, I(x)

u(x) = uniformon asx<b, u(x) 1/(b-a)
Po = { min(fa,fb) (b'a) } / { '5(fa+fb) (b'a) }

I(x) =linear on a < x < b, I(x) 2/(b-a)
P, ={.5abs(f,-f) (b-a)} / {.5(f,+f,) (b-a) } /‘

Sampling scheme: if( & < p, )
x — a + (b-a) g,
else
if( f,>f, ) x < a + (b-a)sart(,)
else X «— a + (b-a) (1-sqrt(,))
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Continuous PDFs — Linear (6)

Example - Sampling from linear PDF in range [a,b], 1 bin

Composition method #2 f(x)

Decompose the original PDF into the
sum of 2 PDFs, increasing + decreasing linear:

f(x) = p, M(x) + P, 1(x)

m(x) = linear decreasingona<x<b, m(x) 2/(b-a)
P, ={.5f,(b-a)} / {.5(f+)(b-a)} l\
= fal(fa+fb) a b
I(x) 2/(b-a)
I(x) = linear increasingona<x<b, /‘
pp ={.5f,(b-a)} / {.5(f,+f,) (b-a) }
= 1, | (f,+f,) a b

Sampling scheme: if( & < p, )
x < a + (b-a) sqrt(§,)
else
X — a + (b-a) (1-sqrt(g;))
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Continuous PDFs — Linear (7)

Examples — Sampling from Piecewise Linear PDF fs
f2
f, o
fo
s e
Xo X4 X2 X3 X4 X5 Xg
Two-step sampling: (1) Sample from discrete PDF to select a bin
(2) Sample from linear PDF within bin
(f.+f, ) |
- Discrete PDF: P = ——5——- (4=%_),  k=1,.,N

— generate §
— use table search or alias method to select K

« Linear sampling within bin K:

— generate §

f— ~
— then, if §1<fk:fk1 - X X —(xk—xk_l)fs'_z

otherwise XX, _,+ (xk—xk_l)ﬁ
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Continuous PDFs — Linear (8)

We have seen that a simple, increasing linear PDF in the range
[0,1] can be sampled directly by inverting the CDF to obtain:

2 PDF: f(x) =2 x, 0sx=s1
f(x) CDF: F(x)=x2, 0<xs1
Sampling scheme:
0 x> 1 F(x) =&, solve for x
X — sqrt(g)
While not obvious, some other schemes for sampling x are:
:'( f 21 Why consider these other schemes?
= S2

Sqgrt() function used to be very expensive. The other
schemes involve only simple non-arithmetic
operations & were much faster.

ifl r>x) x=r

X «— max(g,, <) Today, sqrt() operations & computers are very fast —
sqrt() is as fast as generating a 2" RN. We usually go
with the more obvious direct method.

X «— 1-—abs(§-5;)

BUT, the older schemes are still commonly used in
production MC codes. Learn to recognize them.
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Rejection Sampling
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Von Neumann:
Y it seems objectionable to compute a
transcendental function of a random number. "

Select a bounding function, g(x), such that
* ¢2 g(x) >f(x) forallx
- g(x) is an easy-to-sample PDF

Sampling Procedure:
« sample x' from g(x): X' — G(&,)

f(x)

«test: ¢, < cg(x') <f(x")

if true, accept x', done
if false, reject x', try again

Advantages
— Simple computer operations

Disadvantages
— “Low-level” approach, sometimes hard to understand

cg (X)

AANANANNANANNANAANN

* reject

?
>
>

S
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Rejection Sampling - Examples

LA-UR-16-

« Sample from a PDF
f(x) = c-erf(x), 0=x=<5.

note: erf(«)=1.
Do
xtry = 5.*rang()
ftry = 1.*rang()
if( ftry <= erf(xtry) ) exit
Enddo
X = xtry

» Select (x,y) points uniformly in a disk
Do
X = 2.*rang() - 1.
Yy = 2.*rang() — 1.
if( x**2 + y**2 < 1.0 )
Enddo

exit

f(x)

90

|
0 XS 5
———————_teject
®
® keep
-1 X > 1
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Direct vs. Rejection - 2D Direction Cosines

Example — 2D Isotropic

i@ ==, P=@uv
Rejection (old vim)

SUBROUTINE AZIRN_VIM( S, C )

IMPLICIT DOUBLE PRECISION (A-H, O-2)
100 R1l=2.*RANF() - 1.

R1SQ=R1*R1

R2=RANF( )

R2SQ=R2*R2
RSQ=R1SQ+R2SQ S
IF(1.-RSQ)100,105,105

105 S=2.,*R1*R2/RSQ :
C=(R2SQ-R1SQ)/RSQ ' \\:i\\\;

RETURN
END

Direct (racer, new vim)

subroutine azirn_new( s, c )
implicit double precision (a-h,o0-z)
parameter ( twopi = 2.*3.14159265 )
phi = twopi*ranf()

¢ = cos(phi)

s = sin(phi)

return

end
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Isotropic Scatter — Sampling the Scattering Angle

« Consider isotropic scattering
— Any direction is equally likely
— Interpret as:

"pick a random point on a unit
sphere,
then get direction-cosines”

M=cos 0

* Rejection method for scatter
angle sampling
— Pick x,y,z randomly in unit cube

— If x,y,z outside unit sphere,
reject and try again

— If x,y,z inside unit sphere,
scale so that x?+y2+z2 =1

— Get direction-cosines of angles, u,v,w

Direct method for scatter angle
sampling

dQ _sin6-do do

4 4m 2 27
fo,0)=SM0-d0 90 5 g n 0<o<on
2 21
27 .
sin@
f(0)= | f(6,0)ddp = ——
(0)= [ 10.0)d0 ==
L=cos0O, du=-sin6-do, —1<u <+1

de| _sine 1 1
duf 2 sing 2

=?» p is distributed uniformly in [-1,1]
=*» ¢ is distributed uniformly in [0,27]

M <~ 2§ -1
¢ — § 2m
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Direct Sampling — Common PDFs
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Probability Density Function Direct Sampling Method
Linear: f(x) = 2x, 0<x<1 X JE
Exponential: {(x) = ¢, 0 <X X « —logE
2D Isotropic: 1 _ U & coS2nE,
t@® Tom’ p=(uv) V « sin2ng,
3D Isotropic: | ue2§E -1
f(Q) “4n’ Q= (uv,w Ve 1—u2c0821t1;2
w e N1-u’sin 2nE,
Maxwelllan: f(X) = ==— X o—x/T 0 < X X T(- logg, - Iog§2c0s2§§3)
TJ/aNT ’
Watt —ab/4 w « a| - logk, - logE,, cos? ZE
Spectrum: f(x)=22 e x/asinhA/b—x , 0<x ( ) : 22 3)
ma’b X W+ ¥+ (2§4—1) a2bw
Normal: 1 _l(x_—g)z Xe—Wn+o0o /—2Iog§;l cos2ng,
f(x) = e’\ o

o.[2m
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Software Considerations

"Rules of thumb" for M.C. algorithm design have changed

- Nevertake the square root of a random _purmber

« Avoid using Sin;-eas, log, exp—.

« Use IF...GOTO.., to-avoid arithmetic

- Randomnmambers are cheap, arithmeticis-expensive

Direct sampling methods have advantages

» Clear, succinct coding — easier to verify & maintain
« Cpu time is comparable to rejection
« Direct methods vectorize efficiently
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Mean & Standard Deviation

« Given a set of random samples, x,, X,, ..., Xy
N k)
_ 1
— Mean X = N X;
j=1

— Population variance & standard deviation

1 N 1 N 2 1 N ) , 1 N , ,
2 2 — _
(0) - — X. —| — X . - X. — X (0) - I X. — X
N,Z:f’ N,Zf’ NZ{’ \/N ’

— Variance & standard deviation of the mean

I I =
o. = — 0. = : Ex.—x
N YOUN NS

Monte Carlo codes calculate mean values for tallies,
& report the standard deviation of the mean

In the definitions above, some of the “N” terms should really be “N-1".
MCNP & many other codes ignore that, since N is very large.
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Random Sampling -- References

Every Monte Carlo code developer who works with random sampling should own &
read these references:

— D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical
Algorithms, 3 Edition, Addison-Wesley, Reading, MA (1998).

— L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY
(1986). *

— J. von Neumann, "Various Techniques Used in Conjunction with Random
Digits," J. Res. Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951). %

— C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-MS,
Los Alamos National Laboratory, Los Alamos, NM (1983). %

— H. Kahn, "Applications of Monte Carlo,” AECU-3259, Rand Corporation, Santa
Monica, CA (1954). %

Y= Included in References on class CD
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Extra
Topics
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Direct vs. Rejection - Watt

Example — Watt Spectrum

-ab/4
f(x) =22 3 eX/asithﬁ, 0<X

na’b

Rejection (mcnp)
» Based on Algorithm R12 from 3rd Monte Carlo Sampler, Everett & Cashwell

*Define K = 1+ab/8, L =a{K+ (K?-1),,}, M=Ls/a-1

-Set  x«-logg,, y < -logg,
. If {y-M(x+1)}2<blLx, accept: return (Lx)
otherwise, reject
Direct (new vim)

« Sample from Maxwellian in C-of-M, transform to lab
W a(— logg, - logk, cos? g§3)

2
X ¢ W+ aTb+ (2E,- 1) aZbw (assume isotropic emission from fission fragment

moving with constant velocity in C-of-M)
« Unpublished sampling scheme, based on original Watt spectrum derivation
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Stratified Sampling
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If a specific number of samples, M, is needed from a single distribution:

- Naive approach — repeat the sampling procedure M times

1

- Stratified sampling approach = I
— partition the sample space into M Epaabin
disjoint regions of equal probability EoS
F(x)
— produce 1 sample from each region £ i
4
gs.‘m;_\\.

« Stratified sampling considerations
— F(x) must be known & easy to partition

— The number of partitions, M, must be known in advance

— Must be relatively easy to sample within each given partition

— Stratification improves the "coverage"

— Stratified sampling reduces variance, at little or no computing cost

> 4’/".'""'”"”"'""\

99
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Rejection Method
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* Rejection sampling methods are useful when it is difficult or

impossible to invert F(x), or when F(x) is no known

 Example - Selection of initial source sites in a reactor,

rejection method based on spatial coordinates

— Select a trial site: . . .
X" X, + (X, —X,)- &,
Yy <Y, +(Y,—Y)S, : ‘
— If (x",y') is inside a fuel pin 7 X4

(shaded region), then accept (x',y’).
— Otherwise, reject (x',y') and repeat

— Efficiency of rejection sampling
~ (volume source region) / (total volume)

source
regions
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Weighted Sampling

It is sometimes useful to sample from an alternate PDF

f(x)dx = [;((’;))]g(x)dx = h(x)g(x)dx

& then "correct" the result via either weight factors or a 2nd sampling stage

Weighted Sampling
« To sample X from f(x),
— first, sample x from g(x)

— then, multiply the "weight" assigned to % by -idntanswer _ (%)

wrong answer g (X)

- Note that g(x) must be >0 whenever f(x)>0.
« Also, g(x) must be normalized so that jg(x)dx -1

- Example — survival biasing of collisions
p
S

survive f_r'

Instead of sampling the outcome, always choose survival & multiply the "weight" by Pgynive

If a collision occurs, P is the probability of surviving.
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Splitting & Russian Roulette
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102

Combined Russian Rouletting & Splitting

« Russian Roulette — kill off some particles, but conserve total weight
- Splitting — create extra identical particles, but conserve total weight

» Definitions
wgt = Particle weight
For the region containing the particle:
Whigh = upper bound on weight, if wgt larger — split
Wiow = lower bound on weight, if wgt lower — roulette
Waye = Weight to assign survivors, Wiqw < Waye < Whigh

Then,
wgt / w,ye = probability of surviving split/roulette

» Combined game for split/roulette:

if  wgt<wpgy Or Whgh<Wwgt,

create n particles of weight wp,e, Where n« [:'vgt + §J
ave
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Random Number Generators - Reproducibility

Reproducibility of a Particle History
- use separate, distinct random sequence for each particle

- starting seeds for separate particles are separated by "stride"

stride
- -
(E RN NN NN NNNNINN NN N NN NN N NN N
) A A A
seeds f<|>r particle k seeds fclr particle k+1

- stride should be large enough to prevent overlap (for most histories)

— 1000 is common for reactor analysis problems

- splitting & variance reduction not needed for in-core physics
« reduces total random number usage

— 4,297 is the "old" default for MCNP & VIM
— 152,917 is the default for MCNP & VIM

- prepared for lots of splitting & variance reduction
« potential for lots of secondary particles
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Random Number Generators - Reproducibility

Parallel processing

partil:’:le
+ take "super-stride" in random sequence -—
for particles on each processor AR
I
rticle:
processor stride / Feoode
- ot
M W
4 A4 A
particles for processor i particles for processor i+1
Eigenvalue Problems
-
- batches of particles,  ——
distributed among parallel processors / seeds
processor
p— -
« seeds for each | i
parllcles
batch stride
e -
uu-l||||-lullllll-uul"|l-uu-“|lluun"|l- luul"lunu“lllunn"ll-uullllluuu"llb-
\ M )

processors for batch m processors for batch m+1
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Computational
Geometry
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Engineering Model vs. Computational Model

Model Generation Large-scale Computation Post-processing

Engineering Model Computational Model Engineering Model

* Model Generation
— Focus on engineering productivity
— Describes “reality” to computer
— Interactive, batch, or CAD

« Large-scale Computation
— Focus on efficiency & capabilities
— Data structures should be compact & regular
— Computational model often hidden from user

* Post-Processing
— Interpretation of results
— Visualization
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Modeling vs. Computation

O

Element geometry

O[|0|0|0|0
O[|0|0|0/0
 Elements --> assemblies 88888
O[|0|0|0|0

Assemblies --> core

Model construction
Geometry computation

Core + peripherals
--> 3D model
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Monte Carlo Geometry

Geometry
* Which cell is particle in?
+ What will it hit next?
* How far to boundary?
- What’ s on other side?
* Survival?

Physics Tallies
* How far to collision? * Tally events of interest
* Which nuclide?

« Compute results

* New E, direction? < » |- Compute statistics
- Secondaries? - Balances
* Survival? * Performance stats

mcnp, rcp, vim, racer, sam, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy, ...

Development of particular geometric capabilities is driven by applications:
— Shielding & experiment analysis
 lrregular geometry
» Moderate number of regions & compositions
— Reactor core analysis
* Regular geometry
* Very many regions & compositions
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Comments on 3D Computational Geometry (1)

« At the most fundamental level, 3D computational geometry is an
exercise in Set Theory, the same concepts we all learned as kids

Set of all x,y,z
points inside box B

Set of all x,y,z _
points inside box A >

Intersection of sets A & B .

Unionofsets A & B
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Comments on 3D Computational Geometry (2)

110

« Some codes use primitive bodies (box, sphere, etc.) in defining
the sets of points to consider

Set of all x,y,z
points inside box

» Other codes use half-spaces — all the points on one side of a
surface

Set of all x,y,z
points on plus
side of surface

Set of all x,y,z
points on minus
side of surface

A little thought should convince you that either scheme can be
used in set theory for defining objects in space
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Computational Algorithm - Geometric View

Repeat for all k4 cycles
Repeat for all histories in cycle
Repeat while particles are left in history
While particle wgt > 0
Repeat until collision
Repeat for each universe level
Repeat for surfaces of 3D region
Distance calculation

Boundary crossing
Neighbor search
Roulette/split

Collision analysis
Roulette/split

1 reactor calculation requires

Update tallies ~1012 distance calculations

Update tallies, source, & k¢
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Computational Geometry

112

Every point in space that a particle could possibly reach must be
defined in the geometry model — no gaps or overlaps of regions

Cells (3D volumes) are defined by their bounding surfaces

Boundary representation
Combinatorial geometry, with either surfaces or primitive bodies

CSG - constructive solid geometry, tree structure with boolean
operators

Mesh geometry
For some codes, disjoint volumes must have different cell numbers

For MCNP & others, disjoint volumes may have the same cell
number

Properties are assigned to each cell

Material, density, temperature, importance, etc.

Tallies are defined for particular cells or surfaces,
reaction types, & estimator types
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Basic Geometry Operations

 Locate
Given a point in space, determine what cell it is in

 Distance to surface
Given a point & direction in a particular cell,
determine the distance to the next surface of that cell

* Neighbor search
For a particle which has hit a bounding surface of a cell,
determine the cell to be entered next

 Boundary conditions
For a particle which has hit a cell bounding surface
declared to be periodic or reflecting,
determine the new position & direction and cell to be entered next
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Simple Case - Mesh Geometry

« Particle Ya
Position = (x,y,z), Direction = (u,v,w) Y
« Cell number Y,
(i,j,k), indices in mesh Y1
X1 X3 X3 Xy
* Locate
i binary search to find x-interval containing x
J: binary search to find y-interval containing y
k: binary search to find z-interval containing z
« Distance
— Use signs of (u,v,w) to select surfaces,
then compute 3 distances: Yo+
if u>0, d,_=(x,,-X)/u, otherwise d = (x;-x)/u ‘/(‘""’""’)
... similar for d, & d, y (x.y2)
J

— Distance: d =min(d,, d,, d,)
* Neighbor search
 Boundary conditions

i+1
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MCNP Geometry

« MCNP uses a "combinatorial geometry" based on surfaces
— Define surfaces, specify sense (which side of surface)

— Define cells using surfaces & operators (intersection, union,
complement)

— Can also group cells together into a universe, and embed that universe
inside another cell

— Can also group cells together into a universe, repeat that universe in a
lattice arrangement, and embed that universe inside another cell

— Assign materials to cells

— Assign other properties to cells (e.g., density, temperature,
importance)

— Define tallies using cell or surface numbers



Monte Carlo Techniques for Nuclear Systems — Theory Lectures

Surfaces

LA-UR-16-

116

* In MCNP, surface types include:
1st order: planes
2nd order:  spheres, cylinders, cones, ellipsoid,
hyperboloid, paraboloid, general quadric
4th order: elliptical & circular torus (axes parallel to x, y, or z)

* Quadratic polynomial for surface:
F(x,y,z) =ax?+ by?+cz?+dxy +eyz+fzx +gx + hy +jz+ k

— Surface is defined by: F(x,y,z) =0

— Surface is either infinite or closed

— Normalization convention: factor of leading 2nd order term is
positive
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MCNP Surfaces

Table 3.1: MCNP Surface Cards

Mnemonic Type Description Equation Card Entries

P Plane General Ax+ By +Cz—-D =10 ABCD
PX Normal to X-axis x—-D=10 D
PY Normal to Y-axis y—D =10 D
PZ Normal to Z-axis z—-D=10 D
SO Sphere Centered at Origin Y2 oRP =0 R

S General (x _'\-)2 +(y T): +(z-%2 )2 R: 0 X T R
SX Centered on X-axis (x—%) +vV+22-R* =0 ¥R
SY Centered on Y-axis e (v—7 ‘)3 42 R =0 7R
SZ Centered on Z-axis ‘.3 " ‘.3 +(z _;)3 R: =0 2 R
C/X Cvlinder Parallel to X-axis (v 1—.)—" +(z _:)3 R3 0 FZR
Cry Parallel to Y-axis (x—%)+(z=2)-R> =0 XZR
C/Z Parallel to Z-axis (x—%) " +(=F) =R*> = 0 YV R
CX On X-axis V4R =0 R
CY On Yaxis YA R =0 R
CZ On Z-axis - —'1-2 R: =0 R
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o Cone Parallel to A-axis -7+ (-5 1x-3) = 0 YPEOE]
K/Y Parallel to Y-axis J(\ ?)2 +(z __)2 {r—T) = 0 $95£+1
K/Z Parallel to Z-axis J( . ?)3 +( 1-)2 {(z —3) 0 Sz ,3 +1
KX On X-axis Vo4 zm—t(x~%) = 0 Tt
X On Faxis \2 + :2 Hy—¥) 0 y I2 t1
2t
KZ On Z-axis ¥ +y —=H(z=2) =0 +1 used only
for | sheet cone
1insoi =\2 a2, =22 -
SO ”l:”lp}:u;d.d Axis parallel A(x=X)"+B(y-y) +C(z-2) ABCDE
: se . A _ A e =\ A e o
) yPEIDOIOr to X-. Y-, or Z-axis 2D(x=X) +2E(y-¥) FG® 7 2
Paraboloid F2F(z—5) 4+ G = 0 -

Cylinder
Cone
GQ Ellipsoid
Hyperboloid
Paraboloid

Axes not parallel
to X= Y-, or Z-axis

.1.\'2 + /3_1'2 +C ':2 +Dxy+ Eyz
+Fzx+Gx+Hy+Jz+K = 0

ABCDE
FGHIK

X Lorus.

TY X- Y-, or Z-axis

Elliptical or circular

Axis 18 parallel to

-

(x -X) /"132+(J(_1‘

4
rJ

SPZABC

-7/ B+ (fx-9)2+ (z-2)2=4) /C* =1 = 0 TPIABC
1z -2/ B+ Wex-3 2+ (-5 -4) /CP=1 =0 ¥yIABC
XYZP Surfaces defined by points See pages 3—-15 and 3-17
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Sense

* For a given point in space, (x,y,z), and surface equation,
F(x’,y ,z')=0, the sense of the point with respect to the surface is

defined as:
Inside the surface, sense < 0, if F(x,y,z)<0
Outside the surface, sense > 0, if F(x,y,z)>0
On the surface, sense =0, if F(xy,z)=0

[Must be careful to consider computer roundoff!]

=k

Note: Outward surface normal points in direction of + sense
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Sides

« A surface divides space into positive & negative sides

— MCNP convention: +1 = positive side of surface 1
-1 = negative side of surface 1
+3
+2
-1 +1
-2

— If not sure which side is + or -, pick a point & substitute
into surface function, F(x,y,z) -- see if result is + or -
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Intersection & Union of Sides

MCNP convention:
Blank signifies intersection

+1 -2 = intersection of
+side of surface 1 and
-side of surface 2

+1 -2 | +1 +2
12 | 1 42
Surface 1 Surface 2

Surface 1
-1 +2

)

Surface 2

MCNP convention:
Colon signifies union
-1 : 2 == union of
-side of surface 1 with
+side of surface 2

+
Su rfacm
+

Su rfaceé U
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Cells

« A cell is defined to be the

— Intersection of half-spaces defined by a list of signed surface
numbers

Example: cell10 -5 >
cell20 +1 -2 +3 -4 +5 | 2

— Union of half-spaces defined by signed surface numbers

Example: cell43 +1: -2

— The complement of another cell (i.e., volume NOT in other cell)

Example: cell 30 #50

— A combination of the above

Example: cell57 (+1-2):3 #50
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Cells

* Cells do not have to be convex, & can be reentrant

2
1 (-3 +1) : (-3-2-1)

or

(-3 +1) : (-3 -2)
or

-3 (+1:-2)

» Cells may involve discontiguous regions

QDOE—~ -

Cell20 #10
or 123
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Locate Operations

Given point (x,y,z), determine which cell it is contained in:

For( cell=1 ... n_cells ){
Foreach surf in cell {
Evaluate S_, ;= sign{ F_,«(x,y,z) }

Does S_ ; match the sense from the cell definition?

}

If all surface-senses for (x,y,z) matched the cell definition,
then exit & return cell as the result
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Distance Calculation

Given point (x,y,z) in cell |,
determine the distance to the cell boundary

d <-- infinity
Foreach surf in celll {
If surfis part of the external boundary of cell | {

Evaluate d = smallest positive root of

F. .+ x+du, y+dv, z+dw ) = 0

d = mln( da dsurf)

surf

}
}

return the value of d
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Neighbor Search
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« When a cell boundary is reached, what's on the other side?

Easy case Hard case
2
N 2 N3
4

* Most codes build "neighbor lists" during tracking
— For each bounding surface of cell, remember list of neighbors
— Initially, neighbor lists are empty

— Check all cells having surface in common, until one is found satisfying
all sense conditions for the particle position

— Save it
— Later, check neighbor lists first, only do search if necessary

* Neighbor search is expensive at first, cheap later

* Tracking speeds up as calculation progresses
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Embedded Geometry - Universes

* In most real-world applications, there is a need for modeling
detailed geometry with many repeating units

—<10|0|0/0[0
o O|0|0|0
O|0[0|0|0

O|0|0|0/0

(oJ(e](e](e][e]

« All production Monte Carlo codes provide capabilities for multiple
levels of nested geometry
— Called "universes” in MCNP
— A collection of cells may be grouped into a "universe"

— Universe may be embedded in another cell,
with the universe ‘clipped’ by the cell boundaries
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Universes & Lattices

o

©|0|0|0|0
0|0|0|0|0
0|0|0|0|0
0|0|0|0|0
O[0|0|0|0

Universe 1 - cells for detailed fuel pin

Universe 2 - lattice of cells for fuel assembly

Universe 2, with cells filled by Universe 1

Universe 3 - lattice of cells for reactor

"Real world" - final geometry
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Body Geometry
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« Some Monte Carlo codes use primitive bodies rather than
surfaces for defining cells (e.g., MORSE, KENO, ITS, VIM)

SPH - sphere ELL - ellipsoid

BOX - box REC - right elliptic cylinder
RPP - box RHP - hexagonal prism
RCC - cylinder HEX - hexagonal prism
WED - wedge ARB - arbitrary polyhedron

TRC - truncated cone

« Usually called "combinatorial geometry™
— Invented by MAGI in ~1956, used in SAM-CE & other codes
— Space inside the body has a negative sense, outside a positive sense

— Boolean operators AND, OR, NOT may be used to combine bodies
(like MCNP's intersection, union, & complement operators)

— MCNP allows body geometry input (calls them "macrobodies"),
but internally converts them to lists of surfaces
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Special Topics - Simple Cells

- Simple cells are those which can be constructed using only
intersections, with no union operators

« Some Monte Carlo codes require that all cells be simple cells.
Union operators are not allowed.

« Tracking through simple cells is fast, at the expense of more
complex geometry input & setup

— For simple cells, the logic to find the distance to boundary is simple -
check the distance to each of the cell surfaces & keep only the smallest

positive distance
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Special Topics - Simple Cells

2 Consider the example at the left.

==Y

Using the union operator, the cell is described by: +1:-2

Without the union operator, separate cells must be defined &
then assigned the same material properties:

+1, -1 -2
or -2, +1 +2
or +1-2, +1+2, -1-2
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Special Topics -Distance Calculations

« 3D Surface
- F(x,y,2) =0
Linear: V F = constant
Quadratic: VvV F =1(x,y,2), V2F = constant

« Distance calculation
— S =directed distance from (x,,y,,Z,) along (u,v,w) to F(x,y,z)=0
= smallest positive root of F( x,+su, y,+sv, z,+sw ) =0

— General form: As2+2Bs +C =0, D=B2-AC
« 27 combinations of A, B, C >0, =0, <0
* Only 12 yield valid solutions:

=-C/(2B) if (A=0, C<0, B>0) or (A=0, C>0, B<0)
s = (-B-VDYA if (A>0, C>0, B<0, D>0) or (A<0, C>0, B>0, D>0)
or (A<0, C>0, B<0, D>0) or (A<0, C>0, B=0, D>0)
s = (-B+VDYA if (A>0, C<0, B>0, D>0) or (A>0, C<0, B<0, D>0)
or (A>0, C<0, B=0, D>0) or (A<0, C<0, B>0, D>0)
or (A>0, C=0, B<0, D>0) or (A<0, C=0, B>0, D>0)

S = otherwise
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Special Topics -Distance Calculations
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— Noting that C = F(x,,Y4,2,) = sense at (Xy,Y,20);
the valid solutions can be simplified using the known surface sense §:

'=-C/(2B) if (A=0, D>0)
s' = (-B-VD)/A if (A#0, D>0, §>0)
s' = (-B+VD)/A if (A£0, D>0, §<0)
S'= otherwise
And
s =¢ if >0

= o0 otherwise
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Special Topics - Common Surfaces

* If 2 surfaces coincide,
neighbor searches become
more complicated & tracking
can slow down significantly

N

Surface 1 Surface 2

e Most MC codes check for coincident surfaces & eliminate one of
them (replacing it by the other)

* The tolerance for coincident surfaces usually defaults to a small
separation distance (e.g., 1.e-4 cm). For problems with unusual
geometry (very small or very large), this may have to be changed
in the code or code input.
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Stochastic Geometry
& HTGR Modeling
(optional)
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Introduction

* Much interest lately in analyzing HTGRs
— Fuel kernels with several layers of coatings
— Very high temperatures
— Contain fission products
— Safety aspects ...

* Double heterogeneity problem
— Fuel kernels randomly located within fuel elements
— Fuel elements may be "compacts” or "pebbles” (maybe random)
— Challenging computational problem

» Monte Carlo codes can faithfully model HTGRs

— Full 3D geometry
— Multiple levels of geometry, including embedded lattices
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Example - Very High Temperature Gas Cooled Reactor
.

Pyrolytic Carbon
Silicon Carbide
Porous Carbon Buffer
Uranium Oxycarbide

R — 1] e —

TRISO Coated fuel particles (left) are formed into fuel
rods (center) and inserted into graphite fuel elements
(right).

PARTICLES COMPACTS FUEL ELEMENTS

P. E. MacDonald, et al., "NGNP Preliminary Point Design — Results of the Initial Neutronics
and Thermal-Hydraulic Assessments During FY-03", INEEL/EXT-03-00870 Rev. 1, Idaho
National Engineering and Environmental Laboratory (2003).
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Example - GT-MHR Modeling

Side replaceable reflector

Plukiene, R. and Ridikas, D.,
Active core Modeling of HTGRs with Monte
Carlo: from a homogeneous to
an exact heterogeneous core
with microparticles. Annals of
Nuclear Energy 30, 1573-1585
(2003).

core

Inner reflector
Graphite with B,C

R homogeneous core with hexagopal

assem

Fig.2. A igss»section of the GT-

active core

Istructure (HTRI).

compact kernels

310um

[ 200um]]

(A) (B)

Fig. 4. Fragments of double-heterogeneous GT-MHR (HTR3): (A) fuel element (compact) cross section
with coated fuel particles; (B) magnified view of coated fuel particles: spherical kernels of PuO,_ are sur-
rounded by protective coatings made of PyCpyumer, PyC 1, SiC and PyC II layers correspondingly. The

same structure is valid for particles containing burnable poison—natural Er,0;.

@A) | (B)

Fig. 4

Fig. 3. Fragments of single-heterogeneous GT-MHR (HTR2): (A) an active core structure: three rings of
hexagonal fuel columns; (B) magnified view of a separate fuel assembly. Fuel compacts are presented in
small grey circles, burnable poison compacts in light grey. Bigger diameter holes stand for He channels,
while the rest material represents the graphite matrix.



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 140

Example - Pebble Bed Experiments at Proteus Facility
.

1 ‘ Difilippo, F.C., Monte
Core : Carlo Calculations of
fof e Pebble Bed Benchmark
i K Configurations of the
e PROTEUS Facility. Nucl.
o Sci. Eng. 143, 240-253
| ol (2003).
Fig. 3. Cross section o;':he odd 13;5 of the h:p confi z:lious, casejwim poly;:hylme rods. The fig Fig. 5. Case 4, vertical cross section. The black pebble
with the visualization tools of the MCNP program. (fuel type) appears magnified in Figs. 6, 7, and 8 to show the
heterogeneous details of the fuel pebble.
Pebbles Fuel kernel lattice Fuel kernel
E ' |eelelajo e e '
§ [eleea[ee oo
| ojeeaje e e e
" I
LR 2K AE AR AR AN 2|
) o s e ae e ae
LK 3K K AR BE BK BN
LK K MK AR NE BN BN
L AL A A AK 2K 2K 2K
EE - o Fig. 8. Fuel kerel with the four coatings at each location
e pl;;gl;lz.o?le:;;i-lsiof the cubic lattice of fuel kemels inside 250‘31 ﬁ";‘fg_kg_‘m and inside the fuel region of the pebble

Fig. 6. Magnified fuel pebble of Fig. 5.
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MCNP Models for HTGRs

« Existing MCNP geometry can handle:
— 3D description of core
— Fuel compacts or lattice of pebbles
« Typically, hexagonal lattice with close-packing of spherical pebbles
* Proteus experiments: ~ 5,000 fuel pebbles
~ 2,500 moderator pebbles

— Lattice of fuel kernels within compact or pebble
« Typically, cubic lattice with kernel at center of lattice element
* Proteus experiments: ~ 10,000 fuel kernels per pebble
~50 M fuel kernels, total

— Could introduce random variations in locations of a few thousand cells
in MCNP input, but not a few million.

— See papers by: Difilippo, Plukiene et al, Ji-Conlin-Martin-Lee, etc.
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MCNPS Stochastic Geometry

« When a neutron enters a new lattice element, a transformation is
made to the neutron's position & direction to the local coordinates
of the universe embedded in that lattice element. [standard
MCNP]

» Users can flag selected universes as "stochastic" [new]

— A neutron entering a lattice element containing a stochastic universe
undergoes the normal transformations.

— Then, additional random translations are made:
X X+(28,-1)-0,
y < y+(28,-1)-9,
Z—2z2+(25,-1)-9,

— Then, tracking proceeds normally, with the universe coordinates fixed
until the neutron exits that lattice element
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MCNPS Stochastic Geometry

* Neutron on lattice edge, about to enter embedded universe

™~

« Embedded universe,
before random translation after random translation

........ Q.

« Track normally, until neutron exits the lattice element

\o
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MCNPS Stochastic Geometry

* On-the-fly random translations of embedded universes in lattice
— Does not require any extra memory storage

— Very little extra computing cost -
only 3 random numbers for each entry into a stochastic universe

» For K-effective calculations (KCODE problems)

— If fission occurred within fuel kernel, should have source site in next
cycle be at same position within fuel kernel

— Need to save o,, o, 0, along with neutron coordinates in fission bank

— On source for next cycle, apply 9,,9,, 9, after neutron pulled from
bank

 To preserve mass exactly, rather than on the average stochastically,
must choose 9,,90,, 6, so that fuel kernels are not displaced out of a

lattice element

P maximum o,
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* Infinite array of TRISO fuel kernels in graphite matrix

— Fuel kernel geometry & composition taken from the NGNP Point
Design (MacDonald et al. 2003)

TRISO Fuel Kernel Geometry and Composition

Region Name Outer radius Composition Density
# (1) (g/cc)
1 Uranium oxycarbide 175 UCO (UC*°Q™) 10.5
2 Porous carbon buffer 275 C 1.0
3 Inner pyrolytic carbon 315 C 1.9
4 Silicon carbide 350 SiC 3.2
5 Outer pyrolytic carbon 390 C 1.9

« Calculations run 4 ways:
1. Fixed lattice with centered kernels
Fixed lattice with random kernels [MCNP stochastic geometry]

2.
3. Multiple lattice realizations
4.

Box of randomly place kernels
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Calculations - Case #1

» Fixed lattice with centered kernels
— 5x5x5 cubical lattice
— Lattice edge chosen to preserve the specified packing fraction.
— Fuel kernels centered within the cubical cells
— Reflecting boundaries on the outer surfaces
— Essentially same as Difilipo, Plukiene et al, Ji-Conlin-Martin-Lee
— No random geometry, standard MCNP5 calculations
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Calculations - Case #2

» Fixed lattice with random kernels [MCNP stochastic geometry]
— 5x5x5 cubical lattice
— Lattice edge chosen to preserve the specified packing fraction.
— Fuel kernels randomly placed on-the-fly within the cubical cells
— Reflecting boundaries on the outer surfaces
— Uses new MCNPS5 stochastic geometry

Fuel kernel displaced randomly
within lattice element each time

that neutron enters
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Calculations - Case #3

* Multiple lattice realizations

— 5x5x5 cubical lattice

— Lattice edge chosen to preserve the specified packing fraction.

— Fuel kernels randomly placed in job input within the cubical cells

— Reflecting boundaries on the outer surfaces

— Uses standard MCNP5

— 25 separate calculations, each with different location of kernels in the

input files

1 realization, fixed lattice
with kernel locations chosen

randomly in problem input
& held constant during
each MCNP calculation
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Calculations - Case #4
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* Box of randomly placed fuel kernels
— Single box with 125 fuel kernels
— Box size chosen to preserve the specified packing fraction.

— Fuel kernels randomly placed in job input within the box (using RSA
algorithm, Random Sequential Addition)

— Reflecting boundaries on the outer surfaces
— Uses standard MCNP5

— 25 separate calculations, each with different location of kernels in the
input files

2 different realizations of "truly random" cases:
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Numerical Results

MCNP5 Results for Infinite Lattices of Fuel Kernels

# Method K-effective

1 Fixed 5x5x5 lattice with 1.1531 £ 0.0004
centered spheres

2 Fixed 5x5x5 lattice with 1.1515 £ 0.0004
randomly located spheres ("on
the fly")

3 Multiple (25) realizations of 1.1513 + 0.0004

5x5x5 lattice with randomly
located spheres

4 Multiple (25) realizations of 1.1510 £ 0.0003
randomly packed (RSA) fuel
IIbOXII (
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Conclusions

* The new stochastic geometry treatment for MCNPS5 provides an
accurate and effective means of modeling the particle heterogeneity in
TRISOL particle fuel

— Same results as (brute-force) multiple realizations of random geometry
input with standard MCNP

— Negligible difference from "truly random" multiple realizations

* The results indicate that:
— The neutronic effect of using a fixed lattice is negligible

— The effect of choosing either a centered spheres or randomly located
spheres is also small, at least for the specific fuel geometry that was
analyzed during this study

e Future work

— Examination of finite geometries, including cylindrical fuel compacts,
hexagonal fuel blocks, and full core configurations.

— We will also consider lattices other than simple cubic lattices, such as
BCC, FCC, and HCP lattices.
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Collision
Physics
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Monte Carlo Calculations

Geometry
+ Which cell is particle in?
« What will it hit next?
- How far to boundary?
- What’ s on other side?
* Survival?

Physics Tallies

« How far to collision?
* Which nuclide?

* New E, direction?

- Secondaries?

* Tally events of interest
- Compute results

« Compute statistics

- Balances

 Survival?

* Performance stats

mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,...

« Geometry routines determine the cell & material in that cell

« Collision routines model the physical interactions with the material
— Random sampling from PDFs determined by cross-section data
« Continuous: flight distance, exit E & direction, .....
 Discrete: select nuclide, select interaction type, secondaries, ...
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Monte Carlo Calculations

« After a particle emerges from source or collision, or if the particle
is on a cell bounding surface:

— Randomly sample the free-flight distance to the next interaction

— If the distance-to-interaction is less than the distance to cell
boundary, then move the particle to the interaction point

— Collision physics at the interaction point:
« Determine which isotope the interaction is with
« Determine which reaction type for that isotope
« Determine the exit energy & direction of the particle
* Determine if secondary particles were produced
- Biasing + weight adjustments
» Tallies of quantities of interest
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Collision Physics

Collision isotope,
Reaction type,

_ _ ExitE' & (u',v',w'),
Free-flight distance Secondary particles
to next collision, s




Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16-

Sampling the Flight Distance

158

» Given a particle at (x,,Y,,Z,) with direction (u,v,w) in cell | containing
material M, sample the free-flight distance to the next interaction

— 21 = total macroscopic cross-section in material M
=sum{ Nko;*}, where k =isotopes in material M
= probability of any interaction per unit distance, units cm-’

— PDF for flight distance s, where 0 < s S «,

f(s) = {prob interaction p.u.d} - {prob travelling dist s w/o interact}
f(s) =21 exp(-Z:s)

— Sampling procedure
F(s)=1-exp(-Z;s) = = -In(g) / 25
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Selecting the Collision Isotope

X, = ZN(DG(TD where | = isotopes in material M
j

Probability that collision is with isotope k

(k) 5 (K)
N™oy
2

Pk =

* { pi} = set of discrete probabilities for selecting collision isotope

{ P, }=discrete CDF, P,=sum{p, i=1,k}, P,=0

Discrete sampling for collision isotope k
table search to determine k suchthat P,, < ¢ < P,
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Selecting the Reaction Type

For collision isotope Kk,

c"T = c"elastic + Ginelastic + ccapture + Gfission ¥

* p; = 0;/ o; = probability of reaction type j for isotope k

{ p;} = set of discrete probabilities for selecting reaction type j

{ P, } = discrete CDF, P;=sum{p,;i=1,j}, P,=0

Discrete sampling for reaction type j
table search to determine j suchthat P =< § <P,
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Selecting the Reaction Type - Modified

* In many applications, survival biasing is an effective variance reduction
technique

— Survival biasing is also called implicit absorption, nonabsorption
weighting, or (loosely) implicit capture

—-2;=2 + 3 (absorption = disappearance)

absorption scatter

— Probability that particle survives collision = P_,, = Z_ . «e/ZT
— Probability that particle is absorbed (killed) =1 - P,

« Disallow absorption of particle, & then adjust particle weight to ensure a
fair game

— Tally absorption of  wgt - (1-P,,,)

— Multiply particle weight by P,

— When selecting collision isotope: use 2g's, not 2;'s for isotopes
— When selecting reaction type: don't include G,
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Sampling Exit Energy & Direction

» Given a collision isotope k & reaction type j, the random sampling
techniques used to determine the exit energy and direction, E’
and (u',v',w'), depend on
— Conservation of energy & momentum
— Scattering laws - either equations or tabulated data

« Examples
— Isotropic scattering in lab system [example on next slides]
— Multigroup scattering [example on next slides]
— Elastic scattering, target-at-rest [example on next slides]
— Inelastic scattering, MCNP
— Other collision physics, MCNP
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Isotropic Scatter in Lab System

» Elastic scattering from infinite-mass target nucleus

— No change in energy:
E'=E
— Sample direction from isotropic scattering PDF, f(u',v',w')=1/4m

@= 21 &, < uniform azimuthal

u' = 2%, -1 < isotropic, uniform in u’

v' = sqrt(1-u'?) cos(o)
w' = sqrt(1-u'?) sin(o)
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Isotropic Scatter — Sampling the Scattering Angle
|
. Consider isotropic scattering . Dlrect_method for scatter angle
L . sampling
— Any direction is equally likely .
— Interpret as: f(Q) = 4i, jﬂ = S'n(;' do. <21I¢
"pick a random point on a unit sphere, T T T
then get direction-cosines”
f0,0)=3N990 A0 5 p<n 0<o<on
/] 2 21
/ 2r sin®
......... f(6)= [ f(6.0)do=—"-
M=cos 6 0
UL=cos0, du=-sinB-do, —1<u <+1
- Rejection method for scatter f(u):f(e)‘ de| _sin6 1 _1
angle sampling du| 2 sinb 2
— Pick x,y,z randomly in unit cube
— If x,y,z outside unit sphere, =?» p is distributed uniformly in [-1,1]
reject and try again - e : .
is distributed uniformly in [0,2
— If x,y,z inside unit sphere, ¢ y in [0,2r]
scale so that x?+y2+z2 =1 9 1
— Get direction-cosines of angles, u,v,w Mo 28 -
¢ — § 2nm
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Multigroup Scattering

* Multigroup approach
— Divide energy range into intervals (groups)
— Use average cross-sections for each group:  Z;;, 25y, Zag, Vg,

— Use discrete transfer matrix for group-to-group scatter,
2 .. = cross-section for scatter from group g to group g°

gg
G

ZSQ = Ezgﬁk
k=1

* Multigroup scattering
— For particle with energy E, determine initial energy group g
— Select exit energy group g’ by discrete sampling from .

— g—g’
pg’ -

2,
— Sample exit energy uniformly within bound of group g’
— Direction

» For P, scattering - use procedure for isotropic lab scatter

« For P, scattering - sample mu from linear PDF, then select new direction
(see next section on elastic scatter)



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 166

Elastic Scattering, Target-at-rest

M., =COS 0,
Mjap = COS 0,

0 = scattering angle,
cm or lab

Sample ., from tabulated PDF data, f(u,, )

Use kinematics to getE',, & M.,

Sample azimuthal angle @ uniformly on (0,21r)

Rotate particle direction using p_,, & @
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Sampling the Scattering Direction-cosine, y

» Typical representations for f(ju_,,)

— Histogram or Equiprobable Histogram PDF

-1 +1
Hem

— Piecewise linear PDF

Mem
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Elastic Scatter - E' & p,,

» Target-at-rest elastic scatter in lab system — kinematics
(from conservation of energy & momentum)

. lab.........
e @ o
B E.A2+2Aucm+1
(A+1)?
1+ Al

Where A =(mass target)/(mass particle)
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Exit Direction

* Rotation from (u,v,w) to (u’,v',w') using p., & @
H= plab

¢ =2mg

u=uu+

\1—-p? (uw cosd — vsin )
V11— w?

V=LV + W/1—!~12 (VW cos O+ usind)
=4 2 If u closeto1,
1-w special coding may be
used to avoid roundoff

w‘=uw—\/1—u2 \1-w? cos @



— Law 1
— Law 2
— Law 3
— Law 4
— Law 5
— Law 7
— Law 9
— Law 11
— Law 22
— Law 24
— Law 44
— Law 61
— Law 66
— Law 67
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Inelastic Scattering - MCNP

ENDF law 1 - Equiprobable energy bins

Discrete photon energies

ENDF law 3 - Inelastic scatter from nuclear levels

ENDF law 4 - Tabular distribution

ENDF law 5 - General evaporation spectrum

ENDF law 7 - Simple Maxwell fission spectrum

ENDF law 9 - Evaporation spectrum

ENDF law 11 - Energy dependent Watt spectrum

UK law 2 - Tabular linear functions of incident energy out

UK law 6 - Equiprobable energy multipliers

ENDF law 1, lang 2, Kalbach-87 correlated energy-angle scatter
ENDF law 11, lang 0,12, or 14 - correlated energy-angle scatter
ENDF law 6 - N-body phase space distribution

ENDF law 7 - correlated energy-angle scatter
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Other Collision Physics - MCNP

— Emission from fission

— Delayed neutron emission

— S(a,B) scattering for thermal neutrons

— Free-gas scattering for neutrons

— Probability tables for the unresolved resonance energy range for neutrons

— Photoelectric effect

— Pair production

— Compton scattering (incoherent)
— Thomson scattering (coherent)
— Fluorescent emission

— Photonuclear reactions

— Electron interactions - condensed history approach
« Stopping power, straggling, angular deflections
* Bremsstrahlung
» K-shell impact ionization & Auger transitions
» Knock-on electrons
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Secondary Particle Creation

« Consider a collision which results in fission
wgt * vZ /2, = expected number of fission neutrons produced per collision

 To sample the number of neutrons produced in the collision

— Let r=wgtevZ /2,
n=int[r]

— Then, Produce n fission neutrons with probability 1
and an additional fission neutron with probability r-n

— Example: wgtev2 /2,.=1.75

If §<.75, produce 2 neutrons, otherwise produce 1

or
Produce int[1.75+ ] neutrons
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Alternative Schemes for Flights/Collisions
O - @
. Conventional scheme \
— Particle weight constant during flight

— Use Z; to determine distance-to-collision, = -Ing/ Z;

— Change weight only on collisions
— For pathlength absorption estimator, tally wgt-s -z,
— Most common scheme for reactors & shielding applications

e Continuous absorption
— Particle weight decreases continuously during flight, due to absorption

wgt(s) = wgt, -e™°
— Use % to determine distance-to-scattering, s = -Ing/ X
— For pathlength absorption estimator, tally wgt, - (1- e %)

— No absorption in collision
— Typical use in astrophysics (Implicit Monte Carlo codes)
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Tallies
&
Statistics
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Monte Carlo Calculations

Geometry
* Which cell is particle in?
+ What will it hit next?
* How far to boundary?
- What’ s on other side?
* Survival?

Physics Tallies
* How far to collision? * Tally events of interest
* Which nuclide?

« Compute results

* New E, direction? < » |- Compute statistics
- Secondaries? - Balances
* Survival? * Performance stats

mchnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,.....
* During a history, tally the events of interest
 Upon completing a history, accumulate total scores & squares

« After completing all histories, compute mean scores & standard deviations
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Monte Carlo Estimates of Integrals

Given a function R(x), where x is a random variable with PDF f(x),

— Expected value of R(x) is R=

— Variance of R(x) is 52

Monte Carlo method for estimating R:
make N random samples x; from f(x)

— Then
z R(x;)

L

[R(x) f(x) dx

| RZ(x) f(x) dx — .2

— Central Limit Theorem states that for large N,
the PDF of R approaches a Gaussian distribution

— That is, if the Monte Carlo problem is repeated,

R will be normally distributed

LA-UR-16-
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Laws of Large Numbers

Let x,, X,, ..., Xy be a sequence of independent, identically distributed
random variables each with a finite mean E[x]=p and let

Xy = 1Nx
N = — .
N

« Weak Law of Large Numbers
Forany €¢>0
lim P(xy—p/>e) = 0
N—oo

Tells how a sequence of probabilities converges

« Strong Law of Large Numbers

P( lim \iN—u\>£J =0
N—>o

Tells how the sequence of IID random variables behaves in the limit
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Central Limit Theorem

 Central Limit Theorem

o _ o 1 42
” Prob —a— < < +b—}=—Tetdt
lim Fro {“ N RPN T V2

N—oo

+1o0: Prob{ —% < X < !»l"'%}:%%

- c
Note: 32% of the time,X should be outside rangeM * N

+ 2 o Prob{ —% < X £ u+ﬁ}=95%

2
Note: 5% of the time, x should be outside range p=* T:l
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Tallies & Statistics

180

* For a given history, tally events of interest
— Example - surface crossings

» For each particle crossing surface A, accumulate the weight each time a
particle crosses that surface

A particular particle may cross the surface more than once

* Progeny of that particle (e.g., another particle created by splitting) may
also cross that surface one or more times

* When the history is complete, add the score & score? to
accumulators for the problem

S1problem = S1problem T (Shistory)
SZproblem = 82problem + (Shistory)2

« When all N histories are complete, compute final mean score &

standard deviation 1
mean score = N e S1

2
stddevof mean = 1 SZ— S1
N-1 N N
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Variance of the Population vs. Mean

181

« Given a set of random samples, Xx,, X,, ..., Xy

B 1 &

= — X.

— Mean X N
j=1

— Population variance
textbooks]

j=1

— Variance of the mean

62

\®)

O_ =

N
L
X \/N

1 N
= N2

J

1
N

1
N

[what you normally see in statistics

N 2 N
1 y
LS| =i3e-
J N J
j:] j:l

[what you normally find in MC codes]

L3nox
J
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Tally Bins

« Tallies can be made for selected events & portions of phase space:
— Range of energies, E, - E,
— Range of particle times, t,-t,
— Specified cells
— Specified surfaces
— Specified range of n-Q for surface crossings
— Specified reaction cross-sections X,
— Secondary particle production
— Energy deposited in cell
— Conditional events, e.g., absorption in cell B due to source in cell A
— Energy of neutrons causing fission
— Scattering from energy range E,-E, to range E;-E,
— Etc.
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Flux & Current

» Angular flux ¥(r.E.Q)
E

* Flux o(r)= dej dQY¥(r,E.Q)
E, 4n

— Scalar quantity
— Total distance traveled by all particles in a cm3 per second

— Units: distance / cm3-sec = 1/cm2-sec

e Current
— Number of particles crossing surface per second per unit area
— Units: 1/ cm2-sec

— Partial current: in + or - direction only, J* or J-
— Net current= J=J*-J

E
J)= | dE[ dQ fie Q@ ¥(r E.Q)
E, 4n

E E
J (=] dE [dQ e Q¥ EQ) J =] dE [dQieQ¥(rEQ)
E, heQ>0 E, neQ<0
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Reaction Rates

* For a particular reaction "x"

E
R, =] dE|dQ¥(r.EQ)Z, (rE)
E, 4

— Reactions per cm? per sec

» Collision density

E
cr)= [ dE | dQ¥(r.E.Q) = (r.E)
E, 4

* Energy deposition (average per collision)

E
Egeposited () = | dE | dQ¥(r.E.Q) =1 (r E) K(r E)
E, 47

where K(r.E)=average E deposited per collision



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 185

Analog vs. Weighted Monte Carlo

* Analog Monte Carlo
— Faithful simulation of particle histories
— No alteration of PDFs (l.e., no biasing or variance reduction)
— At collision, particle is killed if absorption occurs
— Particle is born with weight =1.0
— Weight unchanged throughout history until particle is killed
— Score 1.0 when tallying events of interest

 Weighted Monte Carlo (non-analog)
— Alter the PDFs to favor events of interest
— Particle is born with weight = 1.0
— Weight is altered if biased PDF is used
— Typically, particle always survives collision & weight is reduced by P,

— Weight can also be changed by Russian roulette/splitting & other
variance reduction techniques

— Score wgt when tallying events of interest
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Tally Types

» Current tallies
— Surface crossing estimator

* Flux tallies
— Pathlength estimator
— Collision estimator
— Surface crossing estimator
— Next event estimator (point detector)

* Reaction rate tallies
— Any of the above flux estimators times a cross-section

* Energy deposition tallies

— Any of the above flux estimators times 2; times energy
deposited per collision



¢
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Basic Tallies

LA-UR-16-

187

Current across surface

Flux in a cell

1
J=— wgt
W all %ts

crossing surface 7

W = total source weight

J N\

Flux on surface

1
V-W, flights

in cell

0) wgt e dist

V = cell volume
W = total source weight

Flux at a point

_ 1 ) wat .
A-W 4

all flights
crossing surface 7

A = surface area
W = total source weight
M = Q e [surface normal]

J X

W

~3.R

1 p(u)e
- t.
P=w % Y o

collisions
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Current Tallies

* For each particle crossing surface, tally the particle weight

« Divide by total starting weight & surface area to get current

_‘L\’gtz

1

all
particles
crossing \ T~
surface

wgt;

W = total starting weight
A = surface area

« Typically, keep separate tally for outward partial current for each
surface of a cell

« Can get net current by combining partial currents
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Flux Tally - Pathlength

* For each particle flight within a cell, tally (pathlength*weight)

» Divide by cell volume & total starting weight to get flux estimate

1
WYV

() . Zdjowgtj

all
particle
flights
incell

W = total starting weight
V = cell volume
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Flux Tally - Collisions

LA-UR-16-

190

« Since (Z;@) is collision rate, for each collision,
tally (wgt/z;) to estimate flux

» Divide by total starting weight & cell volume

o= 1o 3 M9
collisions
incell

wgt; = weight of particle entering collision

W = total starting weight
V = cell volume
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Flux Tally - Surface Crossing

« Consider particles crossing a surface
— Put a "box" of thickness a around the surface
— Pathlength estimate of flux in the box

1 a
¢= o D wgtje ™
WaA ‘Mj‘
particles
crossing
surface

where |1; =cos0;

— Note that a cancels out : :
— Take the limit as a—0 O R :

« Surface crossing estimate of flux “a
1 wgt; .
0= ¢ where 1. =Q.eS
WA ‘!»1 j‘ J :
particles
crossing

surface
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Flux Tally - Surface Crossing

« Complication: wgt/l; can be very large for small ;
— Usual solution, based on theory from FH Clark, "Variance of

Certain Flux Estimators Used in Monte Carlo Calculations”,
Nucl.Sci. Eng. 27, 235-239 (1967)

— For small |u|, thatis, -e <u<g, (where € is small), ifitis
assumed that the flux is only isotropic or linearly anisotropic,
then the expected value of 1/|u| is 2/e.

« Actual tally procedure:
— If |u|<e, then replace |u| by €/2 to score an expected flux.

— This results in a reliable variance, without affecting the flux
estimate significantly.

* MCNP uses £=.1. Many other codes use £=.001
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Flux at a Point

Instead of estimating flux for a cell or surface, it may be useful to
estimate flux at a point

— Probability of a history trajectory going through a particular point is
zero

Use a "next event estimator” to get flux at a point

— Regardless of the actual outcome of simulating a collision,
estimate what would happen if the particle scattered exactly in

the direction of a point detector

Actual path Expected ¢ score=wgt'e Psc W), exp{ T >+ (E )ds}

after collision 2T R

where wgt = weight after collision
P<c (L) = scatter PDF evaluated at u

Pathto . E’ = energy corresponding to
point detector‘.
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Flux at a Point

- Expected score has 1/R? singularity - collisions close to detector can
result in large scores
— Point detector estimator has finite mean, but infinite variance

due to 1/R? singularity

* To keep variance finite:
— For collisions within radius R of detector, replace the factor

exp{—? pIR (E’)ds}
0

R2
by volume average assuming uniform collisions inside sphere
-21(E')s
j:e ds _ 1_ oZrE R
1Rz F
TSZdS 3 T( )

0
— Typically choose R to be ~half a mean free path
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Reaction Rate Tallies

LA-UR-16-

195

« Tally (flux-estimator)+(cross-section)
 Example - pathlength tallies

After each flight,

— Flux
— Total absorption
— Nu-fission

— U235 absorption

tally

wgte d;
wgted;e X,
wgted;e v,

U 235 U 235

Wgt‘dj.N GA
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Mesh Tallies & Fission Matrix

 Mesh Tallies
— Impose a grid over the problem & tally flux or reaction rates in

each grid cell

* Fission matrix
— Impose a grid over problem
— Tally F(I—J) for source in cell | causing fission in cell J

— For N cells in grid, NZ? tallies
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Cautions
« Some codes (e.g., MCNP) report the RE = G_i
mean score & relative error; X

— RE should decrease smoothly with 1/YN dependence as more histories are run

» Tallies are reliable only if "enough" histories traverse the portions of
problem phase space being tallied
— Undersampling can lead to questionable or erroneous values of
the mean score & relative error

— Indicators of undersampling:
« Large RE, RE > .1
* RE does not decrease smoothly as 1/N
» A few histories have very large scores

« MCNP performs statistical checks on selected tallies to try to detect
undersampling effects
— Large RE
— Variance of the variance (VOV)
— Tally fluctuation charts (distribution of scores)
— Slope of tails in tally fluctuation charts
— Etc.
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RE & FOM

LA-UR-16-

198

« Some codes (e.g., MCNP) report the mean score & relative error

Ox

X

RE =

« Some codes report a Figure-of-Merit for selected tallies

1

FOM = ———
REZe T

Where T = computer time used

— RE2~ 1/N, where N is the total number of histories
-~ T~N
— Therefore, FOM should be roughly constant

— Used for comparing effectiveness of different variance reduction
schemes



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 199

Combining Independent MC Results

Given N sets of (mean,std-dev) for independent Monte Carlo

calculations, (x,,0,), (X, 0,), ..., how should the results be
combined?
1 N1
Wi= 5 W= -
Gj j=19]

Weighting factors ~ 1/0?
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Combining Correlated Tallies

« Suppose 2 estimators, x and y, are correlated, such as the path &
collision estimator for Keff

N N
7 1 o 1
X—NEXj Y—EZYJ-
j=1 j=1
, N
c2=1 _ 1 -1 —X-V
G x NEX' —ﬁZY' ny_Nzijj Xy
j=1 j=1 j=1
Minimum variance combination of x & y
2 2
o=__ 0¥~ %xy
62-202 +02
X xy TPy
mean,, = oax + (1-o)y

a’cl+20(1- oc)c + (1- 002 2

N-1

std—dev, , = \/
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Eigenvalue Calculations - |

 k-and a- Eigenvalue Equations
 Power Iteration
e Convergence
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Reactor Analysis with Monte Carlo

Geometry Model (1/4) K vs cycle H,,. vs cycle

w00 00 20 000

Assembly Powers Fast Flux

r

S
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The Challenge

For Monte Carlo calculations of just K-effective,
plots of k... Vs cycle are adequate to judge convergence.
To compute power distributions, heating distributions,
dose rates, production/depletion, & local reaction rates,

new tools are needed to judge convergence of the source
distribution

 The source distribution takes longer to converge
than K-effective

 How do you tell if a 3D distribution has converged ?

* For the past 40 years, people calculating power
distributions or production/depletion with Monte Carlo
were "flying blind" -- no tools were available to assess
source convergence
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Source Distribution Convergence

Fuel Storage Vault K vs cycle H,,. vs cycle

I T T B I S T
HEH b P4 IR I PR+ 1 A 1 B 44 ,
| T T T T T e et PP o4
! TN PG 1 N AN 1 B A 1
' I T S e T I B T e
i H N S 2 | D =3 I 2 ;
x o

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

N
o
N
e
Y o)
(em)
O

Assembly Heating Distribution

L H B
«
HEEN

For this calculation,
 Should discard ~20 cycles if calculating Keff only
« Should discard ~2000 cycles if calculating heating distribution



K- and o-
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Time-dependent Transport

* Time-dependent linear Boltzmann transport equation for neutrons,

206

with prompt fission source & external source

1 9y(f,EQ)

\'

19y(F,EQY)

\'

ot

ot

—

QFEQY + [[w(FE.Q NI E >EQ &)dYdE

XrE) [[VE(FE)w(F.E Q1) dYdE
4t

- Q-V + Z(TE) | w(TEQ

= Q+ [S+M-y - [L+T] v

» This equation can be solved directly by Monte Carlo, assuming:
— Each neutron history is an IID trial (independent, identically

distributed)

— All neutrons must see same probability densities in all of phase space
— Usual method: geometry & materials fixed over solution interval At
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Time-dependent Transport

207

1 9y(F,EQt)
Y ot

= Q+ [S+M]-y — [L+T] v

 Monte Carlo solution (over At, with fixed geometry & materials)
— Simulate time-dependent transport for a neutron history

— If fission occurs, bank any secondary neutrons.
— When original particle is finished, simulate secondaries till done.

— Tallies for time bins, energy bins, cells, ...

- Attime t, the overall neutron level is N(t)= _m W(EQY e 40
Y

rEQ

 Alpha & T (reactor period) can be defined by:

N(t)= Ny e*t = NyelT
azl _ In N(t) - In N,
T t—1,

This is the "dynamic alpha”, NOT an eigenvalue !
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Particle Histories

LA-UR-16- 208

« Random Walk for particle

ﬁ

« Particle History

Source
- select ,E,Q

Track through geometry, Collision physics analysis,

- select collision site randomly  jw=slp| - Select new E,Q randomly
- tallies - tallies

Random
Walk
Random d
Walk
Random alk_|~~~~=[Random
> Walk Walk

Secondary
Particles

Random
Walk

Random
Walk
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Fixed-source Monte Carlo Calculation

History 1

Source
-select ,E,Q

History 2

Source
- select r,E,Q

q

History 3

Source
- select r,E,Q

q

LA-UR-16-
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Random
Walk

Random
Walk

Random
Walk

—

-

—

Random
Walk

Random
Walk

Random
Walk

Random
Walk

—

Random
Walk

>

Random
Walk

Random
Walk

/V

Random
Walk

Random
Walk

/|

Random
Walk

I*

Random
Walk

I*

Random —
Walk \
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Alpha Eigenvalue Equations
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» For problems which are separable in space & time, it may be advantageous to
solve a static eigenvalue problem, rather than a fully time-dependent

problem

« Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E,Q,t) =0
3. Separability: ¥(r,E,Q,t) = ¥ (r,E,Q) e*,

« Substituting ¥ into the time-dependent transport equation yields

[S+M|¥,

[ L+T+ %} ¥ (7,EQ)

— This is a static equation, an eigenvalue problem for o and ¥
without time-dependence

- o is often called the time-eigenvalue or time-absorption

- o -eigenvalue problems can be solved by Monte Carlo methods
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K.+ Eigenvalue Equations
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Another approach to creating a static eigenvalue problem from the time-

dependent transport equation is to introduce K_ g, a scaling factor on the
multiplication (v)

Assume:

1. Fixed geometry & materials

2. No external source: Q(r,E,Q,t) =0
3. d¥/ot=0: v = vk

Setting d¥W/ot =0 and introducing the K, eigenvalue gives

L+ T, (FEQ) = S+Ki|v| ¥,

eff

— This is a static equation, an eigenvalue problem for K+ and ¥, without
time-dependence

— K, is called the effective multiplication factor
— K. and ¥, should never be used to model time-dependent problems.
K.s-eigenvalue problems can be solved by Monte Carlo methods
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Comments on K and oo Equations

 Criticality
Supercritical: o>0 or Keir > 1
Critical: o=0 or Kois = 1
Subcritical: a<0 or Keir < 1

K VS. o eigenvalue equations
— ¥, (r,E,Q) # ¥ (r,E,Q), except for a critical system

- oo eigenvalue & ¥, eigenfunction used for time-dependent problems
— K.+ eigenvalue & W, eigenfunction used for reactor design & analysis

— Although o = (K_1)/A, where A = lifetime,
there is no direct relationship between ¥ ,(r,E,Q) and ¥ (r,E,Q)

« K.¢ eigenvalue problems can be solved directly using Monte Carlo

e o eigenvalue problems are solved by Monte Carlo indirectly
using a series of K_ calculations
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Comments on K and oo Equations

Kequation [L+T]WY,

o equation [L+T+ oalv]¥,

[S + 1kM] W,

[S + M1,

The factor 1/k changes the relative level of the fission source

The factor o/v changes the absorption & neutron spectrum
— For o > 0, more absorption at low E =» harder spectrum
— Double-density Godiva, average neutron energy causing fission:

k calculation: 1.30 MeV

o calculation: 1.68 MeV

For separable problems, ¥(r,E,Q,t)= ¥, (r,E,Q) e

No similar equation for k, since not used for time-dependence



Power lteration
&
Convergence
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K-eigenvalue equation

LA-UR-16-

AE

(L+T)¥ =S¥+ LMY

where
L = leakage operator S = scatter-in operator

T = collision operator M = fission multiplication
operator

* Rearrange (L+T-S)¥ = LMY

eff

- (L+T-8)"'M¥
- F¥

Y
Y

=» This eigenvalue equation will be solved by power iteration

LII(”"‘1)_ 1 .F\.Ij(n)
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Power lteration

216

Diffusion Theory or
Discrete-ordinates Transport

1. Initial guess for K ; and ¥
K 0, 9O
2. Solve for w1

Inner iterations over space or
space/angle to solve for P+

(L+T-S)¥™ = My

<

3. Compute new K«

(n+1)
(n) . 1'M\P !

K — Keff YD

eff

4. Repeat 1-3 until both K" and W ("1

have converged

Monte Carlo

. Initial guess for K4 and ¥

K, {0, )

. Solve for ¥ (n*1)

Follow particle histories
to solve for ¥ (n+1)

(L+T—S)¥™ = _L Mg

K‘e?f

During histories, save fission sites
to use for source in next iteration

. Compute new K_¢

During histories for iteration (n+1),
estimate K 41

o o) My ™ dr
Keff :Keff'

jdeF

. Repeat 1-3 until both K ™" and ¥ 1

have converged

. Continue iterating, to compute tallies
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Power lteration

* Power iterati:on for Mon!e Carlo k-e':ffective calc_;ulation

Initial = Batch 1 = Batch2 : Batch3 : Batch 4
Guess Ker! Kex? Kes® Keg?

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
Source Source Source Source Source

‘ Source particle generation _ Neutron
eu

. Monte Carlo random walk
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o-Eigenvalue Calculations

« Eigenvalue equation with both K 4 & o
- o is a fixed number, not a variable or eigenvalue
— Find the k-eigenvalue as function of o, K(o)

o

{L+T+E}‘PQ(F,E,§2) _ S+Ki|v| p
V

eff

* Note: Ifa<O
— Real absorption plus time absorption could be negative
— Move a/v to right side to prevent negative absorption,
— -a/v term on right side is treated as a delta-function scatter

— Select a fixed value for o

— Solve the K-eigenvalue equations, with fixed time-absorption o/v
— Select a different o and solve for a new Keff

— Repeat, searching for value of o which results in Keff =1
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K- and a-Eigenvalue Calculations

LA-UR-16-

219

. R-elgenva|ue solution

Loop for Power Iteration for K

. Loop over neutrons in cycle
. . neutron history
. oo Monte Carlo

e oa-eigenvalue solution

Loop for o search iterations
» Loop for Power Iteration for K

o o Loop over neutrons in cycle
o o . neutron history
° o °oo Monte Carlo

=*» Find K(o), then search for o that gives K(o)=1
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K-Calculations
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Monte Carlo

K, Deterministic (S,)

Discard Tallies

\ 4

-
< 14

Iteration, n

Guess an initial source distribution

Iterate until converged (How do you know ???)
Then

— For S, code: done, print the results

— For Monte Carlo: start tallies,

keep running until uncertainties small enough

Details? Bias? Statistics?
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Monte Carlo Solution of K 4 Problems

Note: batch = cycle = iteration = generation

* Initialize
— Assume a value for the initial K 4 (usually, K, = 1)
— Sample M fission sites from the initial source dlstrlbution

* Foreachcyclen, n=1...N+D
— Follow histories for all source particles in cycle
« |f fissions occur, bank the sites for use as source in next cycle
» Make tallies for K (™ using path, collision, & absorption estimators
« If n<D, discard any tallies
« If n>D, accumulate tallies

— Estimate K

cycle

« Compute final results & statistics using last N cycles
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K-Calculations -- Power Iteration

- Power iteration procedure:

.. .

- s int
1. Initial guess for K and W Forw o e I
K, ), O

2. Solve for ¥ ("+1) [Monte Carlo random walk for N particles]

n+1 n
\P( ) = K(1“) F‘P( ) Source points ./.\
eff For ¥ (n+1)
®

3. Compute new K
[Mpegr
K — k),
eff eff J’M\P(n)dF

4. Repeat 1-3 until both K ") and ¥ (™) have converged
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K-Calculations -- Banking Fission Sites
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* During a particle random walk,

W9t°z— = expected number of fission neutrons
T created at collision point

« Averaged over all collisions for all histories, the expected value
for wgt-v2 /2; is K

* In order to bank approximately the same number of fission sites in
each cycle, the current value of Keff is used to bias the selection
of fission sites at a collision:

R:Wg Ei, n=|_RJ
> K

If E<R-n, store n+1 sitesinbank with wgt =K

Otherwise, store n sites inbank with wgt' =K
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K-Calculations -- Renormalization

224

* N, = number of particles starting cycle J,

N', = number of particles created by fission in cycle J
(number of particles stored in fission bank)

— The expected value for N'; is:E[ N';] = K4 N,
— (N',/N,) is a single-cycle estimator for K

« To prevent the number of particles per cycle from growing
exponentially (for K>1) or decreasing to 0 (for K<1), the particle
population is renormalized at the end of each cycle:

— In some Monte Carlo codes, the number of particles starting each cycle
is a constant N. Russian roulette or splitting are used to sample N

particles from the N' particles in the fission bank. (All particles in
fission bank have a weight of 1.0)

— In other codes, the total weight W starting each cycle is constant. The
particle weights in the fission bank are renormalized so that the total
weight is changed from W' to W. (Particles in fission bank have equal
weights, but not necessarily 1.0)
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Single-cycle Keff Estimators

« Pathlength estimator For Keff

)
W = total weight
Koath = ngt jdjvZe | /W starting each
all cycle
\ flights )

* Collision estimator for Keff
( \

VX
Keollision = E Wgtj'ZF W

all T
\collisions }

» Absorption estimator for Keff

( )
VX

Kabsorption = E Wgtj' 5

all A

\ absorptions )
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K-Calculations -- Bias

 The renormalization procedure used at the end of each cycle
introduces a small bias into the computed Keff

— Renormalization involves multiplying particle weights by (W/W'),
where W = total weight starting a cycle,
W'= total weight at the end of a cycle.

— W'is a random variable, due to fluctuations in particle random walks.

* Theoretical analysis of the MC iteration process & propagation of
history fluctuations gives

biasinK,y = ——-

ol [sum of correlation coeff's
Keff

between batch K's

— M = histories/cycle

— Bias in Keff ~ 1/M
« Smaller M =¥ larger cycle correlation =¥ larger bias in Keff & source
« Larger M =» smaller cycle correlation =» smaller bias

[T Ueki, "Intergenerational Correlation in Monte Carlo K-Eigenvalue Calculations”, Nucl. Sci. Eng. (2002)]
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K-Calculations -- Bias

* For a simple Godiva reactor calculation:

Keff vs 1/M
0.999
—&— Keff = = 'Linear (Keff)
E L3
5 \\ 1
0.995 3
M=100
i\‘ﬁﬁso —9
0.994 T ° . M=20
& M=25 T
5
L 2
0.993 =
0.992
0 0.01 0.02 0.03 0.04 0.05 0.06

i/M
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K-Calculations -- Bias

« Observed PDF for single-cycle Keff, for varying M

1000 particles/cycle

frequency

— Bias

10 particles/cycle

Single-cycle Keff

- Bias in Keff is negative: K_,. < K.

* Bias is significant for M <10 particles/cycle
small for M~100
negligible for M > 1000
0 for M

« Recommendation: Always use 10,000 or more particles/cycle
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Power lteration & Convergence
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Monte Carlo

K, Deterministic (S,)

Discard Tallies

\ 4

-
< 14

Iteration, n

Guess an initial source distribution

Iterate until converged (How do you know ???)
Then

— For S, code: done, print the results

— For Monte Carlo: start tallies,

keep running until uncertainties small enough

Convergence? Stationarity?
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K-eigenvalue equation

LA-UR-16-

» Use operator (or matrix) form to simplify notation

(L+T)¥ =S¥ +-M¥

where
L = leakage operator S = scatter-in operator

T = collision operator M = fission multiplication
operator

 Rearrange

(L+T-S)¥ eﬁM‘P
V=l (L+T-8) '™
V=l FY

=» This eigenvalue equation will be solved by power iteration
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Power lteration - Convergence

* Expand ¥ in terms of eigenfunctions u;(r,E,Q)

Jugdv =3, a, = [¥-Gdv

u=—F-u k, >k, >k, >... k, =k

effective

« Expand the initial guess in terms of the eigenmodes
(0) _ (0)r
PO = %aj U
J:

« Substitute the expansion for ¥ into power iteration equation

1 w1 1 1
K™ ¥ = K 'k(n—1) T KO) '

n+1

- koi| ) |1 aI(O) (kj] o
= ——=-ay U+ D) |—||—] -Uu
[HK e )

W) — =R
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Power lteration - Convergence

LA-UR-16-

232

a(o) k n+1
¢ < [constant]- (ﬁj(q U, +
a K
0 0
(0) "
a K K,
et o | ;0)).( I (e e
a0 k0 k0
- Because k,>k,>k,>..., allofthe red terms vanish as n—«
— P(+) < constant - u,

 After the initial transient, error in ¥ is dominated by first mode
— (k,/ky) is called the dominance ratio, DR or p
— Errors in ¥ (") die off as ~ (DR)"

* For problems with a high dominance ratio (e.g., DR ~ .99),
the error in K+ may be small, since the factor (k,/k, - 1) is small.

— K4 may appear converged,
even if the source distribution is not converged
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Power lteration - Convergence

« After n iterations, J' mode error component is reduced by the factor
(kilko)"

. Since 1 > kik, > kyik, > kik, > ...,
after the initial transient, error in " is dominated by first mode:

o (a?) (k) .
¢ < [constant] - | U, + ag)o) : k; U +...

* (ki /k,) is called the dominance ratio, DR or p

— Errors die off as ~ (DR)"

— To reduce 10% error > .1% error 7/\//\\ Initial guess

DR~.9 - 44 iterations Exact solution
DR~.99 - 458 iterations
DR~.999 - 2301 iterations
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Power lteration - Convergence

Typical K-effective convergence patterns

» Higher mode error terms die out as (k,/k, )", for n iterations

* When initial guess is concentrated in center
of reactor, initial K is too high K
(underestimates leakage)

Iteration, n
* When initial guess is uniformly distributed, NSNS
initial K .. is too low (overestimates leakage) K
Iteration, n

* The Sandwich Method uses 2 K calculations -
one starting too high & one starting too low.
Both calculations should converge to the same result.
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Power lteration - Convergence
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« Keff is an integral quantity - converges faster than source shape

value divided by true mean

Keff calculation for 2 nearly symmetric slabs,
with Dominance Ratio = .9925

1.1

0.8 -

0.7

i Al b it MR AN ll*‘,-v"‘uw},(- !
keff

source in
right slab

T T T T T T T T T

100 200 300 400 500 600 700 800 900 1000

cycle
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Power lteration - Convergence
.

Noise (fluctuation)

L

 For Monte Carlo power iteration,
statistical fluctuations in source shape die out gradually over a
number of successive iterations.
— Persistence of the noise over successive iterations gives correlation among
source distributions in successive iterations. (Positive correlation)

Exact solution

— Correlation directly affects confidence intervals:
Serial correlation in the source distribution = larger confidence intervals

=» Most Monte Carlo codes ignore these correlation effects
& incorrectly underestimate the confidence intervals
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Power lteration - Convergence

237

Summary

Local errors in the source distribution decay as ( k /k, )"
— Higher eigenmodes die out rapidly, convergence dominated by k,/k,

— High DR -» slow convergence
— High DR =¥ large correlation =» large error in computed variances

Errors in K . decay as (k,/k,—1) * ( k,/k; )"
— HighDR =» k,/k,~1 =» small error

+ K errors die out faster than local source errors
— K is an integral quantity - positive & negative fluctuations cancel

High DR is common for

— Large reactors, with small leakage

— Heavy-water moderated or reflected reactors
— Loosely-coupled systems

=» If local tallies are important (e.g., assembly power, pin power, ...),
examine their convergence - not just K_; convergence
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Eigenvalue Calculations - li

e Stationarity Diagnostics

 Wielandt & Superhistory Methods
e Dominance Ratio
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Keff Calculations

Theory Lectures

LA-UR-16-

pA L

* Plots of single-cycle Keff or cumulative Keff are sometimes difficult to
iInterpret when assessing convergence

keff

0.905

0.9 -
0.895 -

P I g

0.87 -

0.885

0.8

(o]

0.875

0.865

0.86

Cycle k
50000 histories per cycle

— uniform initial source
— initial source at (1,3) lattice

200

400 600

cycle

800

1000
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Introduction

* Monte Carlo codes use power iteration to solve for K & W for eigenvalue
problems

L+T-9)¥" = LMy

L = loss to leakage S = gain from scatter-in
T = loss to collisions M = gain from fission multiplication

 Power iteration convergence is well-understood
YO(F) = G,(F) + a-p"-0(F) +
ki = koo [1 = p"'(=p)-g; + ]

— First-harmonic source errors die out as p", p=k,/ky <1
— First-harmonic K  errors die out as p"1(1-p)
— Source converges slower than K

* Most codes only provide tools for assessing K_; convergence.

> MCNPS5 also looks at Shannon entropy of the source distribution, H,..
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Source Convergence
&
Shannon Entropy
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Keff Calculations

« Initial cycles of a Monte Carlo K-effective calculation should be
discarded, to avoid contaminating results with errors from initial guess

— How many cycles should be discarded?
— How do you know if you discarded enough cycles?

Keff(n)

Discard Tallies

P e
< »v

Iteration, n

* Analysis of the power iteration method shows that Keff is not a reliable
indicator of convergence -- K 4+ can converge faster than the source
shape

\ 4

« Based on concepts from information theory,
Shannon entropy of the source distribution is useful for
characterizing the convergence of the source distribution
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Monte Carlo Techniques for Nuclear Systems — Theory Lectures

K.+ Calculations - Stationarity Diagnostics

+ Divide the fissionable regions of the problem into Ng spatial bins
— Spatial bins should be consistent with problem symmetry

— Typical choices: --1 bin for each assembly
-- regular grid superimposed on core

— Rule-of-thumb for number of spatial bins:
Ng ~ (histories/batch)/25 or less

Why?
* Would like to have >25 fission source sites per bin to get good statistics

* |f source distribution were uniform, ~25 sites would be in each bin
« Shannon entropy of the source distribution

(# source particles in bin J)
Z p,-In,(p,), where p,=
(total # source particles in all bins)




Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16-

K.+ Calculations - Stationarity Diagnostics

244

« Shannon entropy of the source distribution

H(S) _ EpJ .|n2 (pJ), where D, = (# source particles in bin J)

J=1 (total # source particles in all bins)

— 0 = H(S) = Iny(Ng)
— Note that p,In,(p,) =0 if p,=0

— For a uniform source distribution, H(S) = In,( Ng)
— For a point source (in a single bin), H(S)=0
— For any general source, 0 = H(S)= In,(Ng)

« H(S™) provides a single number to characterize
the source distribution for iteration n (no physics!)

=» As the source distribution converges in 3D space,
a line plot of H(S() vs. n (the iteration number) converge
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Criticality Calculations - Convergence

* PWR 1/4-Core (Napolitano)

kocode datra from fife rimipf
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Criticality Calculations - Convergence

kocode data from Ffife rimipe

- 2D PWR (Ueki) _, ;

K vs cycle -
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Criticality Calculations - Convergence

* Loosely-coupled array of spheres (Problem test4s)

K vs cycle
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H,,. Convergence vs Number of Spatial Bins

* For large number of bins, H_, . approaches uniform upper limit

 Use 10s or 100s of bins, not 1000s or more

kcode data from file 10000rx

B
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H,,. and 2D vs 3D Spatial Bins

* For 3D problems, using a 2D bin layout for H_,. may incorrectly
assess convergence

* Important to use 3D bin layout for 3D problems

kcode data from file 5x5ybSz
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H,,. Convergence vs Neutrons per Cycle

* Problems converge at the same rate, for any number of neutrons/
cycle. (The rate depends on dominance ratio, ie, physics & geom)

More neutrons/cycle does not make problems converge faster

* More neutrons/cycle = less noise in convergence plots

Shannon Entropy
Of the Fission Source

for different neutrons / cycle

1000 - black
5000 - blue
20000 - red
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Conclusions - H_,.

253

Shannon entropy is a highly effective means of characterizing
convergence of the fission distribution

If you are computing more than just K (eg, local reaction rates,
dose fields, fission distributions, heating distributions, etc.):

Should check both k. and H_,_. for convergence

MCNP6 will compute & plot H_,,
assessing problem convergence.

as an important new tool for

The recommended MCNP6 procedures for defining spatial tally
bins and computing H_ . are effective for a variety of typical
criticality problems.

Src
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Wielandt
Acceleration

(For future versions of MCNP)

Inspired by: T. Yamamoto & Y. Miyoshi, J. Nucl. Sci. Technol. 41, No 2, 99-107 (2004)
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Wielandt Method

« Basic transport equation for static eigenvalue problems

L+ T-S)¥ = - My

L = loss to leakage S = gain from scatter-in
T = loss to collisions M = gain from fission multiplication

* Define a fixed parameter k_, such that k_ >k, (k,=exact
eigenvalue)

k, = k,+ A, A >0

e

1
» Subtract EM\P from each side of the transport equation

» Solve the modified transport equation by power iteration

L+T-S-EMYP” = (5 — )My

eff
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Wielandt Method

» Power iteration for modified transport equation
(L+T-S—gM¥™ = (A = LMy

K
P = (=) (L+ T-S— My "My™
off e ¢
W) — R(1n) Fy™
v _ (1 1\-1 (n) _ (_1 1)1
where K" = (Kg?f) _E) or K = (W"‘E)

* How to choose k,
— k. must be larger than k, (but, don't know k,!)

— k. must be held constant for all of the histories in a batch,
but can be adjusted between batches

Typically, guess a large initial value for k,, such as k,=5 or k,=2
Run a few batches, keeping k. fixed, to get an initial estimate of K «
Adjust k, to a value slightly larger than the estimated K «

Run more batches, possibly adjusting k. if the estimated K_4 changes
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Monte Carlo Techniques for Nuclear Systems — Theory Lectures

Wielandt Method

« Convergence
— Eigenfunctions for the Wielandt method are same as for basic power iteration

— Eigenvalues are shifted:

RJ:[i—iT k, >k, >k, >...

kJ ke

— Expand the initial guess, substitute into Wielandt method, rearrange to:

(0) _
P [constant][ £a1 )[i _i E_] 0, + ]

(0) _
K™ <k, |1 + 1 k. kg k— K K K, -G, + ...
k. — K, K, k. — K, K,

— Additional factor (k.-k,)/(k.-k,) is less than 1 and positive, so that the red terms
die out faster than for standard power iteration
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Convergence

« Eigenfunctions for Wielandt method are same as for
basic power iteration, but the eigenvalues are shifted

 The dominance ratio for Wielandt method is always
smaller than for power iteration

K, — K, K
pWieIandt - k k pPower p: k_1 <1, ke > kO >k1 > ...

0

=» Wielandt method will converge in fewer iterations

: Standard power iteration

K(n)

Power iteration with Wlelandt acceleration
Iteration, n
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Monte Carlo Interpretation

 Power iteration with Wielandt acceleration

(L+T-S-¢ M = (-1 — é)M‘P(”‘”

—1

/ “
Fission neutrons to follow Fission neutron source
in current iteration from previous iteration

* During neutron random walk, at each collision in fissile material:

Create these neutrons Save these neutrons as the
in the current iteration source for the next iteration

, vi. 1 , VX 1 1
”e:[wgt'z—F'k—*J ”F{Wgt' 5, '(Kmu -z]*ﬁJ
T T e

e
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Generations vs lterations

 Power method: one neutron generation per iteration
* Wielandt method: multiple neutron generations per iteration,
varies for each starting neutron
Standard power iteration Wielandt iteration
(generation model) (chain model)
Initial Batch 1 Batch 2 Batch 3 Initial Batch 1 Batch 2 Batch 3
Guess ©  Kq 0 I K@ I K4® i Guess : K, " I K@ I KO

e T s =

Batch 1 Batch 2 Batch 3 Batch 4 Batch 1 Batch 2 Batch 3 Batch 4
Source Source Source Source Source Source Source Source
@ source particle generation —Y7 Neutron
. Monte Carlo random walk ‘ Additional Monte Carlo random walks

within batch due to Wielandt method
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Choosing k,=k+ A

262

« In MCNP, the collision estimator is used for k"1, so that

k™ = k ™) + A

* For cycle n, average number of fission generations per source neutron

Cycle n

1 neutron =—> L=1+k/A >—> 1 neutron

Neutron generations

Fork ~1: A=, L=1 A=.5, L
L=11

3 A=.05 L=21
A=1,L=2 A=, L=1 =

A=.01, L=101
Typical: A=.1, .05, or .025

Smaller A =% larger average chain length, L
=» more spread in fission sites each cycle
-» faster convergence
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Numerical Testing

2D whole-core PWR test problem (Ueki)

— Ran with different shifts, A:
©, 1.0, 0.5 0.2, 0.1

— Examined convergence of source
entropy, H,,. vs A(plots next page)

— Examined FOM=1/02T vs A

A FOM

o0 168 K
1.0 188 K
0.5 212 K
0.2 188 K
0.1 184 K

For this problem, FOM was about
the same for a range of A's
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Numerical Testing

2D PWR test problem

— Wielandt shift parameter: K™ = KM icion T A
Convergence of H_,.vs A Iterations for convergence vs

||||||||| N T T T T Y T T T [N T T T N T [N N N N T Y N 1 Loy 96
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* Fuel Storage Vault (Problem OECD bench1)

Numerical Testing

2

DR = .99+
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Wielandt Method - Summary

 Wielandt Method:

— Faster convergence rate than power iteration =» fewer iterations

— Some of the particle random walks are moved from the next generation
into the current generation =% more work per iteration

— Same total number of random walks =» no reduction in CPU time

 Advantages

— Reduced chance of false convergence for very slowly converging
problems

— Reduced inter-generation correlation effects on variance

— Fission source distribution spreads more widely in a generation (due to
the additional particle random walks), which should result in more
interactions for loosely-coupled problems

=» Wielandt method will be included in future versions of MCNP
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Superhistory Method

267

« Standard generation model, solved by power iteration

\Ij(n+1) _ 1) ,F\{J(n)

Ke

* Superhistory method

— Follow several generations (L) before recomputing K+ and
renormalizing

~/ ~

P - PP i F=FY, K = (KD):

PN

« Convergence
— Same eigenfunctions as standard power iteration
— Eigenvalues are k-, k-, k)., ...
— DR'=DR!, where DR = dominance ratio for power iteration

— Fewer iterations, but L generations per iteration =» same work as power
iteration

— Same convergence rate as power iteration

 Advantages
— Reduced correlation between iterations
— Fewer renormalizations
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Superhistory Method

o Superhistory Method for Monte Carlo k-effective calculation
Example with L =2 generations/batch

Initial : Batch 1 : Batch 2
Guess . Keq" : K, 4

Batch 1 Batch 2 Batch 3
Source Source Source

Source particle generation
‘ P 9 " Neutron
' Monte Carlo random walk
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Dominance Ratio
Calculations

(For future versions of MCNP5)
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DR - Overview

 Time-series methods for computing DR

— Ueki developed a method

T. Ueki, F.B. Brown, D.K. Parsons, and D.E. Kornreich, “Autocorrelation and Dominance Ratio in Monte Carlo
Criticality Calculations,” Nuclear Science and Engineering, 145, 279-290 (2003)

— Recent extensions by Nease & Ueki provide a practical method

B.R. Nease and T. Ueki, “Time Series Analysis of Monte Carlo Fission Sources — lll: Coarse Mesh Projection,”
Nuclear Science and Engineering, 157, 51-64 (2007)

— Recent work by Nease & Brown for MCNP5

B. Nease & F. Brown, “Implementing the Coarse Mesh Method into MCNP for Dominance Ratio Calculation”,
LA-UR-07-5462 (2007)

— Accurate, regardless of mesh used for collecting statistics
— Can be used only after source has converged

* Fission Matrix method
- S§=.F-§ F,=prob fission in cell j, given fission in cell |
— Tally F;, then find eigenvalues & eigenvectors of F

— Very old - used by dozens of researchers

G. W. Morrison, J. T. Mihalczo, & D. C. Irving, “REACT and CONVERG Fortran Subroutines for Determining
Source Convergence for the O5R Monte Carlo Neutron Transport Code”, ORNL-TM-1325, (1966)

— Approximate, results are very sensitive to mesh
— Can be used before source has converged
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Comparison of Methods

* Fission matrix method:
— Accurate only for fine mesh, large number of mesh cells, N
— Fission matrix storage varies as N2

10 x 10 x 10 mesh - pretty coarse, but requires 10¢ storage
locations

— Need to find eigenvalues/vectors of nonsymmetric NxN matrix

« Godiva problem example
— Fission matrix

mesh size F-matrix size DR

2x2x2 8x8 .560
4x4x4 64 x 64 .602
8x8x8 512 x 512 .646

— Coarse Mesh & time series: 677 +-.033
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Example

272

 From Nease & Ueki (NSE, Sept 2007)
— 1-group, 2D problem
— DR from previous work (Ueki) =
— DR fission matrix  using (4x4x1)? =
using (9x9x1)? =
using (18x18x1)2 =
— DR using CMM + time series method =

cell (18,18)
|
|

|
cell (1,1)

9993 +-.0004
.988

993

997

998 +-.002

Each unitis a
of 4 cm by 4

] v= =024 cm™
[] v =0.30 cm™”

[ v =0.39cm™

DR = 0.9993 +- 0.0004 (20)
by ARMA(2,1)

Vacuum boundary
condition
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MCNP5 Implementation

273

 Both methods for DR computation were added to test version of
MCNP5

* Negligible extra CPU time for either method

* Fission matrix DR
— Can be determined early, before convergence
— Sensitive to mesh size
— Provides approximate DR
— Useful for characterizing problem convergence
— May be useful for automated convergence tests

* Coarse Mesh Method with time series analysis for DR
— Can only be used after convergence
— Independent of mesh size
— Provides accurate DR



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 274

Conclusions

« Shannon entropy of the fission distribution is a highly effective
means of characterizing convergence of the fission distribution

— MCNPS5 (version 1.40) computes & plots Shannon entropy as an
important new tool for assessing problem convergence.

— It is highly recommended that both k4 and H,,. be carefully checked for
convergence in all Monte Carlo criticality calculations.

* Wielandt's method improves convergence & reduces inter-cycle
correlation, without significant changes in CPU time
— Helps to prevent false convergence assessment
— Eliminates nonconservative underprediction of confidence intervals

« Can now reliably calculate the dominance ratio using Monte Carlo
— Fission matrix for early, approximate DR
— Coarse-mesh method with time-series for later, accurate DR
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Concerns for MC Eigenvalue Calculations

 Monte Carlo Criticality Calculations
— Methodology
— Concerns

 Numerical Results
— K. of the World Problem
— 1/4-Core PWR Problem
— Criticality Safety Problem

« Best Practices
— Discussion
— Conclusions
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MC Criticality Calculations

Methodology & Concerns
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Introduction

281

Several fundamental problems with MC criticality calculations
were identified in the 1960s - 1980s:

— Convergence of K & source distribution
— Bias in K 4 & tallies
— Underprediction bias in tally statistics

(see Lieberoth, Gelbard & Prael, Gast & Candelore, Brissenden & Garlick)

These problems are well-understood & can be readily avoided, if
some simple "best practices" guidelines are followed

Previous discussion of details:

— 2008 - PHYSOR - Monte Carlo workshop
— 2009 - M&C - Monte Carlo workshop
— 2009 - NCSD - ‘Best Practices’ paper
— 2010 - PHYSOR - Monte Carlo workshop

Presentations available at
http://mcnp.lanl.gov/publication/mcnp_publications.html
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Concerns
Power Iteration for MC Criticality Calculations ]
Initial = Generation 1 : Generation 2 : Generation 3 : Generation 4 -
Guess : Kes Ker® Ke®) Ker
./” —® ~@— -
¢ —e——o
®- ~o— . —@ @— —
- "." . ~‘
O @ QZ/:: - R

Convergence of K
& fission distribution

Keff(n)

Tallies

o
v

Bias in average
K.+ & tallies

Bias in statistics

A 4

Iteration, n

for tallies

Monte Carlo
Deterministic (S,)
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Convergence

* Monte Carlo codes use power iteration to solve for K+ & ¥ for
eigenvalue problems

 Power iteration convergence is well-understood:

n = cycle number, kju, - fundamental, k,;,u, - 1st higher mode
M(rY = 17 (r noadr
Y(r) = UO(I‘) t a,-p -U1(I’) +
(n) _ n—1
Ky = ko'[1 - p (1=-p)-g, + ]
— First-harmonic source errors die out as p", p=k,/ky <1

— First-harmonic K  errors die outas p"'(1-p)
— Source converges slower than K

* Most codes only provide tools for assessing K, convergence.

-» MCNPS also looks at Shannon entropy of the source distribution, H,..
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Bias in K & Tallies

284

* Power iteration is used for Monte Carlo K calculations

— For one cycle (iteration):
* M, neutrons start
* M, neutrons produced, E[M,]=Ks M,

— At end of each cycle, must renormalize by factor M,/ M,

— Dividing by stochastic quantity (M,) introduces bias in K 4 & tallies

* Bias in Keff, due to renormalization

1 M = neutrons / cycle

Bias InK_; o< M

— Power & other tally distributions are also biased, produces “tilt”
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Bias in Statistics

 MC eigenvalue calculations are solved by power iteration

— Tallies for one generation
are spatially correlated
with tallies in successive
generations

— The correlation is positive

— MCNP & other MC codes ignore this correlation, so
computed statistics are smaller than the real statistics

— Errors in statistics are small/negligible for K,
may be significant for local tallies (eg, fission distribution)

— Running more cycles or more neutrons/cycle does not reduce the
underprediction bias in statistics

— (True 6?) > (computed ?), since correlations are positive

True 62
2
Computed o5,

A ‘X\qm

X1 N

- sum of lag-i correlation
- coeff's between tallies
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Numerical Results

K.« of the World Problem
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287

Elliot Whitesides, 1971:

... if one attempts to calculate the k. of the world using a Monte
Carlo calculation, what keff would be computed assuming that there
are several critical assemblies located around the world?

The answer would likely be the k. of the world with no critical
assemblies present. ...

... The erroneous results for these types of problems are the result
of the failure of the calculation to converge the source to the
fundamental source mode. ...

... unless the correct fission distribution is achieved, the results will
most likely be nonconservative.
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Whitesides' Model Problem

9 x 9 x 9 array of Pu-239 spheres
« 729 spheres

- Void between spheres

- Surrounded by 30 cm water

- Sphere radii ~4 cm

* Pitch =60 cm

y A A A A A A A /

V| ofl |afl |afl | afl |afl | afl |afl | afl | o
AP AP |

Al' ."

« MCNP5-1.60 + ENDF/B-VII.0 data

* For uniform array of identical spheres
with surrounding water, sphere radii
adjusted to r=3.9 cm, so that

Keff = .9328 +.0002

» Single bare sphere, r=4.928 cm,
Keff =1.0001 £ .0002

 Whitesides' model problem:

Replace center sphere of array
by larger (critical) sphere

Should be supercritical - is it ?
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Whitesides' Problem, circa 1971
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* Due to severe computer limitations ~1971, KENO defaults were:
— 300 neutrons/cycle
— Discard first 3 cycles

— Run 100 more cy

* If MCNPS5 is run using the 1971 KENO defaults,

200 independent

cles

replica calculations give:

— Average of 200 replicas: K = .9431 £.0010
— None of the 200 calculations produced K > 1
— Distribution of replica results:

freq( Keg)

9431 +.0010

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Keff
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Initial source guess =

Convergence
K. VS cycle, various M H,,. vs cycle, various M
M = neutrons/cycle M = neutrons/cycle
|
\‘ w vw/» /\wv f\]\f V\‘ o Wu\ \/VV \M\ J/v\f\fm\f /\,A A W: e
‘}" i M|
W M = 10,000 M =10,000 |
|
|
| N N
| PN ]
iyl M = 5,000
| ]
.* -, | e Py
‘ , \M \ "‘N "\ M ‘. | ‘W”\ ”” ‘. .‘\ U“/‘ E V\\VV"\%
N m wm i w‘“ T PPN
| \ m\ ‘\ “n».‘r “'u““"" ‘\ . “U’L “u o s
\,.( m w “U\‘ || M ='1,000 M=1,000
| | ﬂ "
R I A1 N \ |
h, «Hﬁ, 1 I “M | M;g\ 1l H »..Wu ,\J
il (e L Lk UGN SRVWE I A
‘M‘I. ‘.H‘ \ J “ w MH’ U‘ \ I){ ”" v \5 L"( ( t\\'\vmv"/\/\/\\/\'\kll /\\
W V M =50 v
100 200 100 200

uniform sampling of points at sphere centers

K. converges in
75-100 cycles

H,,. converges in
100-150 cycles

Must discard 150
or more initial
cycles

Convergence
depends on the
dominance ratio &
source guess, NOT
on neutrons/cycle
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1.0040 -
1.0020 —M=20K, 10K, 5K |
K« vs 1/M A
- M=1K eff :
1.0000 T e — :
~ - M =500 M = neutrons/cycle
0.9980 o_ M= 400
\ N
0.9960 —an
o ° M = 30( :
S 0.9040 :
5 .0156 Ak
% 0.9920 oM=250
0.9900
0.9880
0.9860 M =200
. ‘ v
0.9840 ‘
0 0.001 0.002 0.003 0.004 0.005 0.006
1/M
Notes:
« All cases discarded the first 150 cycles
Historical note: + All cases used 10M neutrons in active cycles
When this problem was first proposed in 1971, - All cases: o~ .00025, smaller than plot markers

the default batch size for KENO was 300 neutrons/cycle
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K.« Bias

Distribution of K . for 200 replicas, various M = neuts/cycle

M=200

Frequency of Keff, for replicas

0.97 0.98
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Discussion & Conclusions

pA K]

* The original 1971 version suffered from:

— Computers: small memory & slow

— Discard only 3 cycles: not converged

— 300 neutrons/cycle: K.+ bias - too low, nonconservative

— 300 neutrons/cycle: undersampled the source (729 spheres)

— No tools were available for diagnosing fission distribution convergence
(today, we have Shannon entropy & other diagnostics)

. If (1) enough initial cycles are discarded (150 or more), and
(2) enough neutrons/cycle are used (10K or more),

then the "K-effective of the World" problem is actually not a
difficult problem to solve
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Numerical Results

1/4-Core PWR
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Example Problem - Reactor

2D quarter-core PWR (Nakagawa & Mori model)

2.1% enrichment
2.6% enrichment

48 1/4 fuel assemblies:
— 12,738 fuel pins with cladding

— 1206 1/4 water tubes for
control rods or detectors

Each assembly:

— Explicit fuel pins & rod channels
— 17x17 lattice

— Enrichments: 2.1%, 2.6%, 3.1%

e Dominance ratio ~ .96

125 M active neutrons for each calculation
ENDF/B-VII data, continuous-energy
Tally fission rates in each quarter-assembly

PATAT WA A WA~
500000000 |
DOOOO0OO0O0
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Convergence

Ve co ———

---- H_., initial source in center of center 1/4assy [
---- H,,., initial source in center of diagonal 1/4 assys |
, ---- H,,., initial source uniform in core region i
K. converges sooner than
the fission distribution
1 i HSI‘C =
"] -+ Shannon entropy of
: - fission source distribution
:(J - 7 | - [ +Ametric for assessing
oo T e T convergence of the
- - distribution
] - k., initial source in center of diagonal 1/4 assys | + Computed/plotted by
] [ MCNP
|
0— T

0 50 100 150 2060
keff ocycle number



Keff

Bias in K

1.29505

1.29500

1.29495

1.29490

1.29485

1.29480

1.29475

1.29470

1.29465

1.29460

0.0000
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N = # cycles
M = neutrons/cycle

¢ M=10000 N-M = constant for all calculations

M=5000

M=20000

0.0015
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0.0
-0.2
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-0.7

-0.6
-0.8

-0.2
0.1

-0.3
0.3

0.5
0.7
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-0.5
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0.8

1.0
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24

Percent errors in

1/4-assembly fission rates
using 500 neutrons/cycle
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Errors of -1.7% to +3.2%

Statistics ~.1% to0 .3%
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0.0

-0.1
0.1

0.3
0.3

0.6
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Reference:

-0.6

-0.7

0.4

-0.2

0.1

0.2

0.5

1.6

2.1

24

ensemble-average of 25 independent calculations,

with 25 M neutrons each & 20K neutrons/cycle

2.3




Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 299

Bias in Tallies

2.50
Percent error in fission rates along diagonal
2.00
M=500
1.50
4  M=1000

1.00 / M=5000
© 0.50
- e M=10000
c
w
5 0.00 M=20000
o

-0.50

-1.00

-1.50

-2.00
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Bias in O's

34|31 27|27 26]23 27 True relative errors in

33|37 3637 37|27 29 1/4-assembly fission rates,
as multiples of calculated
relative errors, O1rue/ Ouenp

38138 39140 36133 3029 25|25 22
38139 42|33 35|34 32136 3030 28

39136 35|33 34134 4039 35132 31)125 1.7

41138 35132 29126 29132 31028 27119 17| Calculated uncertainties

are 1.7 to 4.7 times smaller
34134 32135 26|24 26130 29129 28123 2.1 than true uncertainties

42135 34131 27123 2024 25|25 21)23 23

39136 31129 23|19 19123 24129 2727 22|28 23
37133 36|24 22122 25|18 22|26 27129 25|24 25

30131 3022 22|21 24125 2426 27|26 27|30 2.6
29137 33126 25|28 3029 35})32 33}13.1 31]32 33

32131 29|31 32|33 35135 3639 37|39 35|34 29
34130 31|36 34|35 39137 40]43 40|43 38|42 35

35132 28|35 38139 39139 41141 46|44 47)145 38

Average factor = 3.1
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Numerical Results

Crit-Safety Problem
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Example Problem - Criticality Safety

2 x 3 array of steel cans containing
plutonium nitrate solution

— CaEE e =

From MCNP Criticality Primer (chap 5) & MCNP Criticality Classes
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Convergence

3 | | - - -
2 E 3 _J
5 - | | - - - -

] ---- H,,., initial source in center of solution in 1 can B

] ---- H,,., initial source in center of solution in all cans -
22 / H,,., initial source uniform in solution in all cans -
Fi E B
5 -

-~ @

U T ONN e 2 L O, SN st iy, A e AR e o PAS PN TR e
o, o :

---- k.4, initial source in center of solution in all cans

.[,..1...';'“.‘..',.—.‘.'....
o
1%
4

rrrrrrrTT

| N T N N N |
rrrrrrrrrT

)
8

100 150 200

keff cyole number
e Using ENDF/B-VI+T16 data
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Bias in K ¢

1.0490
M = 20000, 10000, 5000
1.0485 / ¥
o M=1000 M = neutrons/cycle
1.0480 + discard 50 cycles
— L . . A
f ~ oM =500 10M neutrons in active cycles :
1.0475 = - — :
T —~— L :
o 10470 [ =~ -— 002 AK
> T ~ :
= ~ - + .
O 1.0465 M = 200 ~|_ M=100
£ ~ - o :
) \ v
- 1.0460 \"
1.0455 S S S
M = 1000 —
10430 ——%~ 203 cycles —
Discard 3 cycles
1.0445 N
1.0440 1
0.000 0.002 0.004 0.006 0.008 0.010
1/M
Note: Bias in point is a convergence problem

due to using Keno default - discard 3 cycles, 203 cycles total
Using ENDF/B-VI+T16 data
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Best Practices For
MC Criticality Problems
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Convergence - Guidance

« Plot K_: vs cycle to check convergence of K

« If computing any tallies (flux, fissions, dose, foils, heating, ...)
plot H_. vs cycle to check convergence of fission distribution

- Dominance ratio p=k,/k, determines the rate of convergence
— Smaller dominance ratio =» fewer cycles to converge

— To reduce the dominance ratio, use problem symmetry & reflecting
boundary, to eliminate some higher modes

PWR example: full core 1/2 core 1/4 core 1/8 core
p: .98 97 .96 .94

« Better initial source guess =» fewer cycles to converge
— Reactor: good guess - uniform in core region

— Criticality Safety: good guess - points in each fissionable region,
good guess - uniform in each fissionable region

« Convergence does not depend on number of neutrons/cycle (M)
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Bias in K & Tallies - Guidance

307

» Using too few neutrons/cycle leads to bias in K & the fission
distribution

- Bias in K 4 is usually small, but always negative (nonconservative)

 Bias in the fission distribution is generally larger than for K
& shows a significant tilt

* Practical solution - use large M (neutrons/cycle)

— Using 10K neutrons/cycle or more =» bias negligible
(100K or more for large models)

— More neutrons/cycle =» more efficient parallel calculations
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Bias in O’ s - Guidance

» Uncertainties computed by MC codes exhibit a bias
due to inter-cycle correlation effects that are neglected

* Primarily affects local tally statistics, not K-effective statistics

« Computed uncertainties are always smaller than
the true uncertainties for a tally

* Running more cycles or more neutrons/cycle does not
reduce the biases

« Wielandt’ s method can reduce or eliminate the underprediction
bias in uncertainties (coming soon in MCNP5...)
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Best Practices - Summary
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* To avoid bias in K & tally distributions:

- Use 10K or more neutrons/cycle (maybe 100K+ for full-core)
- Discard sufficient initial cycles

- Always check convergence of both K & the fission distribution

* To help with convergence:
- Take advantage of problem symmetry, if possible
- Use good initial source guess, cover fissionable regions

 Run at least a few 100 active cycles
to allow codes to compute reliable statistics

» Statistics on tallies from codes are underestimated, often by 2-5x;
possibly make multiple independent runs
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Variance
Reduction
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Monte Carlo Calculations

Geometry
* Which cell is particle in?
* What will it hit next?
* How far to boundary?
« What’ s on other side?
* Survival?

Physics Tallies
* How far to collision? * Tally events of interest
* Which nuclide?
< >

« Compute results
* New E, direction? « Compute statistics

» Secondaries? « Balances
» Survival? * Performance stats

mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,.....

« Variance reduction
— Modify the PDFs for physics interactions to favor events of interest
— Use splitting/rouletting to increase particles in certain geometric regions
— Kill particles in uninteresting parts of problem

* May be necessary in order to sample rare events

* More samples (with less weight each) = smaller variance in tallies
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Monte Carlo Estimates of Integrals

Given a function R(x), where x is a random variable with PDF f(x),
— Expected value of R(x) is 1= [R(x)f(x) dx
— Vari f R(x) i
ariance of R(x) is 62 = | RE() f(x) dx— 2

Monte Carlo method for estimating. p = <R>
— make N random samples “J from f(x)
— Then
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Variance Reduction - Basic Idea

Expected mean score is not changed by variance reduction

_ _ fx) |
b= J R(x) f(x) dx= J R(x)[g (X>J g(x)dx

/

«Sample x' from f(x «Sample x' from g(x)
*Tally R(x') *Tally R(x") « f(x')/g(x")

*Variance is changed due to altered sampling scheme
f(x)

2
o2 = [ [Ro0]*f(0) dx—p? 2= | [R(X)g(x)] 900 dx— 2

Goal: Choose g(x) such that variance is reduced
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Review

« Given a set of random samples, x,, X,, ..., Xy

N :
— Mean < = 1 X
N <
— Variance of the mean N
o2 = 1 |1y _x2
N-1(N<
— Relative Error RE = GTX
X
— Figure of Merit FOM = :
RE?-T

* Variance reduction: Reduce RE or T, to increase FOM
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Analog vs. Weighted Monte Carlo

« Analog Monte Carlo
— Faithful simulation of particle histories
— No alteration of PDFs (i.e., no biasing or variance reduction)
— Particle is born with weight = 1.0
— Weight unchanged throughout history until particle is killed
— Scores are weighted by 1.0 when tallying events of interest

 Weighted Monte Carlo (non-analog)
— Alter the PDFs to favor events of interest
— Particle is born with weight = 1.0
— Weight, wgt, is altered if biased PDF is used

— Weight can also be changed by Russian roulette/splitting & other
variance reduction techniques

— Scores are weighted by wgt when tallying events of interest
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Variance Reduction - General Approaches

319

Truncation

— Remove particles from parts of phase space that do not
contribute significantly to the tallies

Population control

— Use particle splitting and Russian rouletting to control the
number of samples taken in various regions of phase space

Modified sampling

— Modify the PDFs representing problem physics, to favor tallies
of interest

Deterministic methods

— Replace portions of a particle random walk by the expected
results obtained from a deterministic calculation
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« MCNP has 14 variance reduction techniques

1.

Time and energy cutoffs

2. Geometry splitting & roulette

© N O O bk W

Q.

Weight windows
Exponential transform
Forced collisions

Energy splitting & roulette
Time splitting & roulette
Point and ring detectors
DXTRAN

10. Implicit capture
11. Weight cutoff
12. General source biasing

13. Secondary particle biasing

14. Bremsstrahlung energy biasing



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 321

Survival Biasing

« Also called implicit absorption or non-absorption weighting
* Modify collision process according to expected outcome

« Particle always survives collision
— Tally expected absorption, wgt ¢ (Z,/Z;)
— Reduce weight of surviving particle, wgt' =wgte(1-2,/2;)

« Extends particle history so that more particles reach events which occur
after many collisions

« Most effective for thermal reactor problems, but doesn't hurt in other
types of problems

« Must also use some form of low-weight cutoff to eliminate particles with
very low weight
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Geometry Splitting & Russian Roulette

* Increase the number of particles in "important” regions, decrease the
number of particles in "unimportant” regions

« Assign each cell an importance, I_

— Arbitrary, use best guess or adjoint fluxes from deterministic
calculation

— Could use one value for all energies or separate values for
different energy ranges

— Higher value --> more important

—l.>0

— l.,=0 is a way to declare regions as not in physical problem

— Values of |, must not change during Monte Carlo calculation

cell

* Modify random walk simulation at surface crossings:
— If (I te/licave) > 1, perform splitting
—If (Inter/licave) <1, perform Russian roulette
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Geometry Splitting & Russian Roulette
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* Let r=lg/l, — '

n = floor(r)

 If n>1, splitinto n particles with weight (wgt/n)
— All of the n particles emerging from splitting have identical
attributes (e.g., x,y,z, u,v,w, E) including wgt'=wgt/n
— All of the n particles from a splitting are part of the same
history, and their tallies must be combined

— Typically, (n-1) particles are banked, 1 particle is followed until
its death, then a particle is removed from the bank & followed,
etc.

* Avoid over-splitting
— Splitting into a large number of particles can increase CPU-time
& lead to (apparent) bias in results
— Typically, choose cell importances to split 2-for-1 or 3-for-1
— Typically, can limit the splitting to n-for-1 or less

» Total particle weight is exactly conserved in splitting
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Geometry Splitting & Russian Roulette

. Let r=lgll,

 If r<1, play Russian roulette
— With probability r, keep the particle & alter its weight to (wgt/r)

— With probability (1-r), kill the particle (set its weight to 0)

if E<r,

wgt' = wgt/r
else

wgt'=0

* Russian roulette effectively merges a number of low-weight particles into
one with higher weight

» Total particle weight is only conserved statistically (expected value)
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Weight Cutoff

» Specify a cutoff weight, W,
and a survival weight, W_, .

Particle
- If particle weight drops below Weight

W,...» Play Russian roulette with
weight of W_  for survivors

— Probability of surviving RR = wgt/W,_ Setwgtto W,
— Probability of being killed = 1 - wgt/W,, Orkill #7?

If wgt<W,,,
if & <wgt/W,_,.,
wgt' =W,
else
wgt' =0

+ Expected value of surviving weight is conserved, (wgt/W_, )W, .
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Weight Cutoff

* In some codes (e.g., MCNP), the weight cutoff parameters are functions of
cell importance

—Let R, =(importance of source cell) / (importance of cell )

_ Then! Wave(j) Wave * Rj
Wlow(j) = WIow ° Rj

+ Weight cutoffs reduce computing time, not variance

« Weight cutoffs can be applied anytime the particle weight changes - after
collisions, after boundary crossings, ...
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Weight Windows

* Prevent particle weights from getting too large or too small
— Weight too large = splitting
— Weight too small =» Russian Roulette
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Weight Windows
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» Large fluctuations in particle weights contributing to a tally lead to larger
variance

 Weight windows eliminate large or small weights (outside the window) by
creating or destroying particles

+ Weight windows can be applied any time - after collisions, after surface
crossings, ...

If wgt>W,,
splitting

Elseif wgt<W,_,
roulette
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Weight Windows

« MCNP weight window scheme
Input: W, for each cell (can be energy or time dependent),

[Wave/ Wlow]! [WhilW Iow]! mxspln
If wgt>W,,
n = min( mxspin, 1+ wgt/W,,;) <-- max splitting is mxspin-to-1
wgt = wgt/n
bank n-1 copies of particle <-- n-to-1 splitting

Elseif wgt <W,,
P = max( 1/mxspin, wgt/W
if E<P
wgt = wgt/P <-- particle survives
else
wgt=0 <-- particle killed

ave ) <-- limits survivor to mxspin*wgt
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Source Biasing

- Bias the PDFs used to select the angle, energy, or position or
source particles

— Produce more source particles (with lower weights) in desired
parts of phase space

True source: f(R,E,Q)

Sample (R,E’, Q') from Jd(R,E, Q)
& assign weight f(R'E', Q')/g(R,E’, Q') to source particle

Choose g(R,E, Q) to favor directions more important to tallies
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Forced Collisions

» Particles entering specified cells are split into collided &
uncollided parts

— For distance-to-boundary d
Prob(no collision) = exp(-Z;d)
Prob(collision) =1 -exp(-2d)
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Forced Collisions

« Sampling the flight distance s for a forced collision with max flight
distance d

Sampling from a truncated exponential PDF:

e ZTS
f(s)=ZT-1_e_sz, 0<s<d
1-e >
F(S) - 1_ e—ZTd

Solve for s: &=F(s)
_—In[1-(1-e ¥ 1g]
= 5

S
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Exponential Transform
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- Encourage particles to head in a certain preferred direction, (2],

Source or Xi’ ________ — Detector

Collision point Q,

—Replace Z; by 2*=2;[1-p QQ,]
p = aparameter, 0<p<1
Q, = unit vector from particle position to detector
Q) = actual particle direction

— Sample flight distance s’ from d(s) = Z*exp(-2*s)
— Adjust weight by factor:
f(s')/a(s') = exp(-p Q*Q, %;s")/[1 - p Q*Q,]

» Paths toward detector are stretched (Z¥F<Z;)
« Paths away from detector are shortened (Z*> Z;)
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Variance Reduction Goals & Cautions

« Maximize FOM - either reduce REor T

« Keep the number of particles per cell roughly constant from
source to detector

* Reduce the number of particles in unimportant regions
» Achieve adequate sampling of all portions of phase space
» Avoid over-biasing (e.g., over-splitting)

 Ensure that tallies pass statistical checks
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Parallel
Monte Carlo
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Perspective

* Fast desktop computers
1980s super: 200 MHz 16 MB 10 GB $20M

Today, Mac Pro: 8 x 3000 MHz 8000 MB 250 GB $ 5K

 Linux clusters + MPI + multi-core

— Cheap parallel computing
— Everyone can do parallel computing, not just national labs

« Mature Monte Carlo codes
— MCNP, VIM, KENO, MCBEND, MONK, COG, TART, RACER, RCP, ...

* New generation of engineers/scientists
— Less patience for esoteric theory & tedious computing procedures
— Computers are tools, not to be worshipped
— What's a slide rule ???

=» More calculations with Monte Carlo codes
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Trends in Computing Technology

« Commodity chips
Through early-2000s (little change since then):

— Microprocessor speed - ~2x gain / 18 months
— Memory size - ~2x gain / 18 months
— Memory latency - ~ no change (getting worse)

« High-end scientific computing

— Key driver (or limit) - economics: mass production of
desktop PCs & commercial servers

— Architecture - clusters: with moderate number of
commodity microprocessors on each node
multicore: multiple CPUs per processor

permits threading within each node

* Operating systems
— Desktop & server
— Supercomputers

Windows, Linux

9
> Unix, Linux

CPU performance on supercomputer =» same as desktop PC
High-performance scientific computing =% parallel computing
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Parallel Computers
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Parallel Computers

« Characterize computers by:

— CPU: scalar, vector, superscalar, RISC, .....
— Memory: shared, distributed, cache, banks, bandwidth, .....
— Interconnects: bus, switch, ring, grid, .....

- Basic types:

Traditional Shared Memory Parallel

Mem
Distributed Memory Paraliel Clustered Shared Memory
Mem Mem Mem
Mem Mem Mem
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Approaches to Parallel Processing

High-level

Mid-level

Low-level

Low-level

LA-UR-16-

* Independent programs + message-passing

* Distribute work among processors

* Loosely-coupled

* Programmer must modify high-level algorithms

* Threads (task-level)

* Independent tasks (subprograms) + shared memory

* For shared memory access, use locks on critical regions
* Compiler directives by programmers

* Threads (loop-level)
» Split DO-loop into pieces, compute, synchronize
» Compiler directives by programmers

* Pipelining or vectorization

* Pipelined execution of DO-loops

* Automatic vectorization by compilers &/or hardware,
or compiler directives by programmers
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Message-passing

— A|/ Program quots of computation

Program
LL Interchange data
via messages

— Independent programs
— Separate memory address space for each program (private
memory)

— All control information & data must be passed between
programs by explicit messages (SENDs & RECEIVEs)

— Can run on distributed or shared memory systems
— Efficient only when T >> T

computation messages
— Standard message-passing:

- MPI
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Threading (task-level)
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subroutine trnspt
program A
$ return S—>
ISomp parallel end subroutine trnspt
call trnspt Shared
'Somp end parallel subroutine trnspt Data
end program A retum <
end subroutine trnspt

Address space for Program A

— Single program, independent sections or subprograms

— Each thread executes a portion of the program

— Common address space, must distinguish private & shared data
— Critical sections must be "locked"

— Can run only on shared memory systems, not distributed memory
— Thread control by means of compiler directives

— Standard threading:

 OpenMP
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Amdahl's Law
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If a computation has fast (parallel) and slow (scalar) components, the
overall calculation time will be dominated by the slower component

Overall System = Single CPU ~ 1
Performance Performance 1-F + F/N

where F = fraction of work performed in parallel
N = number of parallel processors
Speedup = 1/(1-F + F/N)

For N=10 For N=infinity
F_S F S F_S F S
20% 1.2 90% 5.3 20% 13 90% 10
40% 1.6 95% 6.9 40% 1.7 95% 20
60% 2.2 99% 9.2 60% 25 99% 100

80% 3.6 99.5% 9.6 80% 5 99.5% 200
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Amdahl's Law

LA-UR-16-

My favorite example .....

Which system is faster?

System A: (16 processors)+(1 GFLOP each) 16 GFLOP total
System B: (10,000 procs)+(100 MFLOP each) = 1,000 GFLOP total
Apply Amdahl's law, solve for F:

1/(1-F+F/M16) = .1/ (1-F + F/10000)

=» System A is faster, unless >99.3% of work is parallel

* In general, a smaller number of fatter nodes is better
* For effective parallel speedups, must parallelize everything
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Parallel
Monte Carlo
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Parallel Algorithms

* Possible parallel schemes:

— Jobs run many sequential MC calculations, combine
results

— Functional sources, tallies, geometry, collisions, .....

— Phase space space, angle, energy

— Histories Divide total number of histories among processors

» All successful parallel Monte Carlo algorithms to date have been
history-based.

— Parallel jobs always works, variation on parallel histories
— Some limited success with spatial domain decomposition
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Boss / Worker Algorithm (Simple)
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Boss task: control + combine tallies from each Worker
Worker tasks: Run histories, tallies in private memory
— Initialize:

Boss sends problem description to each Worker

(geometry, tally specs, material definitions, ...)
— Compute, on each of N Workers:

Each Worker task runs 1/N of total histories.

Tallies in private memory.

Send tally results back to Boss.

— Combine tallies:
Boss receives tallies from each Worker &

combines them into overall results.

Concerns:

— Random number usage

— Load-balancing

— Fault tolerance (rendezvous for checkpoint)
— Scaling
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Boss / Worker Algorithm (Simple)

Control + Bookkeeping Computation
Boss Worker 3
T Worker 2
! initialize
do n=1,nworkers Worker 1
send_info( n)
! Initialize
! Compute ”recv_info() k2)
nchunk = nhistories / nworkers 2
do n=1,nslaves ! Compute
k1 =1 + (n-1)*nchunk ™ recv_control( k1, k2)
k2 = min( k1+nchunk, nhistories) do k=k1,k2
send_control( n, k1,k2) run_history( k)
! Collect & combine results ! Send tallies to Boss
totals(:) =0 send_tallies()
don=1,nworkers . ___— |
recv_tallies(n) ! Done —
add_tallies_to_totals() stop
! Done
print_results()
save_files()
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Random Number Usage

« Linear Congruential RN Generator
S.1=9S, +C mod2M

* RN Sequence & Particle Histories

1 2 3 etc.
MCNP stride for new history: 152,917

 To skip ahead k steps in the RN sequence:
S, =gS,,+C mod2" = gkS, + C (gk-1)/(g-1) mod 2M

* Initial seed for n-th history

This is easy to compute quickly using exact integer arithmetic

« Each history has a unique number
— Initial problem seed - initial seed for nt" particle on mt" processor

— If Worker knows initial problem seed & unique history number, can
initialize RN generator for that history
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Fault Tolerance

* On parallel systems with complex system software & many CPUs,
interconnects, disks, memory, MTBF for system is a major
concern.

« Simplest approach to fault tolerance:
— Dump checkpoint files every M histories (or XX minutes)
— If system crashes, restart problem from last checkpoint

* Algorithm considerations

— Rendezvous every M histories.
— Workers send current state to Boss, Boss saves checkpoint files

— Parallel efficiency affected by M.
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Fault Tolerance
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W, W, ,w

Repeat...

Y

* For efficiency, want
— Compute time:

— Rendezvous time:

Control Compute Rendezvous

(compute time) >> (rendezvous time)
Proportional to #histories/task

Depends on amount of tally data &
latency+bandwidth for message-passing



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16-

Boss / Worker Algorithm, with Rendezvous

— Initialize:
Boss sends problem description to each Worker
(geometry, tally specs, material definitions, ...)

— For rendezvous =1, L

« Compute, on each of N Workers:
Each Worker task runs 1/N of (total histories)/L.
Tallies in private memory.
Send tally results back to Boss.

« Combine tallies:
Boss receives tallies from each Worker &
combines them into overall results.
« Checkpoint:
Boss saves current tallies & restart info in file(s)
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Load Balancing

« Time per history may vary significantly
— For problems using variance reduction:

« Particles headed in "wrong" direction may be killed quickly, leading to a short history.

» Particles headed in "right" direction may be split repeatedly. Since the split particles created are
part of the same history, may give a very long history.

— For problems run on a workstation cluster:
» Workstation nodes in the cluster may have different CPU speeds

« Workstations in the cluster may be simultaneously used for interactive work, with highly variable
CPU usage on that node.

* Node performance effectively varies continuously over time.

* Naive solution
— Monitor performance per node (e.g., histories/minute)

— Periodically adjust number of histories assigned to each node, according to
node performance

# histories assigned to node n ~ measured speed of hode n

» Better solution: self-scheduling
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Load Balancing — Self-Scheduling

* For a problem with N Worker processors,
divide histories into more than N chunks.

— Let L = number of chunks, L>N
— Typically, L~20N or L~30N

— Histories/chunk = (total histories) / L

— Worker: If idle, ask Boss for work. Repeat until no more work.
— Boss: Send chunk of work to idle Worker. Repeat until no more work.

— On average, imbalance in workload should be < 1/L

- Additional gains:
— Naive Boss/Worker algorithm is synchronous

— Self-scheduling Boss/Worker algorithm is asynchronous. More overlap of
communication & computation = reduced wait times & better performance
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Load Balancing — Self-Scheduling
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Each arrow: same # histories

Control Compute Rendezvous

 Much more communication with Boss, but only minimal amount of
control info needed (15t & last history in chunk)

* Need to handle stopping condition carefully —
avoid "dangling” messages
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Load Balancing — Self-Scheduling

LA-UR-16-
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Boss

! initialize
do n=1,nworkers

send_info( n)

! Compute
nchunks = nworkers*20
nh = nhistories / nchunks
do n=1,nchunks

k1 =1+ (n-1)*nh

k2 = min( k1+nh, nhistories

recv_idle_proc( M) <*—
send_control( M, k1,k2) —
enddo

! Collect & combine results

totals(:) =0

do n=1,nworkers T
recv_idle_proc(M)*™ "
send_control(M, 0,-1)"
recv_tallies(M) «————|
add_tallies_to_totals()

enddo

-

! Done
print_results()
save_files()

Worker 3

Worker 2

Worker 1

! Initialize
> recv_info()

! Compute

do

— send_idle_proc()

", recv_control( ki1, k2)

-V if( k1>k2) exit
do k=k1,k2

run_history( k)
enddo
enddo

! Send tallies to Boss
send_tallies()

! Done
stop

k2)

30S$
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Hierarchical Parallelism

* For clustered SMPs,
— Use message-passing to distribute work among Workers ("boxes™)
— Use threading to distribute histories among individual processors on box

Boss Node Boss

In Cluster

Messageipassi
Worker Nodes
In Cluster Worker Worker Worker
Threads Threads
Cpu-cores
In Nodes

* Only the Master thread (thread 0) on each Worker
uses MPI send/recv's
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Boss / Worker Algorithm, threaded & self-scheduling

Boss Worker 3

- Worker 2
! initialize
do n=1,nworkers Worker 1

send_info( n)

! Initialize

! Compute > recv_info() 2)
nchunks = nworkers*20
nh = nhistories / nchunks ! Compute
do n=1,nchunks do

k1 =1+ (n-1)*nh — send_idle_proc() )S$

k2 = min( k1+nh, nhistories
recv_idle_proc( M )<
send_control( M, k1,k2 ) —

", recv_control( k1, k2) |
v if( k1>k2) exit
ISOMP PARALLEL DO

enddo do k=k1,k2
run_history( k) _
! Collect & combine results enddo
totals(:) =0 enddo
do n=1,nworkers PPt
recv_idle_proc(M) __-- ISOMP PARALLEL
send_control( M, 0, -1) I$ combine_thread_tallies()
recv_tallies(M) <«—— |
add_tallies_to_totals() ! Send tallies to Boss
enddo send_tallies()
! Done ! Done
print_results() stop

save_files()




Parallel

Monte Carlo
Performance
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Parallel MC Computational Characteristics

 For Boss/Worker algorithms (with self-scheduling, fault tolerance, &
threads):

— No communication among Worker tasks
— Occasional communication between Boss & Workers (rendezvous)

— Worker tasks are compute-intensive
* Few DO-loops
* 40% of ops are test+branch (IF... GOTO...)
* lrregular memory access, no repetitive patterns

— For fixed-source problems:
* Only 1 rendezvous is strictly necessary, at end of calculation
* More rendezvous used in practice, for fault tolerance

— For eigenvalue problems (K-effective):
« Must have a rendezvous every cycle (cycle = batch = generation)
* Boss controls iteration & source sampling

« Common-sense approach to performance:
Fewer rendezvous = better parallel performance
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Parallel MC Performance Measures

* Metrics
— Speedup Sy =T,/Ty N = # Worker processors
— Efficiency Ey = Sy/N

* Fixed overall work (fixed problem size)

— Efficiency decreases with N
— Speedup (eventually) drops as N increases
— Why?

As N increases, same communication/processor, but less work/processor (fewer histories/
processor) = (computation/communication) decreases

* Fixed work per processor (scaled problem size)
— Efficiency approx. constant with N
— Speedup approx. linear with N
— Why?
As N increases, same communication/processor, same work/processor
(# histories ~ N) = (computation/communication) stays approx. same

— Called scaled speedup
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Parallel MC Performance Limits

« Another way to determine efficiency
Parallel Efficiency = Tl (Tc+Ty)
T, = computing time

Ty, = time for messages, not overlapped with computing

 Workers can send messages in parallel

ﬁ
ﬁ
ﬁ

- Boss receives & processes messages serially

If enough messages are sent to Boss, extra wait time will limit
performance
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Parallel MC Performance Scaling
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"_’ _’_> Repeat...

W, W, w oS .

Control Compute Rendezvous

N = # processors
T, = CPU time for M histories using 1 processor

(Depends on physics, geometry, compiler, CPU speed, memory, etc.)
L =amount of data sent from 1 Worker each rendezvous

Tg =0 negligible, time to distribute control info
Tr =s+L/r s = latency for message, r = streaming rate
TS =T,/N fixed problem size, M histories/rendezvous

Tcscale =T, scaled problem size, NM histories/rendezvous
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Parallel MC Performance Scaling

 Scaling models, for Boss/Worker with serial rendezvous

—  "fixed" = constant number of histories/rendezvous, M (constant work)
— "scaled" = M histories/Worker per rendezvous, NM total (constant time)
Histories/rendezvous Speedup s
fixed S=N/(1+cN?)
N
scaled S=N/(1+cN) S
N

N = number of Workers
c=(s+LiIr)/T,

T, ~ M, more histories/rendezvous =» larger T, , smaller c
S+L/r, fixed, determined by number of tallies, ....

As M-infinity, c-20, S->N (limit for 1 rendezvous)
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Parallel MC Performance Scaling

Fixed size, serial messages S
S = N/(1+cN?) 1
| 2c
N
1
Ve
Scaled size, serial messages s
1/c
S = N/(1+cN) 1/ 26
N
N = number of Workers 1/c¢

c=(s+L/r)/(Mt,)
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Parallel MC Performance Scaling

VIM Monte Carlo — Measured Performance on SP1 — TREAT reactor
40

30
Scaled
Speedup
20
10
10 20 30 40
Number of Slaves
® SP1—P4+EUH S=N/(1+.0056N )

== SP1 — P4 + ethernet S=N/(1+.028N)

Measured message passing on SP1 is 2-3 times slower than specs
(busy machine; experimental software; flaky hardware)
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Parallel MC Summary
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Boss/Worker algorithms work well

Load-balancing: Self-scheduling

Fault-tolerance: Periodic rendezvous

Random numbers: Easy, with LCG & fast skip-ahead algorithm

Tallies: Use OpenMP “critical sections™

Scaling: Simple model, more histories/Worker + fewer rendezvous
Hierarchical: Boss/Worker MPI, OpenMP threaded Workers

Portability: MPI/OpenMP, clusters of anything

Remaining difficulties

Memory size: Entire problem must fit on each Worker

 Domain-decomposition has had limited success
— Should be OK for reactor problems
— May not scale well for shielding or time-dependent problems
— For general 3D geometry, effective domain-decomposition is unsolved problem

« Random access to memory distributed across nodes gives huge slowdown
— May need functional parallelism with "data servers"
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MCNP
Parallel
Calculations



370

Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16-

DOE Advanced Simulation & Computing — ASC

| -4

|
it
I8

.
o o~

f: e = -

i 2 s A I

| I

| .
o
O

| !

Lightning — 30 TeraOps
(R.L.P)

Blue Mountain — 3 TeraOps
(R.L.LP.)

Red Storm
Q — 20 TeraOps Blue Gene/L
Hurricane '
(R.I.P.) Moonlight Roadrunner — 1.3

Cielo PetaOps



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 371

Hierarchical Parallelism

« Use message-passing to distribute work among Workers ("boxes")

» Use threading to distribute histories among individual cpus on box

Boss

Messageipasst MPI

Worker Worker Worker
OpenMP

* 1,000 processor jobs are "routine™
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MCNP Parallel Calculations

N = total number of MPI tasks, Boss + (N-1) Workers
M = number of OpenMP threads/Worker

* Running on parallel systems with MPI only

mpirun -np N -bynode mcnp6.mpi i=inp01
* Running with threads only

mcnp6 tasks M i=inp01 .....
* Running on parallel systems with MPI & threads

mpirun -np N -bynode mcnp6.mpi tasks M i=inp01

If submitting jobs through a batch system (e.g., LSF, Moab, ...),
N & M must be consistent with LSF requested resources
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MCNP Parallel Calculations

« How many threads ?
— Max number of threads = # CPU-cores per node

+ ASCI Bluemountain: 128 cpus / node
« ASCIQ: 4 cpus /node
» Laptop PC cluster: 1 cpu / node

— Experience on many systems has shown that a moderate number of threads per
Worker is efficient; using too many degrades performance

* ASCI Bluemountain: 4-12 threads/Worker usually effective
>16 threads/Worker usually has bad performance
« ASCIQ: 4 threads/Worker is effective

— Rules-of-thumb vary for each system
» Thread efficiency is strongly affected by operating system design

» Scheduling algorithm for threads used by operating system is generally designed to be efficient
for small number of threads (<16)

» For large number of threads, context-switching & cache management may take excessive time,
giving poor performance

» Other jobs on system (& their priority) affect thread performance
* No definite rules — need to experiment with different numbers of threads
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MCNP Parallel Calculations

« Parallel performance is sensitive to number of rendezvous
— Can't control number of rendezvous directly
— The following things cause a rendezvous:
* Printing tallies
« Dumping to the RUNTPE file
» Tally Fluctuation Chart (TFC) entries
« Each cycle of eigenvalue problem

« Use PRDMP card to minimize print/dump/TFC
PRDMP ndp ndm mct ndmp dmmp

ndp = increment for printing tallies € use large number
ndm =increment for dump to RUNTPE € use large number
mct = flag to suppress time/date info in MCTAL

ndmp = max number of dumps in RUNTPE
dmmp = increment for TFC & rendezvous € use large number

For fixed-source problems, increments are in particles
For eigenvalue problems, increments are in cycles
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MCNP Parallel Calculations

» Keff calculations: Use KCODE card for hist/cycle

— Want to reduce the number of cycles

— More histories in each cycle
— Should run hundreds of cycles or more for good results

KCODE nsrck rkk ikz kct
nsrck = histories / cycle € use a large number
rkk = initial guess for Keff
ikz = number of initial cycles to discard

kct = total number of cycles to run

Suggested: nsrck ~ (thousands) x (hnumber of processors)
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MCNPS5 Parallel Scaled Speedup
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MCNP5 Parallel Calculations
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MCNP Speed vs. Number of Processors
BNCT Model w/ NPS=100,000 on a Linux Cluster w/ MPICH
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MCNP - Threading with OpenMP

« MCNP performance - both serial & parallel - depends strongly on
the Fortran-90 compiler & options used

— Runtime factors of 2-4x with different compilers on same hardware

— Runtime factors of 2-4x with different options on same hardware &
compiler

- Parallel performance

— MCNPS5 & MCNP6 have always supported parallel calculations with
message-passing (MPI) & threading (OpenMP)

— Prior to mid-2006, Fortran compilers for Windows/Linux/Mac did a
terrible job at threading. We recommended using only MPI.

— Recently, using OpenMP threading with Intel compilers on Windows/
Linux/Mac shows excellent speedups -- nearly 2x on dual-core, 3-4x on

quad-core
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MCNP - Threading on the Mac Pro

LA-UR-16-

Mac Pro -- MCNP Speedup vs Threads
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Hardware
— Mac Pro
— 2 x Quad-core Xeon
— 3GHz
— 8 GB memory

Software
— Mac OS X 10.4.11
— Intel F90, 10.0.017
-O1 -openmp
— MCNP5/1.50

MCNP Calculations
— KCODE
- BAWXI2
benchmark
kcode 5000 1 10
204
— Fixed-source
+ oil-well log, mode
n
nps 500000
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MCNP - Threading
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MCNP - Threading
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Parallel Processing
For Large
Monte Carlo Calculations



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16-

Domain Decomposition

If a Monte Carlo problem is too large to fit into memory of a single
processor

Collect
Problem
Results

Decompose Follow histories in each
problem into domain in parallel,
spatial domains move particles to new

domains as needed

— Need periodic synchronization to interchange particles among
nodes

— Use message-passing (MPI) to interchange particles

=» Domain decomposition is often used when the entire problem will
not fit in the memory of a single SMP node
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Parallel Monte Carlo

* Inherent parallelism is on particles
— Scales well for all problems

« Domain decomposition
— Spatial domains on different processors

— Scales OK for Keff or oo calculations,
where particle distribution among domains is roughly uniform

— Does not scale for time-dependent problems
due to severe load imbalances among domains

« Domain decomposition - scaling with N processors

— Best: performance ~ N (uniform distribution of particles)
— Worst: performance ~1 (localized distribution of particles)
s TJe s T[]~
s >[N T s N Te
R I, Ll LS
J L N B LY S |
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Parallel Monte Carlo

 Data is distributed by domain decomposition,
but parallelism is on particles

« Solution ?

Parallel on particles + distributed data

 Particle parallelism + Data Decomposition

— Existing parallel algorithm for particles
— Distribute data among processor nodes
— Fetch the data to the particles as needed (dynamic)

— Essentially same approach as used many years ago for CDC (LCM) or
CRAY (SSD) machines

— Scales well for all problems (but slower)
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Parallel Monte Carlo

« Particle parallelism + data decomposition -- logical view:

Master
Process
Parallel
Calculation
Particle Particle Particle Particle Particle
Node Node Node Node Node
Data Data Data Data
Layer Node Node Node

« Mapping of logical processes onto compute nodes is flexible:
— Could map particle & data processes to different compute nodes
— Could map particle & data processes to same compute nodes

« Can replicate data nodes if contention arises
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Parallel Monte Carlo

« Particle parallelism + data decomposition

Local copies of data for

particle neighborhood
Entire physical problem

= [\
/ \

= ||

Particle Node Particle Node

|

Data Node Data Node Data Node Data Node
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Parallel Monte Carlo

» History modifications for data decomposition
source

while wgt > cutoff

compute distances & keep minimum:
dist-to-boundary
dist-to-time-cutoff
dist-to-collision
dist-to-data-domain-boundary

move particle
pathlength tallies

if distance == dist-to-data-domain-boundary
fetch new data

collision physics
roulette & split
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Parallel Monte Carlo

Entire physical problem

« Data windows & algorithm tuning
— Defining the "particle neighborhood"” is an art ~

— Anticipating the flight path can guide the
pre-fetching of blocks of data

— Tuning parameters:
* How much data to fetch ?
« Data extent vs. particle direction ?

« Examples
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Conclusions

For Monte Carlo problems which can fit in memory:

» Concurrent scalar jobs - ideal for Linux clusters

» Boss/Worker parallel algorithm (replication) works well

— Load-balancing: Self-scheduling

— Fault-tolerance: Periodic rendezvous

— Random numbers: Easy, with LCG & fast skip-ahead algorithm

— Tallies: Use OpenMP “critical sections™

— Scaling: Simple model, more histories/Worker + fewer rendezvous
— Hierarchical: Boss/Worker MPI, OpenMP threaded Workers

— Portability: MPI/OpenMP, clusters of anything

For Monte Carlo problems too large to fit in memory:

« Spatial domain decomposition (with some replication) can work for some
problems

» Particle parallelism + data decomposition is a promising approach which should
scale for all problems
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 Introduction

 mcnp_pstudy

« Examples

 Usage
— Parameter definition
— Parameter expansion
— Constraints

— Case setup & execution
— Collecting & combining results

o Statistics
* Practical Examples from Criticality Safety
 Advanced Topics
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Frequent Questions

How are calculated results affected by:

* Nominal dimensions
— With minimum & maximum values ?
— With as-built tolerances ?
— With uncertainties ?
» Material densities
— With uncertainties ?

« Data issues
— Different cross-section sets ?

 Stochastic materials
— Distribution of materials ?

Monte Carlo perturbation theory can handle the case of independent
variations in material density, but does not apply to other cases.

Brute force approach:

Run many independent Monte Carlo calculations,
varying the input parameters.
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mcnp_pstudy
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* To simplify & streamline the setup, running, & analysis of Monte Carlo
parameter studies & total uncertainty analyses, a new tool has been
developed: mcnp_pstudy

« Control directives are inserted into a standard MCNP input file
— Define lists of parameters to be substituted into the input file
— Define parameters to be sampled from distributions & then substituted
— Define arbitrary relations between parameters
— Specify constraints on parameters, even in terms of other parameters
— Specify repetitions of calculations
— Combine parameters as outer-product for parameter studies
— Combine parameters as inner-product for total uncertainty analysis
« Sets up separate calculations
« Submits or runs all jobs

 Collects results
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mcnp_pstudy

 Completely automates the setup/running/collection for parameter
studies & total uncertainty analyses

— Painless for users
— 1 input file & run command can spawn 100s or 1000s of jobs

— Fast & easy way to become the #1 user on a system
(Added bonus: make lots of new friends in computer ops &

program management.)

 Ideal for Linux clusters & parallel ASC computers:
— Can run many independent concurrent jobs, serial or paraliel

— Faster turnaround: Easier to get many single-cpu jobs through the
queues, rather than wait for scheduling a big parallel job

— Clusters always have some idle nodes
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mcnp_pstudy

« mcnp_pstudy is written in per/

— 640 lines of perl (plus 210 lines of comments)
— Would have taken many thousands of lines of Fortran or C

« Portable to any computer system
— Tested on Unix, Linux, Mac OS X, Windows

— For Windows PCs, need to have perl installed
(ActivePerl is free at activestate.com/activeperl, easy to install)

« Can be modified easily if needed
— To add extra features
— To accommodate local computer configuration
 Node naming conventions for parallel cluster
« Batch queueing system for cluster
 Names & configuration of disk file systems (ie, local or shared)
* Location of MCNP6 and MCNP6.mpi
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Examples

MCNP input for MCNP input using mcnp_pstudy,
simple Godiva calculation Run 3 different cases -

Each with a different radius

gdv gdv-A

c C @@R@ RADIUS = 8.500 8.741 8.750
1 100 -18.74 -1 imp:n=1 1 100 -18.74 -1 imp:n=1

2 0 1 imp:n=0 2 0 1 imp:n=0

1 so 8.741 1 so RADIUS

kcode 10000 1.0 15 115 kcode 10000 1.0 15 115

ksxre 0 0 O ksrxre 0 0 O

ml00 92235 -94.73 92238 -5.27 ml100 92235 -94.73 92238 -5.27
prdmp 0 0 1 1 0 prdmp 0 0 1 10
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Basics
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« Within an MCNP input file, all directives to mcnp_pstudy must
begin with

C @ee

To continue a line, use "\" as the last character
c Q@@ XXX =1 2 3 4 5 6 \
c @@a@ 7 8 9 10

Parameter definitions have the form
c @Qa@ P = value or list
c @Q@ P = ( arithmetic-expression )

Constraints have the form
c @@e CONSTRAINT = ( expression )

Control directives have the form
c Q@@ OPTIONS = Iist-of-options
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Parameter Definition
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 Parameters
— Like C or Fortran variables
— Start with a letter, contain only letters, integers, underscore
— Case sensitive
— Parameters are assigned values, either number(s) or string(s)

— Examples: R1l, rl, U _density, U _den
» Single value
C Q@@ Pl = wvalue

* List of values
C Q@@ P2 = valuel value2 .. valueN

» List of N random samples from Probability Densities:

— Uniform

C @@@ P3 = uniform N min max
— Normal

C @E@@ P4 = normal N ave dev
— Lognormal

C Q@@ P5 = 1lognormal N ave dev
— Beta

C Q@@ P6 = beta N a b [a,b are integers]
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Parameter Definition

« Arithmetic expression
C (@@ P5 = ( arithmetic-statement )

— Can use numbers & previously defined parameters
— Can use arithmetic operators +, -, *, /, % (mod), ** (exponentiation)
— Can use parentheses ( )
— Can use functions: sin(), cos(), log(), exp(), int(), abs(), sqrt()
— Can generate random number in (O,N):  rand(N)
— Can use rn_seed() to get odd seed for mcnp RN generator in [1,243-1]
— Must evaluate to a single value
— Examples:
c Q@@@ SEED = ( rn_seed() )

¢ @@Q@ FACT = normal 1 1.0 .05
c @@@ UDEN = ( 18.74 * FACT )
c @@ URAD = ( 8.741 * (18.74/UDEN)**.333333 )

* Repetition (list of integers, 1..N)
C (@ea P6 = repeat N
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Parameter Definition

« Examples
C rod height in inches, for search
C @@@ HROD =5 10 15 20 25 30 35 40 45 50

C nominal dimension, with uncertainty
C @@@ X1 = normal 25 1.234 .002

C dimension, with min & max

C @@@ X2 = uniform 25 1.232 1.236

C try different cross-sections

C @@@ U235 = 92235.42c 92235.49c 92235.52c \
C (@q@ 92235.60c 92235.66cC

C different random number seeds (odd)

C @@Q@ SEED = ( rn_seed() )
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Parameter Expansion

» After all parameters are defined, mcnp_ pstudy expands them
into sets to be used for each separate MCNP calculation

— Outer product expansion:

— Inner product expansion:

Example:

Outer:

Inner:

All possible combinations.
Parameters specified first vary fastest.

Corresponding parameters in sequence.
If not enough entries, last is repeated.

c @@@ A
c @@@ B
c Q@@ C

Case
Case
Case
Case

Case
Case
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Constraint Conditions
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« After all parameters are defined & expanded, constraint conditions are
evaluated

« Constraints involve comparison operators ( >, <, >=, <=, ==, I1=) or logical
operators ( && (and), || (or), ! (not) ), and may involve arithmetic or
functions

» Constraints must evaluate to True or False

 If a any constraint is not met, the parameters for that case are discarded
& re-evaluated until all of the constraints are satisfied

Example
C pick dimensions between min & max
g @@e@ X1 = wuniform 1l 3.9 4.1
C Q@@ X2 = wuniform 1l 5.9 6.1
g keep x1 & x2 if x1+x2 <= 10.0, otherwise reject & try again
g @@@ CONSTRAINT = ( X1 + X2 <= 10.0 )
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Creating INP Files & Job Directories

* Directory structure for MCNPS5 jobs
JOBDIR

case001 case002 case003

inp inp inp

— Unix filesystem conventions followed
JOBDIR/case001/inp, JOBDIR/case002/inp, etc.

» Values of parameters are substitued into the original MCNPS5 input
file to create the input files for each case

— Parameters substituted only when exact matches are found
— Example: UDEN matches UDEN, and not UDEN1, UDENS, uden



Job Options
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Specifying options for running jobs
— Can be specified on the mcnp_pstudy command-line

mcnp pstudy -inner
— Within the INP file

-setup -i inpOl

c @@Q@ OPTIONS = -inner

Common options

-1 str
-jobdir str
—-case str
-mcnp opts str

-bsub_opts str
—-inner

-outer

-setup

-run

-submit
-collect

The INP filename is str, default = inp

Use str as the name of the job directory

Use str as the name for case directories

Append str tothe MCNP5 run command,

may be a string such as 'o=outx tasks 4'

str is appended to the LSF bsub command

Inner product approach to case parameter substitution
Outer product approach to case parameter substitution
Create the cases & INP files for each

Run the MCNPS5 jobs on this computer

Submit the MCNP5 jobs using LSF bsub command
Collect results from the MCNPS5 jobs



bash:
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Running or Submitting Jobs

LA-UR-16-

Examples:
bash: mcnp pstudy -inner
bash: mcnp pstudy -inner
bash: mcnp pstudy -inner
bash: mcnp pstudy -inner
bash: mcnp pstudy -inner

mcnp pstudy -inner

.. wait till all jobs complete...

inpO01
inpO01
inp01

inpO01

inpO01

inpO01

« Jobs can be run on the current system, or can be submitted to a
batch queueing system (e.g., LSF)

« Tally results & K-effective can be collected when jobs finish

-setup
-run
-collect

-setup -run -collect

-setup -submit

-collect
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Creating Input Files ONLY
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» To bypass the creation of job directories, and running/submitting
problems:

— A special command line option is available: -inponly

— Invoking this option performs the parsing & setup of the input files for
each case, but the resulting mcnp input files are placed in the current
directory with default names of the form

inp case001, inp case002, etc.

— Using -case studyOla -inponly would result in files with
names

inp study01a001, inp study01a002, etc.

— Other options -run, -submit cannot be used if -inponly is
present

— The option -whisper can be used, and is equivalent to -inponly
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Combining Results

« Tally results & K-effective from separate cases can be combined using
batch statistics:

v_1 - 1|1 ey2_ y2
X=wu ZXk  Ox=. g |m2Xk—X
k=1 L k=1

where M is the number of cases & X, is some tally or Keff for case k

« Variance due to randomness in histories decreases as 1/M,
but variance due to randomness in input parameters is constant

2 2 2
Ox = G)_(, Monte GX, Initial

Carlo Conditions

Varies as 1/M ~ Constant
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Examples

Vary the fuel density randomly & adjust
radius for constant mass, for 50 cases

Vary fuel density & mass
independently, for 50 cases

gdv-E
c vary fuel density - normal, 5%sd,

¢ adjust the radius to keep constant mass

c
¢ Q@@ FACT= normal 50 1.0 .05
c @RQ@ UDEN= ( 18.74*FACT )

c Q@@ URAD= ( 8.741*(18.74/UDEN) **_ 333333 )

c

1 100 -UDEN -1 imp:n=1
2 0 1 imp:n=0
1 so URAD

kcode 10000 1.0 15 115

ksrc 0. 0. O.

ml00 92235 -94.73 92238 -5.27
prdmp 0 0 1 1 O

gdv-F
vary fuel radius - normal, 5%sd
vary fuel density- normal, 5%sd

Q@@ OPTIONS = -inner

@@@ DFACT = normal 50 1.0 .05
@RQR UDEN = ( DFACT * 18.74 )

@@RQ@ UFACT = normal 50 1.0 .05
@@Q@ URAD = ( UFACT * 8.741 )

100 -UDEN -1 imp:n=1
0 1 imp:n=0

NEQOOQOOOQOOOOQOOAQ

1 so URAD

kcode 10000 1.0 15 115

ksrc 0. 0. O.

ml00 92235 -94.73 92238 -5.27
prdmp 0 0 1 1 O
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Examples

Table 1. Results from varying parameters in the Godiva problem

Problem Description K-effective OK-eff
Base case, discard 15 initial cycles,
base retain 100 cycles with 10K 0.9970 0.0005

histories/cycle, 1M total histories
Repeat the base problem 50 times,
50M total histories

Vary the fuel density only: sample
B from a normal distribution with 5% 0.9961 0.0061
std.dev, 50M total histories

Vary the fuel radius only: sample
C from a normal distribution with 5% 1.0057 0.0051
std.dev, 50M total histories

Vary the enrichment only, sample
D from a normal distribution with 5% 0.9890 0.0027
std.dev, 50M total histories

Sample the fuel density from a
normal distribution with 5% std.dev,

A 0.9972 0.0001

E and adjust the fuel radius to keep 0.9966 0.0042
constant fuel mass, 50M total
histories

Sample the fuel density from a
normal distribution with 5% std.dev,
F and independently sample the 1.0073 0.0076
radius from a normal distribution
with 5% std.dev, 50M total histories
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Applications

 Parameter studies
— Run a series of cases with different control rod positions
— Run a series of cases with different soluble boron concentrations

— Run a series of cases sampling certain dimensions from a Uniform or
Normal probability density

— Run a series of cases substituting different versions of a cross-section

« Total uncertainty analysis

— Run a series of cases varying all input parameters according to their
uncertainties

» Parallel processing using a "parallel jobs" approach

— Running N separate jobs with 1 cpu each will be more efficient than
running 1 job with N cpus

— Eliminates queue waiting times while cpus are reserved
— Take advantage of cheap Linux clusters

« Simulation of stochastic geometry

— Run a series of cases with portions of geometry sampled randomly,
with a different realization in each case
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Conclusions

« mcnp_pstudy works
— In use regularly at LANL for a variety of real applications
— Developed on Mac & PC, runs anywhere
— Easy to customize, if you have special needs

 To get it:
— Included with MCNPG6 distribution

FB Brown, JE Sweezy, RB Hayes, "Monte Carlo Parameter Studies and
Uncertainty Analyses with MCNP5", PHYSOR-2004, Chicago, IL (April,
2004)
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Practical Examples from Criticality Safety

Examples
 wvald: 4.5 kg Pu Sphere, Ta-reflected with varying reflector thickness
« wval1l: 4.5 kg Pu Ingot, solid cylinder with varying H/D

 wval2: 4.5 kg Pu Ring, hollow cylinder with varying H & R,
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Example

wval4,
4.5 kg Pu Sphere,
Ta-reflected
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Example wval4: 4.5 kg Pu Sphere, Ta-reflected (1)

* 4.5 kg Pu-239 sphere
* Pu density =19.8 g/cm?3
« Reflected radially with Ta

» Vary the Ta-reflector thickness
over the range 0.* —30. cm

— Start with wval4.txt, input for thickness=7.62
mcnp6 i=wval4.txt

— Copy wval4.txt to wval4p.txt, then insert directives for mcnp_pstudy
» Define list for thickness:
c @@@ THICK = 0.01 5. 10. 15. 20. 25. 30.
« For a given THICK, compute reflector Rin & Rout
» Use parameters for dimensions & location of KSRC point
* Run:
mcnp pstudy -i wval4.txt -mcnp opts ‘tasks 4’ -setup
...... examine files case*/inp
mcnp pstudy -i wval4.txt -mcnp opts ‘tasks 4’ -run
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Example wval4: 4.5 kg Pu Sphere, Ta-reflected (2)

wval4: Study of Pu reflected with Ta
c
¢ Pu mass = 4500 g
c Pu density = 19.8 g/cc
¢ Pu volume = 227.272727
c
c¢ reflector definition:
c reflector thickness = 7.62
c reflector inner radius = 3.7857584
c reflector outer radius = 11.405758
c

1 4 -19.80 -1 imp:n=1

2 1 -16.69 +1 -2 imp:n=1

20 0 +2 imp:n=0

l so 3.7857584
2 so 11.405758

kcode 10000 1.0 50 250
sdef pos=0 0 0 rad=dl
sil 0 3.78
spl -21 2

c

ml 73180.80c 0.00012
m4 94239.80c 1

prdmp 9e9 9e9 1 9e9

73181.80c 0.99988

wvalédp Study of Pu reflected with Ta
c
¢ Pu mass = 4500 g
¢ Pu density = 19.8 g/cc
¢ Pu volume = 227.272727
c
c vary reflector thickness from 0+ to 30 cm
c
c @@@ THICK = .01 5. 10. 15. 20. 25. 30.
c @@@ R_INNER = 3.7857584
c @@@ R _OUTER = ( R_INNER + THICK )
c
c reflector definition:
c reflector thickness = THICK cm
c reflector inner radius = R_INNER cm
c reflector outer radius = R_OUTER cm
c

1 4 -19.80 -1 imp:n=1

2 1 -16.69 +1 -2 imp:n=1

20 0 +2 imp:n=0

1 so R_INNER

2 so R_OUTER

kcode 10000 1.0 50 250
sdef pos=0 0 0 rad=dl
sil 0 R_INNER
spl -21 2

c

ml 73180.80c 0.00012
m4 94239.80c 1

prdmp 9e9 9e9 1 9e9

73181.80c 0.99988
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Example wval4: 4.5 kg Pu Sphere, Ta-reflected (3)

wval4, thick=7.62 wval4p, varying thick
mcnp6 i=wval4.txt mcnp_pstudy -i wvaldp.txt -setup -run
k = 0.94638 (41) T=.01 case001 KEFF 7.91693E-01 KSIG 3.14948E-04

T=5.0 case002 KEFF 9.27157E-01 KSIG 4.47334E-04
T=10. case003 KEFF 9.54775E-01 KSIG 4.11031E-04
T=15. case004 KEFF 9.61644E-01 KSIG 4.34033E-04
T=20. case005 KEFF 9.62867E-01 KSIG 4.37235E-04
T=25. case006 KEFF 9.63899E-01 KSIG 4.04508E-04
T=30. case007 KEFF 9.63160E-01 KSIG 4.27633E-04

4.5 kg Pu with Ta Reflection

1.1

1.05

Ta-reflected Pu
....... Whisper USL
USL=0.97

0.75

0.7
0 5 10 15 20 25 30 35

Reflector Thickness (cm)
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Example

wval1,
4.5 kg Pu Ingot,
varying H/D
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Example wval1: 4.5 kg Pu Ingot, varying H/D (1)

420

4.5 kg Pu-239 right-circular cylinder

Pu density = 19.86 g/cm? -

Reflected radially with 1 inch of water
Reflected on the bottom with Y4 inch steel

Vary the height-to-diameter (H/D)
over the range 0.5-3.0

— Start with wval1.txt, input for H/D = 1
mcnp6 i=wval1.txt

— Copy wval1.txt to wval1p.txt, then insert directives for mcnp_pstudy
» Define list for HD:
c @@ HD = 0.5 1.0 1.5 2.0 2.5 3.0

« For a given H/D, compute Pu radius,

then other dimensions V = (Pu mass)/(Pu density)
V = HnR? = (H/D) - 2z R®

R=[V/2z(H/D)]"

» Use parameters for dimensions & location of KSRC point
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Example wval1: 4.5 kg Pu Ingot, varying H/D (2)

.
wvall: 4500 g Pu metal, H/D =1 wvallp: 4500 g Pu metal, various H/D
c reflected 1 inch water radially, c reflected 1 inch water radially,
c 0.25 in steel bottom c 0.25 in steel bottom
c c
11 -19.860000 -1 imp:n=1 c V = H pi R¥*2 = (H/D) 2pi R**3
11 3 -1.0 +1 -11 imp:n=1 c R = (V/(2pi H/D)**1/3
14 6 -7.92 -30 imp:n=1 c
15 0 +11 +30 -20 imp:n=1 c @@e@ PI = 3.141592654
20 0 +20 imp:n=0 c @R@ VOL_PU = ( 4500. / 19.86 )
c @@e@ HD =0.5 1.0 1.5 2.0 2.5 3.0
1 rcc 000 0 0 6.607662 3.303831 c QR@ R PU = ( (VOL_PU/(2*PI*HD))**(1/3) )
11 rcc 00O 0 0 6.607662 5.843831 c @@@ H_PU = ( 2*R_PU*HD )
20 rcc 0 0 -2.54 0 0 91.44 91.44 c @@ R _H20 = ( R_PU + 2.54 )
30 rcc 0 0 -0.635 0 0 0.635 76.20 c @R@ KSRC_Z = ( H_PU * 0.5 )
c
kcode 10000 1.0 50 250 c Pu cylinder:
ksrec 0 O 3.303831 c mass = 4500 g
ml 94239.80c 1 c density = 19.86 g/cc
m3 1001.80c 0.66667 8016.80c 0.33333 c volume = VOL_PU
mt3 lwtr.20t c radius Pu = R _PU
mé6 24050.80c 0.000757334 c height Pu = H_PU
24052.80c 0.014604423 c H/D = HD
24053.80c 0.001656024 c
24054.80c 0.000412220 c H20 outer radius = R_H20
26054.80c 0.003469592 c
26056.80c 0.054465174 1 1 -19.860000 -1 imp:n=1
26057.80c 0.001257838 11 3 -1.0 +1 -11 imp:n=1
26058.80c 0.000167395 14 6 -7.92 -30 imp:n=1
25055.80c 0.00174 15 0 +11 +30 -20 imp:n=1
28058.80c 0.005255537 20 0 +20 imp:n=0
28060.80c 0.002024423
28061.80c 0.000088000 1 rcc 00O 0 0 H PU R_PU
28062.80c 0.000280583 11 rcc 00O 0 0 H PU R_H20
28064.80c 0.000071456 20 rcc 0 0 -2.540000 O O 91.44 91.44
prdmp 9e9 9e9 1 9e9 30 rcc 0 O -0.635000 O O 0.635 76.20
kcode 10000 1.0 50 250
ksrc 0. 0. KSRC_Z
C e etc.
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Example wval1: 4.5 kg Pu Ingot, varying H/D (3)

wval1, H/D = 1 wval1p, varying H/D

mcnp6 i=wval1.txt mcnp_pstudy -i wvallp.txt -setup -run
HD=0.5 case00l1] KEFF 7.87229E-01 KSIG 4.09191E-04

k = 0.83491 (41) HD=1.0 case002 KEFF  8.34430E-01 KSIG  4.20175E-04
HD=1.5 case003 KEFF 8.29652E-01 KSIG 4.19130E-04
HD=2.0 case004 KEFF 8.11958E-01 KSIG 4.18723E-04
HD=2.5 case005 KEFF 7.93676E-01 KSIG 4.63720E-04
HD=3.0 case006 KEFF 7.73434E-01 KSIG 4.19664E-04

4.5 kg Pu Ingot k-effective and USL

| l
095

0.9

0.85

= ligoe

k-effective
o
[oo]
\
/
|
!’4

—~—— ceseeeees USL-Ingot Whisper

USL=0.97
0.75

0.7

0.65

0.6

H/D
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Example

wval2,

4.5 kg Pu Annulus,
varying H & R,
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Example wval2: 4.5 kg Pu Annulus, varying H & R, (1)

4.5 kg Pu-239 right-circular cylinder, hollow
Pu density = 19.86 g/cm?

Reflected radially with 1 inch of water
Reflected on the bottom with "4 inch steel

Set the height to be same as solid cylinder
with height-to-diameter (H/D) = 1.0, 2.0, 3.0

For given height, vary inner radius over 0* -2 cm

— Start with wval2.txt input
mcnp6 i=wval2.txt

— Copy wval2.txt to wval2p.txt, then insert directives for mcnp_pstudy
» Define list for solid HD: Solid cylinder
c @@@ HD = 1.0 2.0 3.0 V = (Pu mass)/(Pu density)
» For a given H/D, compute Pu height :i’:ﬂ\sz/Sz//D)}/sz
» Define list for inner radius RIN_PU [ _ d
Hollow cylinder
c @@@ RIN PU = 0.001 0.5 1.0 2.0

. . V =Hz(R,, -R:)
* Then other dimensions & source R =|:R,.2n+V/7zH:|l/2

t
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Example wval2: 4.5 kg Pu Annulus, varying H & R, (2)

.
wval2p: 4500 g Pu metal ring, various H & Rin
wval2: 4500 g Pu metal ring, fixed Rin c
1 3 -1.0 -1 imp:n=1 c @@@ PI = 3.141592654
2 1 -19.860000 +1 -2 imp:n=1 c @R@ VOL _PU = ( 4500. / 19.86 )
11 3 -1.0 +2 -11 imp:n=1 c Pu mass = 4500 g
14 6 -7.92 -30 imp:n=1| c¢ Pu density = 19.86 g/cc
15 0 +11 +30 -20 imp:n=1| c Pu volume = VOL_PU
20 0 +20 imp:n=0 c
c set height to match ingot with various H/D
lrcc 000 0 0 6.608 0.100000 | ¢ @@@ HD = 1.0 2.0 3.0
2rcc 000 00 6.608 3.305259 | c @R@ HEIGHT = ( (4*VOL_PU* (HD**2)/PI)**(1/3) )
11 rcc 00O 0 0 6.608 5.845259 c
20 rcc 0 O -2.540 0 O 91.44 91.44 c for hollow cylinder:
30 rcc 0 0 -0.635 0 0 0.635 76.20 c use same height as for solid ingot
c set various inner radii
kcode 10000 1.0 50 250 c set Rout for given height, mass, Rin
sdef pos=0 0 0 rad=dl axs=0 0 1 ext=d2 c @R@ RIN PU = .001 0.5 1.0 2.0
sil 0.100 3.305259 c @@@ ROUT PU=(sqrt(RIN PU**2+VOL_PU/(PI*HEIGHT)))
spl -211 c Q@@ ROUT_H20 = ( OUTER_PU + 2.54 )
si2 0.0 6.60800 c
sp2 O 1 1 3 -1.0 -1 imp:n=1
ml 94239.80c 1 2 1 -19.860000 +1 -2 imp:n=1
m3 1001.80c 0.66667 8016.80c 0.33333 11 3 -1.0 +2 -11 imp:n=1
mt3 lwtr.20t 14 6 -7.92 -30 imp:n=1
mé 24050.80c 0.000757334 15 0] +11 +30 -20 imp:n=1
24052.80c 0.014604423 20 0] +20 imp:n=0
24053.80c 0.001656024
24054.80c 0.000412220 1 rcc 00O 0 0O HEIGHT RIN PU
26054.80c 0.003469592 2 rcc 00O 0 0 HEIGHT ROUT PU
26056.80c 0.054465174 11 rcc 00O 0 0 HEIGHT ROUT H20
26057.80c 0.001257838 20 rcc 0 0 -2.540 0 0 91.44 91.44
26058.80c 0.000167395 30 rcc 0 0 -0.635 0 0 0.635 76.20
25055.80c 0.00174
28058.80c 0.005255537 kcode 10000 1.0 50 250
28060.80c 0.002024423 sdef pos= 0. 0. O. rad=dl axs=0 0 1 ext=d2
28061.80c 0.000088000 sil RIN_PU ROUT_PU
28062.80c 0.000280583 spl -211
28064.80c 0.000071456 si2 O HEIGHT
prdmp 9e9 9e9 1 9e9 sp2 0 1
............... etc
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Example wval2: 4.5 kg Pu Annulus, varying H & R., (3)

wval2
mcnp6 i=wval2.txt

k = 0.83413 (42)

Comparison of 4.5 kg Pu Ingot and Rings

Ingot H/D
0 05 1 15 2 25

095

09

085

08

075

07

0 05 1 15 2 25

Ring Inner Diameter (cm)

wval2p, varying H & R,
mcnp_pstudy -i wval2p.txt -setup -run

HD=1
HD=2
HD=3
HD=1
HD=2
HD=3
HD=1
HD=2
HD=3
HD=1
HD=2
HD=3

w

Rin=.001
Rin=.001
Rin=.001
Rin=0.5
Rin=0.5
Rin=0.5
Rin=1.0
Rin=1.0
Rin=1.0
Rin=2.0
Rin=2.0
Rin=2.0

Ring H/D=1
Ring H/D=2

Ring H/D=3
-+ USL-Ring H/D=1

Ingot
++=++ USL-Ingot
USL-Ring H/D=2

......... USL-Ring H/D=3

case001
case002
case003
case004
case005
case006
case007
case008
case009
case010
caselOl1l
case(01l2

KEFF
KEFF
KEFF
KEFF
KEFF
KEFF
KEFF
KEFF
KEFF
KEFF
KEFF
KEFF

8.34752E-01
8.12612E-01
7.72725E-01
8.20432E-01
7.95375E-01
7.54174E-01
7.88497E-01
7.62394E-01
7.20810E-01
7.21523E-01
6.97954E-01
6.64037E-01

4.35668E-04
4.09516E-04
3.82627E-04
4.01135E-04
4.60388E-04
3.96580E-04
3.95026E-04
3.90299E-04
4.27354E-04
4.02775E-04
4.88269E-04
4.88326E-04
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Advanced Topics

Tied parameters

Concurrent jobs
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Parameter Expansion (1)

428

« Standard inner & outer schemes for determining job parameters

Example: ee@
eee@
eee
eee

@eea@

naQaQaaan
HOQwp

Outer: all combinations,
{1,3,5,7,9}, {2,3,
{1I3I6I7I9}’ {2I3I
{1,3,5,8,9}, {2,3,
{1I3I6I8I9}’ {2I3I

Inner: 2 cases
{1,3,5,7, 9}, {2,

= 1 2

= 3 4

= 5 6

= 7 8

= 9

16 cases

5,7,9}, {1,4,5,7,9}, {2,4,5,7,9},
61719}1 {114161719}1 {214161719}1
5,8,9}, {1,4,5,8,9}, {2,4,5,8,9},
61819}1 {114161819}1 {214161819}1
4,6,8, 9}

 The inner & outer schemes for determining job parameters can be

modified

— Often desirable to deal with groups of parameters that are varied

— 2 or more parameters can be “

tied” together, to vary in an inner manner

— Tied parameter lists must have the same lengths
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Parameter Expansion (2)

Y
These examples assume that the -outer Example:
option is in effect for all parameter c Q@@ tied = A B
combinations c @@ A = 1 2
c Q@@ B = 3 4
Example: c @QR@ tied = C D
c Q@@ tied = A B c @@e@ c = 5 6
c @@@ A = 1 2 c @@@ D = 7 8
c @@ B = 3 4 c @@@ E = 9
z ggg g - 3 g Cases, {A,B,C,D,E}:
c Q@@ E = 9 {1131 5171 9}! {1131 6181 9}!
{2141 5171 9}/ {2141 6181 9}
Cases, {A,B,C,D,E}:
{1I3I 5! 7! 9}’ {1I3I 6! 7! 9}!
{ll3l 5’ 8’ 9}’ {1I3I 6’ 8’ 9}’
{2,4, 5, 7, 9}, {2,4, 6, 7, 9}, Example:
{2,4, 5, 8, 9}, {2,4, 6, 8, 9} c Q@@ tied = A B CD
c Q@@ A = 1 2
Example: c @e@ B = 3 4
c Q@@ tied = A B C c @@ c = 5 6
c @@e@ A = 1 2 c @@@R D = 7 8
c @@ B = 3 4 c @@@ E = 9
g ggg g _ 3 g cases, {A,B,C,D,E}
c @@a@ E = 9 {11315171 9}! {21416181 9}
Cases, {A,B,C,D,E}:
{1,3,5, 71,9}, {1,3,5, 8,9},
{214161 719}1 {214161 819}
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Parameter Expansion (3)

Y
The -inner & -outer options can be varied for Example:
different parameters, and mixed with tied c Q@@ options = -outer
parameters c Q@@ tied = A B
c Q@@ A = 1 2
Example: c @@@ B = 3 4
c @@@ options = -inner c Q@@ tied = C D
ceee a = 1 2 c@e c = 5 6
c @e@ B = 3 4 c @@ D = 7 8
c @@ c = 5 6 c @@QR E = 9
c Q@@ D = 7 8 Cases
c e E = 9 {1,3, 5,7, 9}, {1,3, 6,8, 9},
Cases: {2,4, 5,7, 9}, {2,4, 6,8, 9}
{1I3I5I7I 9}’ {2I4I6I8I 9}!
Example:
c Q@@ options = -inner Example:
c Q@@ A = 1 2 c Q@@ tied = A B CD
c @ee@ B = 3 4 c @@@ A = 1 2
c @@@ options = -outer c Q@@ B = 3 4
c @e@ c = 5 6 c @@@ c = 5 6
c @@@ D = 7 8 c @@ D = 7 8
c @@e@ E = 9 c @@ E = 9
Cases: Cases:
{1,3, 5, 7, 9}, {1,3, 6, 7, 9}, {1,3,5,7, 9}, {2,4,6,8, 9}
{1131 51 81 9}! {1131 61 81 9}1
{2,4, 5, 7, 9}, {2,4, 6, 1, 9},
{2141 51 81 9}! {2141 61 8! 9}
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Concurrent Jobs (1)

« By default, jobs for the different cases are run sequentially
jobs for each case are run on the current computer,
sequentially (one-at-a-time)

— For —submit: separate batch jobs are submitted for each case,

— For —run:

— For either —run or -submit, multiple threads can be used for the mcnp6 runs in
each case, by using the option -mcnp opts ‘tasks 8’

 For Linux & Mac systems, not Windows:
— Multiple concurrent cases can be run, even when threads are used
— The —ppn n option specifies the number of processes per node (ie, cases to

be run concurrently)

 Examples:
— On a system with 24 hyperthreads, could run 6 cases at a time with 4 threads each:

mcnp pstudy —i inp.txt -mcnp opts ‘tasks 4’ -ppn 6 -setup —run

— For a cluster with 16 cores/node, can submit jobs with 16 cases each:
mcnp pstudy —i inp.txt -ppn 16 -setup —submit
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Fission Matrix
&
Higher Eigenmodes

Forrest Brown

Senior Scientist, Monte Carlo Codes Group, LANL
ya National Lab Professor, University of New Mexico

~ )
‘hosflamos N\ BRatems  VASEL

EST.1943 ComPUTING” Nuclear Criticality Safety Program
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Fission Matrix Capability for MCNP Monte Carlo

* Introduction
— MCNP
— Higher Eigenmodes
— Green's Functions & Transport

 Fission Matrix
— Theory
— Sparse Storage
— Transport Theory

- Examples
— Homogeneous 2D Reactor
— Whole-core PWR, 2D
— Whole-core PWR, 3D (Kord Smith)
— Advanced Test Reactor
— Spent Fuel Storage Vault

« Conclusions Carney, Brown, Kiedrowski, Martin,

“Fission Matrix Capability for MCNP Monte Carlo”,
Trans ANS 107, San Diego, 2012
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Introduction - Higher Eigenmodes

0
Vibrating strings: /\ F /\ :
- Higher modes add "tone", AN 3
but die away quickly
| | AR
Fundamental mode persists \ / \ 7
- Feedback, instability, nonlinear
effects, ..., may excite higher modes 9

etc.
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Introduction - Green's Functions & Transport Theory

435

‘fé\A S, =S, -F(A—B)

B
- F(A>B)

— Green's function, "here-to-there" function
— Probability that source at point A produces source at point B

- Transport theory - Peierl's equation for multiplying system

S() = —— - [ dF-S(F)-F(F > 7)

eff all v

— Discretize space into blocks, or mesh regions
— Compute F(r’ =r) with Monte Carlo
— Solve matrix eigenvalue problem for sources:

— —_—

S=21-FS

keff

— Can also solve for higher modes
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Fission Matrix
In
MCNP Monte Carlo
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Fission Matrix - Theory

- Transport equation, k-eigenvalue form

. M-¥(F,E,Q)= Q- V¥(F,E,Q)+ =, (F,E)¥(F,E Q)
M- ¥(F,E,Q)=1- XE). S(r), — [[ dE" dys4(F.E' - E.QY —» Q)W(F.E,Q),

F)= [ dE’ dQvz, (F.E)¥(F.E.Q),
- Define Green’ s function & integral transport equation

M. G(%,E,,Q, — F,EQ)=8(F - ) -8(E-E,) - 8(Q-Q,),

0
¥(FEQ) =1 [[[dF dE, d XEo) 5i).G(.E.O. > FED)
y=2&) = K o Yo 0 " An 0 010520 3=

- Multiply by vz, integrate over E, Q, & initial regions (r,) & final regions (r)

F,= [ df [ df FO [ [|] dE a2 dE, dd, - vE, (F.E): xE,) - G(5,E,,Q, — T,E,Q)

4r
A e By
S| _R'EFI,J 'SJ
J=1 jvs )dF’ = jjvjdf'dE dOVE (7, E)¥(F,E, L),

Exact equations for integral source S,, N = # spatial regions, F is NxN matrix
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Fission Matrix - Theory

438

- F,, = next-generation fission neutrons produced in region I,
for each fission neutron starting in regiondJ (J—I)

* In the equation for F,
— S(r,)/S, is a local weighting function within region J
— As V; > 0:
« S(rp)V/S;, > 1
- Discretization errors 2> 0
- Can accumulate tallies of F, ; even if not converged

- F,, tallies:
— Previous F-matrix work: tally during neutron random walks
— Present F-matrix work: tally only point-to-point,

using fission-bank in master proc (~free)
+ Eliminates excessive communications for parallel
* Provides more consistency, F, ; nonzero only in elements with actual sites
+ Analog-like treatment, better for preserving overall balance
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MCNP Criticality Calculations

mital  § Bach1 | Bach2 § Bachs |  Batcha
Monte Carlo K-effective Calculation R R R BV-GNE B
1. Start with fission source & k-eff guess
2. Repeat until converged:
« Simulate neutrons in cycle
« Save fission sites for next cycle

« Calculate k-eff, renormalize source

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

3. Continue iterating & ta"y results Source Source Source Source Source
. Source particle generation o
Neutron

‘ Monte Carlo random walk

For Fission Matrix calculation
During standard k-eff calculation, at the end of each cycle:
- Estimate F,, tallies from start & end points in fission bank ( ~ free)
- Accumulate F,, tallies, over all cycles (even inactive cycles)
After the Monte Carlo is complete:
* Normalize F,;, accumulators, divide by total sources in J regions
» Find eigenvalues/vectors of F matrix (power iteration, with deflation)
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Monte Carlo Techniques for Nuclear Systems — Theory Lectures

Fission Matrix — Sparse Structure

- For a spatial mesh with N regions, F matrixis N x N
— 100 x 100 x 100 mesh > Fis 106 x105 - 8,000 GB memory

— In the past, memory storage was the major limitation

- Sparse storage for F matrix

3D reactor with
15x15 spatial mesh,
225x225 F matrix

— Don’ t store zero elements, use sparse storage scheme

— For 100x100x100 mesh, reduces F matrix storage to a few GB
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K-eigenvalue Form of Transport Equation

- Structure & properties M-¥(r,E Q) =K XE) -S(r)
— 60 years ago: .

A single, non-negative, real, fundamental
eigenfunction & eigenvalue exist

— 50 years ago:

For 1-speed or 1-group: A complete set of self-adjoint,
real eigenfunctions & discrete eigenvalues exists

— Energy-dependent transport equation is bi-orthognal,
forward & adjoint modes are orthogonal

— Nothing else proven, always assumed that higher-mode solutions exist

P
AN
a

- In the present work based on the Fission Matrix:

— We provide evidence that higher modes exist, are real, have discrete
eigenvalues, and are very nearly self-adjoint (for reactor-like problems)

— Approach is similar to Birkhoff’ s original proof for fundamental mode

— This has never been done before using continuous-energy Monte Carlo
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Homogeneous 2D Reactor
Eigenmodes for:

Whole-core Model
Half-core Model
Quarter-core Model
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Eigenmodes for Homogeneous 2D Reactor

Whole Core
Model

Half Core
Model

Quarter Core
Model

Whole Core
Model

Half Core
Model

Quarter Core
Model
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Whole-core 2D PWR

Eigenvalue spectrum
Spatial Eigenmodes
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Whole-core 2D PWR Model

2D PWR (Nakagawa & Mori model)

2.1% enrichment
2.6% enrichment

48 1/4 fuel assembilies:
— 12,738 fuel pins with cladding

— 1206 1/4 water tubes for
control rods or detectors

Each assembly: -
— Explicit fuel pins & rod channels e

— 17x17 lattice =
— Enrichments: 2.1%, 2.6%, 3.1%

Dominance ratio ~ .98

Calculations used whole-core model,
symmetric quarter-core shown at right

ENDF/B-VII data, continuous-energy
Tally fission rates in each quarter-assembly
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PWR - Eigenvalue Spectrum & Fundamental Mode

500 K neutrons/cycle
Fission matrix tallies for cycles 4-55

~~~~~~~ T .
L L - L HEHE
= s i '
EE N S5t - i i
T HHHE T
z T EHH
- a-Eam R
i ' jpzEsEas:: SR
15 x 15 mesh 30 x 30 mesh 60 x 60 mesh 120 x 120 mesh

 Fission matrix computed during MCNP k-effective inactive cycles

 Fundamental eigenmode of the fission matrix for a 2D whole-core
PWR model, for various spatial meshes used to tally the fission matrix



mode 0, eigenvalue = 1.29480

mode 4, eigenvalue = 1.24847
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PWR - Eigenmodes for 120x120x1 Spatial

Mesh

mode 1, eigenvalue = 1.27657

mode 5, eigenvalue = 1.24075

120
100
80
60
40
20
20 40 60
mode 8, eigenvalue = 1.19745 mode 9, eigenvalue = 1.19743
120 ] 120
g I |
100 100 2 +
_| g
0 ’, %
60 60
40 40 z
*
20 " :u 20
- i S
20 40 60 80 100 120 20 40 60 80 100 120
mode 13, eigenvalue = 1.14037
120
100
80
60
40
20
20 40 60 80 100 120

120

100

80

120

100

80

60

mode 2, eigenvalue = 1.27664

mode 3, eigenvalue = 1.25476

mode 6, eigenvalue = 1.22160

mode 7, eigenvalue = 1.22141

120
* 100 ‘
B
- - -
40 40
- e
f “ ad i
20 40 60 120 20 40 6;— 80 100 120
mode 10, eigenvalue = 1.18825 mode 11, eigenvalue = 1.18305
120
100
80

- Q‘

20 40 60 80 100 120

mode 15, eigenvalue = 1.14633

m“'ﬂ
o .

20 |_' * ul
- i
20 40 60 80 100

120

©OooO~NOCOGTA~,WN=-=-0S5

Kn
1.29480
1.27664
1.27657
1.25476
1.24847
1.24075
1.22160
1.22141
1.19745
1.19743
1.18825
1.18305
1.15619
1.14633
1.14617
1.14584
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PWR - First 100 Eigenmodes
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PWR - First 100 Eigenmodes, with More Neutrons

LA-UR-16-
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Eigenvalue Spectra with Varying Meshes
_Real(ki)

T T T T T

N = number of mesh regions

( Fission matrix size=N x N)

| 3600 |
ol : 14400 ]

10° 10’ 10° I 10° 10* 10°
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Spectrum Convergence from Mesh Refinement

1.3

LA-UR-16-

451

KO
1.25 K1 )
K2 SU—
1.2F -
‘ -------
K3 , J/ S ——lambda-0
1.15 K4 —lambda-1
&—lambda-2
/ - lambda-3
K5 / | *—lambda-4
1r / lambda-5
K ,// - lambda-6
K6 ’ *—lambda-7
1051 7 &—lambda-8
~—lambda-9
K8 f
K9
1 ‘ ‘2 l ]3 [ ‘4
10 10 10 10

Mesh size

# Mesh Regions

5x5
10x10
15x15
30x30
60x60
120x120

25
100
225
900

3600

14400

K,

1.29444
1.29453
1.29469
1.29477
1.29479
1.29480

For fine-enough spatial mesh,
eigenvalue spectrum converges
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Are the Eigenvalues Real or Complex ?

‘Real( ki):

The appearance of complex eigenvalues
appears to be strictly an artifact of
Monte Carlo statistical noise

When more neutrons/cycle are used to
decrease statistical noise, complex
| | components diminish or vanish

1 M neutrons/cycle
500K neutrons/cycle

o w «  The first few 100s or 1000s of discrete
eigenvalues are real, and presumably

Imag( k; ): all would be with sufficiently large
5 o neutrons/cycle

120 by 120 Spectrum, Varying Neutrons/cycle
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PWR - Inner Products of Forward Eigenmodes

15, Inner products of
forward eigenfunctions f dr Y, (MY, ()

= O0pm Uf fission kernel
is self adjoint/symmetric

Strictly, eigenfunctions of the transport equation are bi-orthogonal.
As shown above, forward eigenfunctions are very nearly orthogonal.
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Kord Smith
Challenge Problem

3D Whole-Core PWR
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MCNP & the "Kord Smith Challenge”

Full core, 3D benchmark for assessing MC computer performance
— Specified by Hoogenboom & Martin for OECD/NEA (2010)
— LWR model: 241 assemblies, 264 fuel pins/assembly
— Fuel contains 17 actinides + 16 fission products; borated water
— Detailed 3D MCNP model
+ Mesh tallies for pin powers, (63,624 pins) x (100 axial) = 6.3M pin
powers

* Runs easily on deskside computer (Mac Pro, 2 quad-core, 8 GB

upper core plate top 'nozzle top reactor vessel
region region FA region
N \

< ~¢
T <

reactor vessel

NG
~ 3 [ [ ] [T

downcomer <l | downcomer

| fuel assembly
with hot water

™
»
| [ J

“uEEEEEr~

| radial reflector
with hot water

fuel pin
k&| with cladding

[ [ | e

| fuel assembly
with cold water

@@ R guide tube

radial reflector . fuel assembly = filled with water

with cold water

Qe
)

e
(IO®@

] ‘. _
r \ \ _____ ; ! radial reflector

\ b}ttom . -

bot;om nozzle  pa region
lower core plate region
region
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Standard MCNP & the "Kord Smith Challenge"

Pin Powers & Std.Dev Assemb|y Power
. Axial | Mld | TOp v’ & Std.Dev ‘
Tl "”“‘-'f‘u:]’ : | pEEEmmm - P 7 :
: :3
-'iim.,»‘,J | -

vawmwmwwmwwmmwfﬂ

‘f; t f:;

i\ e ‘“

|I i wi'm"" DA ||||||ll||!“”l ’L 'E

200M neutrons
Mac Pro, 8 cpu

Kkeff oyale mumber



0.99-

0.981

0.97

0.96

0.95

0.941

0.93
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Kord Smith Challenge Eigenvalue Spectrum

First 15 eigenvalues for
21x21x20 and 42x42x20 mesh

\

T

1
2000

21x21x20 mesh,
Real(K) spectrum
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Eigenfunctions from Fission Matrix

.
XY plots of eigenfunctions at various Z elevations

55 cycles, 1 M neutrons/cycle, 42x42x20 mesh, 35280x4913 fission matrix

Top of Core

ﬁ G2 B B e ‘ 9 10 4 42 43 4
1® IS ARSI © I IO N IR
NN LIRS o | ool boe |%an ot 150
2 00| ][ o |1# |42/ 020 IO @ 5 2] -7 |24 33 5
10 LOICHIPSISIEEE-H1 R © JL JIENIES IR CIOC
10 LOE INISAUISHEXT © IRRIHSIS IS CIoS
1 ® RO IS T SR o JL IS DGR EN A
B ISIRI+T
i \ \ it,

Bottom of Core
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Eigenvalues & Inner Products of Eigenfunctions

-
cwoo~NOCGOPA~,WMNMNMN-=-0O 5

G G Gy
H WON =

K

n

0.99919
0.98483
0.98362
0.98469
0.96956
0.96950
0.96693
0.96591
0.96043
0.95671
0.95178
0.95078
0.94524
0.94497
0.94472

459

42 x 42 x 20 spatial mesh, 35280 x 4913 fission matrix

55 cycles, 1 M neutrons/cycle

fission matrix tallies for cycles 4-55

Inner products of eigenfunctions

: \V/\WASR=AN
V\\/\\/(\VIVIJ - :

[ER\7A\V/.\ W)
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Convergence Acceleration Using Fission Matrix

460

- Fission matrix can be used to accelerate convergence of the MCNP

neutron source distribution during inactive cycles

- Very impressive convergence improvement

/ accelerated using F matrix

" x  x % x x. x|
0.995
0.99

keff 0.985}

- standard MC

0.98}.

- MC
Y

0.975}

0‘970 10 20 30 40 50
Cycle
14.7

60

+ MC
< FM e.vecH

146" ... standard MC
H 145}

SIC 4l T .

..,
. .

..,

14.3} & XK X X X xx o xxxox xTxttge

14.2 D accelerated using F matrix
0

*aw

10 20 30 40 50

60
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Advanced Test Reactor

Idaho National Laboratory



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 462

Advanced Test Reactor

“Serpentine Arrangement of Highly Enrichment Water-Moderated

Uranium-Aluminide Fuel Plates Reflected by Beryllium”
124

/— Core rellector tank

121

Core zfleclar lank — “——Radiis 100 ol
IR 64.20375
OR 63.58 D mensizng in cm

NT=

F flux trap

Fue eements

Figure 20 An XY View at x=(Ly=(l of the Henchmark Model. e

S. S. Kim, B. G. Schnitztler, et. al., “Serpentine Arrangement of Highly Enrichment Water-Moderated Uranium-Aluminide
Fuel Plates Reflected by Beryllium”, HEU-MET-THERM-022, Idaho National Laboratory (September 2005).
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ATR - Fission Matrix Structure

Matrix structure
(50x50 spatlal mesh)

Four matrix columns (100x100 spatial mesh)

=3 -3
x 10 x 10

, - e
.‘&;_;Eﬁ '- ) > ‘# 3.
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1500F;
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ATR - Fundamental Eigenvector, Eigenvalues

107 Real( kl)

Fundamental mode,
100x100 spatial mesh
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ATR - Eigenmodes (100x100 spatial mesh)

LA-UR-16-
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ATR - Fission Matrix Orthogonality

-

oooNOOCOGTA~WN =0

K

n

0.99490
0.85630
0.84612
0.78265
0.64564
0.55461
0.55207
0.53659
0.47004
0.46173
0.45794
0.41144
0.32865
0.29454
0.28401
0.28327

466

100 x 100 x 1 spatial mesh, no sparsification
55 cycles, 1 M neutrons/cycle
fission matrix tallies for cycles 4-55

Inner products of eigenfunctions

1.5

0.5




Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 467

MCNP Fission Matrix

Spent Fuel Storage Vault

(idealized benchmark)

Loosely-Coupled
Problem
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Fuel Vault Problem

Fuel Storage Vault K vs cycle H,, . vs cycle
T
: M\ |
N e

Assembly Heating Distribution

] .
« [l
H B E N

For this calculation,
+ Should discard ~20 cycles if calculating Keff only
+ Should discard ~2000 cycles if calculating heating distribution
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Eigenvalue Spectrum for Fuel Vault Problem- First 360

Real( k), i=1,2,..360

0 e
S e, .
1 B
o
085/~ T e, |
| ‘ ‘ ‘ T ]
0 50 100 150 200 250 300 350

36 semi-coupled assemblies - Mini-groups of 36 in size
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XY Eigenmodes of Fuel Vault Problem, 96 by 12 by 10

EERERERNENRNE $  + % W W=
14 *“"'.*15

XY planes mid-height. Axial shape is cosine, #10,13,15 have change in sign in z
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Fuel Vault Problem - Convergence Acceleration

471

It takes ~2,000 cycles for standard MC to converge for this problem,

Using the fission matrix for source convergence acceleration,

only ~20 cycles are needed

0.9

0.895
k 0.89| - -
0.88 '

0.875}

0.87

«v\xrw»\v,’yx-:-:ﬁg«_c—.{:,.,“_“W;y_.‘“v,:\'&'nﬁi‘h\""’aﬁn!#&"r?‘;3-:-):-.‘.\:»»»03’/3‘

o2t

- MC
< FM

1 | ! |
20 40 60 80 100

Cvcle

120

1
140

160 180

200

S

* MC, pre-fdbk
< FMe.vec

OB

| | |
0 20 40 60 80 100

Cycle

1
120

140

160 180

200

standard MC

accelerated using
F matrix

Standard MC decreases
slowly, converges to
same value as F matrix
after ~2,000 cycles
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Conclusions

472

- Fission matrix capability has been added to MCNP (R&D for now)
- Tested on variety of real problems (3D, continuous-energy)

- Can obtain fundamental & higher eigenmodes

— Empirical evidence for: existence of higher modes,
real, discrete eigenvalues,

very nearly orthogonal eigenmodes
(for reactor-like problems)

— Higher eigenmodes are important for

BWR void stability, higher-order perturbation theory,
Xenon oscillations, quasi-static transient analysis,
control rod worth, correlation effects on statistics,
accident behavior, etc., etc., etc.

- Can provide very effective acceleration of source convergence
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LA-UR-12-22277

On-The-Fly Neutron

Doppler Broadening
for MCNP

Forrest Brown', William Martin?,
Gokhan Yesilyurt3, Scott Wilderman?

TMonte Carlo Methods (XCP-3), LANL
2University of Michigan
3Argonne National Laboratory

e

.
L gran . Los Alamos
BVl Argonne  NATIouaL Lasoratony
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Abstract

On-The-Fly Neutron Doppler Broadening for MCNP

Forrest Brown, William Martin, Gokhan Yesilyurt, Scott Wilderman

The University of Michigan, ANL, and LANL have been collaborating on a US-DOE-NE University
Programs project “Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics
Simulation of Nuclear Reactors.” This talk describes the project and provides results from the initial

implementation of On-The-Fly Doppler broadening (OTF) in MCNP and testing.

The OTF methodology involves high precision fitting of Doppler broadened cross-sections over a wide
temperature range (the target for reactor calculations is 250-3200K). The temperature dependent fits
are then used within MCNP during the neutron transport, for OTF broadening based on cell
temperatures. It is straightforward to extend this capability to cover any temperature range of interest,
allowing the Monte Carlo simulation to account for a continuous distribution of temperature ranges
throughout the problem geometry.
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On-The-Fly Neutron Doppler Broadening for MCNP

LA-UR-16-

475

* Introduction
— Doppler Broadening - Obvious Stuff
— Methods for Handling Temperature Variations

- OTF Doppler Broadening in MCNP
— OTF Methodology
— Union Energy Mesh
— Temperature Fitting
— OTF Doppler in MCNP
— Testing
— Work-in-Progress



cross section (barns)

0.1

tally/lethargy/particle
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Introduction — Doppler Broadening

1044

1000.

238 capture
cross-section

100.

10.

0.01

E
c'lo—a 10-7 10-6 10-S 10-4 0.0012 .01 .1 1. 10.
. A 7/ “ | IT”ﬁj
Epithermal Range 4
AN %
-'/ \\ . i ] ‘X
= 7 e T
:,' \,—\__,,\ p’m‘-\!q | ‘ I '
; ' Fission \
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Keeping same densities,
but changing cross-sections:

k, . (cold) = 1.34498 (8)
k. (hot) = 1.31167 (8)

At higher temperatures,
Doppler broadening of
resonance cross-sections
increases resonance capture
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Introduction

Doppler Broadening

Temperature Variation in
Monte Carlo Codes
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Neutron - Nucleus Interactions

- Low neutron energies:
— S(a,B) interaction data is used in modeling collision physics
« 2002 data: 10° eV - 4.46 eV neutron energies (15 nuclides)
- 2012 data: 10° eV - 9.15 eV neutron energies (20 nuclides)

— S(a,B) data accounts for target nucleus chemical binding, molecular
binding, crystal structure, thermal motion, etc.

— Nuclides without S(a,3) data: use free-gas model (see below)

- High neutron energies:
— Target nucleus thermal motion neglected
— Typical: E > 400 KT for A>1

neutron

- Epithermal neutron energies:
— Target nucleus thermal motion important

— Free-gas scattering model -- nuclides have Maxwell-Boltzmann energy
distribution at temperature T, isotropic direction

H(E

2
— . . nuc mean = 1.5 kT
) Jr KT UKT

1/2
1 Enuc . Gamma( kT, 3/2),
mode = .5 kT
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Doppler Broadening

Collision isotope,
Reaction type,
Free-flight distance Exit E' & (u',v',w'),
to next collision, s Secondary particles

Detailed kinematics of collisions must include nucleus E & Q

For free-flight, selection of collision isotope, & tallies of overall reactions:
must use effective cross-sections, averaged over (E, Q) distribution of
nuclides at temperature T

Tl 19- PV, PE)=()" e )

2mkT

O (V)= J

vV

Doppler broadening equation v = neutron, V=nucleus

This is a convolution of the cross-section with the target energy or speed distribution.
Smears out & smoothes the cross-section, reduces peak values.
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Doppler Broadening - Numerics

- ENDF/B nuclear data is represented by piecewise-linear tabulation of o(E)

Typically, a linearization
o tolerance of 0.1% is used

E

- Doppler Broadened Neutron Cross-sections

Geﬁ(V):le_

—

Vo9V )@V, P()=( ) "
Vv

— Red Cullen (NSE, 1976) showed how to exactly perform this convolution of
Maxwell Boltzmann PDF with piecewise-linear o(E), called sigmal method

— NJOY code is similar & adaptively chooses energy points to meet 0.1%
accuracyinoatT

— 0,4(E) has different E-mesh at different T’ s

— Very compute-intensive, typically performed prior to Monte Carlo in
preparing nuclear data libraries
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ouzssabs (barns)

Temperature Range (K) Field of Study
77 - 293.6 Cold Neutron Physics
293.6 — 550 Benchmarking Calculations
550 - 1600 Reactor Operation
1600 — 3200 Accident Conditions
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NJOY - adaptive E grid for 238U Doppler broadening

16.8
Energy (eV)

Fractional Tolerance

0.1% 0.3% 0.5% 1.0% 2.0% | 3.0% | 4.0% | 5.0%

T (K) Number of Energy Grid Points
0 193131 | 122935 | 100646 | 76856 | 57347 | 49659 | 44955 | 41676
77 103600 | 70240 | 59900 | 50049 | 43716 | 41408 | 40250 | 39514
293.6 | 85247 | 60192 | 52352 | 44810 | 39965 | 38089 | 37104 | 36494
500 77676 | 55786 | 49097 | 42506 | 38188 | 36509 | 35565 | 35006
1000 67437 | 50226 | 44773 | 39625 | 35957 | 34593 | 33810 | 33282
1500 62302 | 47227 | 42557 | 38000 | 34881 | 33616 | 32956 | 32490
2000 58735 | 45153 | 41098 | 36957 | 34109 | 32999 | 32384 | 31918
2500 56248 | 43774 | 39933 | 36177 | 33586 | 32543 | 31948 | 31560
3000 54282 | 42707 | 39051 35557 | 33208 | 32192 | 31661 | 31314
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Temperature Variation in Monte Carlo

What if there are 1000s of T's ?

Six approaches:

1. Traditional NJOY+MC (exact)
« NJOY data at specific problem T’ s

« Each MC region in MC uses specific pre-
broadened data

- Exact, very cumbersome,
very large amount of xsec data

2. Traditional NJOY+MC (approx.)
« Like (1), but round off T’ s to nearest 10-20°

« Aproximate, very cumbersome,
very large amount of xsec data

3. Stochastic Mixing (approx)
« NJOY data at a few bounding T' s

« Set up MC input with a mix of hot & cold data
for a nuclide, such that average T for the mix
matches problem T

* Run MC, will sometimes get "hot" data,
sometimes "cold", average is OK

« Approximate, cumbersome,
very large amount of xsec data

4. OTF Sigmat1

5. OTF Using Delta-Track

6. OTF Temp. Fitted Data

(Monk)
Use only 1 set of NJOY datafiles

During MC, use sigma1 method to broaden
data as needed

Exact, but very expensive,
~10x increase in computer time

(Serpent)
Use only 1 set of NJOY datafiles

During MC, use delta-tracking rejection
method to broaden data as needed

Exact, but complex & expensive,
~4x increase in computer time

Cannot do pathlength MC estimators or
point-detector estimators

(MCNP)
Use only 1 set of NJOY datafiles

Prior to MC, generate OTF datasets to
handle temperature variation

During MC, Doppler broaden as needed
using fitting data

Exact, extra data for T-fits,
~1.1x increase in computer time

LA-UR-16- 485
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(1)+(2) Traditional NJOY+MC

486

.
- Conventional MCNP problem specification:
— Temperatures are assigned to cells (geometry regions)

— Materials are assigned to cells
— Doppler broadening for temperature T is performed on nuclides
— Materials are composed of nuclides

Nuclide 1, T
T Material :/ Nuclide 2, T

Nuclide 3, T

— Cumbersome for 1,000+
cells/materials/temperatures/nuclides NJOY

— Many GB of data 1
ENDF/B files, 0 K

(1) Exact, number of datasets = number of T' s
(2) Approx., match cell T to closest material with nuclides at T’
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(3) Stochastic Mixing

- Often loosely called "stochastic interpolation" or "interpolation”
- This is simply mixing, not interpolation
* MCNP input example:

— Want this at 500 K: m1000 92235 -.93 92238 -.07

— Have these datasets from NJOY:
92235.91¢c at 300 K, 92238.91c at 300 K
92235.92¢ at 600 K, 92238.92¢c at 600 K

— For mixing linear in T, mix 1/3 of 300 K data + 2/3 of 600 K data

m1000 92235.91c -.31 92238.91c -.0233333
92235.92¢ -.62 92238.92c -.0466667

« Cumbersome for 1,000+
cells/materials/temperatures/nuclides (could be scripted.....)

- Many GB of data, 2x nuclides, complex input
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(4) OTF Sigmal, (5) OTF Delta, (6) OTF for MCNP

(4) OTF Sigmat
— Recently implemented in MONK
— Numerical sigmal method OTF during neutron tracking
— Increases overall runtime by ~10x
— See Davies paper from ICNC-2011

(5) OTF Delta-tracking
— Currently being tested in Serpent
— Very elegant & innovative, very promising
— Increases overall runtime by ~2-4x, may improve
— Does not fit with many conventional MC schemes:
* No pathlength estimators
« No point-detector (flux at a point) tallies
- Requires radical revisions to codes such as MCNP
— See Viitanen & Leppanen paper from PHYSOR-2012

(6) OTF for MCNP -- rest of talk
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OTF Doppler Broadening

U. Michigan + ANL + LANL
DOE NE-UP Project

OTF Methodology
Union Energy Mesh
Temperature Fitting

OTF Doppler in MCNP
Testing
Work-in-Progress
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On-The-Fly Neutron Doppler Broadening

- OTF Methodology (for each nuclide)
— Create union energy grid for a range of temperatures
— Create fits for o (T,E), for range of temperatures, on union E-grid
— MCNP - evaluate o.4(T,E) OTF during simulation

- Comments
— Target application, for now: reactors

— Relies on NJOY methodology
« Supplements & extends NJOY
« Methodology consistent with NJOY

— Fitting o vs temperature (at each E)

High precision, least squares with singular value decomposition
Adaptive (for each E, MT, & nuclide)

Explicit, direct error checking for fits - fit error < linearization tolerance
Threaded parallel, broadening routines called millions of times

Over temperature, maintains accuracy consistent with NJOY
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OTF Methodology — Union Energy Grid (1)
- 238) energy grid, 35-36 eV, various temperatures (ENDF/B-VII.0)

2500

2000
1500
1000

500

o
35.0 35.1 35.2 35.3 35.4 E 35.5 35.6 35.7 35.8 35.9 36.0

NJOY adapts the energy grid (for each nuclide, at given T)
to preserve linearization tolerance

Temperature (K) Number of E pts ] ]
293.6 157754 Union E-grid:
600 133964 Need to determine 1 energy grid
900 122581 (for each nuclide) that preserves
1200 115361 linear interpolation tolerance in E

2500 99631 over the entire T range
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OTF Methodology — Union Energy Grid

« For 1 nuclide, determine:
— MT numbers for reactions to be broadened
— Energy range for broadening, E_;, - E x
Up to start of unresolved data, or high-threshold reactions (whichever smaller)

— Temperature range T, — T,..x & interval AT for tolerance testing (input)
— Base set of o,(e)’ s from NJOY at T, .
“x” = any MT reaction that needs broadening
ACE data file from NJOY: Yesilyurt: T,,.=0K, Brown: T,,,.=293.6 K

— Energy grid from NJOY at T,

+ For 1 nuclide & a set of T’ s in range, at each T:
— Adaptively add E points so that 0.1% linear tolerance is maintained
Exact Doppler broadening from T, .. to T, using sigma1 method
Check all broadened MT reaction data for each E interval
Subdivide E interval until 0.1% linearization tolerance met for all MT’ s
Add E points as needed, do not remove E points

— Compute-intensive — millions of calls to sigma1 routine, parallel threads
— Typically expands number of E points by ~10%, for 293-3200 K range
— Result: union E-grid for nuclide, 0.1% linear tolerance over entire T range
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OTF Methodology — Doppler Broadening vs Temperature

Temperature (K)

3200

Near resonance peaks:

e
cST,C,F(T) 2 Tkljz

k=0

3200

Mid resonance:

orce(T) ~ D eT
k=0

Wings of resonance:

GT,C,F(T) - kaTk
k=0

—~-6.674eV
+ 6.662eV
- 6.657eV
0 800 1600 2400
Temperature (K)
+ 6.630eV
- 6.619eV
+6.609eV
0 800 1600 2400 3200
Temperature (K)
—~-6.445eV
+ 6.418eV
~ 6.372eV
0 800 1600 2400

gs 'mid-res

wings

(3)

mid-res

(2)

- for specific E, MT
* n varies for E, MT
* a,, b,, c tabulated for E, MT

Functional forms for temperature fitting based on multilevel

Adler-Adler model, with expansions for peak, mid-res, wings
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OTF Methodology — Fittingvs T

- For 1 nuclide, determine:
— MT numbers for reactions to be broadened
— Energy range for broadening, E_;, - E .«
Up to start of unresolved data, or high-threshold reactions (whichever smaller)
— Temperature range T,,;, — T,..x & interval AT for tolerance testing (input)
— Base set of o,(e)’ s from NJOY at T, ..

“_”

X" =any MT reaction that needs broadening
ACE data file from NJOY: Yesilyurt: T,,.=0K, Brown: T,,,.=293.6 K
— Union energy grid for this nuclide & T range

— Maximum order for temperature fitting
Adler-Adler based functional form, using powers of T'2and 1/T2

- For 1 nuclide, at each point in the union E grid:
— Exact Doppler broadening from T, to all T’ s in range, using sigma1 method
— Least-squares fitting over T

Singular value decomposition, least squares for temperature dependence

Fitting order chosen adaptively for each energy & reaction so that fits accurate
within 0.1% for all T’ s and all E’ s in range, for all MT' s

— Coefficients saved in files for MCNP use
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OTF Methodology — MCNP OTF

495

- At problem setup, read in OTF data for various nuclides
— Each OTF nuclide set can have different fit orders & union E-grid & reactions

During simulation, if neutron in E-T range of fits

— Use OTF data for each nuclide to create on-the-fly Doppler broadened cross-
sections at current cell temperature

— If outside E-T range of OTF data, use standard ACE data
— Collision physics (exit E & angles) uses standard ACE data

Only need to generate OTF datasets once, & then use for any problems

Cost

— Extra storage for OTF data

— Extra computing for evaluating OTF functions (typical <10% runtime)
Benefit

— Less storage for ACE data (no need for multiple temperatures)

— Can solve problems with 1000s of T' s or more, no limit

— Greatly simplifies problem setup
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OTF Testing - Yesilyurt

4000

LA-UR-16-
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238 Capture — NJOY vs OTF at 2000 K

1.0E404

1.0E403

—NJOY (2000K)

1.0E402

—OTF -2000 K

1.0E401

1.0E400 \‘}

1.0E-01

1.0E-02
1.0E-06 1.0E-05 1.0E-04

Cross-sections from NJOY & OTF match within
linearization tolerance 0.1% at all energies



Monte Carlo Techniques for Nuclear Systems — Theory Lectures

NJOY vs OTF 233U Capture Cross-Section

1,56+

« NJOY vs OTF at 1000 K

(curves with higher peak)

* NJOY vs OTF at 2000 K

(curves with lower peak)

pture Cross Section (Barns)

Cross-sections from NJOY & OTF
match within linearization tolerance

0.1% at all energies TS s Gy iR e S

6.67 eV resonance

Capture Cross Section (Barns)

Energy (MeV) Energy (MeV)

20.9 eV resonance 36.6 eV resonance

LA-UR-16-

498
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MCNP Test Results — Doppler Defect Benchmark

499

- Doppler Reactivity Benchmark

— Compare k-effective for HZP (hot, zero power) and HFP (hot, full power)
conditions for a unit fuel cell typical of a PWR

— Basic model:
« PWR fuel pin cell with reflecting BCs, various enrichments
- HZP cases: fuel at 600K, clad/moderator at 600K
« HFP cases: fuel at 900K, clad/moderator at 600K

« Uniform temperature within each fuel, clad, moderator region.
* Number densities and dimensions adjusted for the HFP thermal expansion
« 5M active neutron histories per each of 28 MCNP runs

— NJOY+MCNP: NJOY-broadened data at exact temperatures
— OTF+MCNP: OTF data for 160, 234U, 235, 2381 in fuel

— OTF details
« Forunion E-grid: T,_,,=293.6K, T range 300-1000K, AT=100K
« For OTF fitting: 8t order, T range 300-1000K, AT=10K
- For general production use, would use larger T range & smaller AT s
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Doppler Defect Benchmark Results

U02 fuel pin
0.711% enrichment

UO02 fuel pin
1.60% enrichment

U02 fuel pin
2.40% enrichment

U02 fuel pin
3.10% enrichment

UO2 fuel pin
3.90% enrichment

U02 fuel pin
4.50% enrichment

U02 fuel pin
5.00% enrichment

LA-UR-16- 500

NJOY+MCNP
OTF+MCNP

NJOY+MCNP
OTF+MCNP

NJOY+MCNP
OTF+MCNP

NJOY+MCNP
OTF+MCNP

NJOY+MCNP
OTF+MCNP

NJOY+MCNP
OTF+MCNP

NJOY+MCNP
OTF+MCNP

p=(1/Kyzp

o O

HZP

.66556
.66567

.96094
.96026

.09912
.09923

.17718
.17703

.23967
.23953

.27501
.27534

.29901
.29907

(18)
(18)

(26)
(24)

(27)
(27)

(27)
(30)

(27)
(29)

(30)
(29)

(31)
(28)

1/Kyep ) X 105/300

HFP

0.65979
0.66022

0.95293
0.95283

1.08997
1.08975

1.16744
1.16767

1.22920
1.22979

1.26526
1.26552

1.28920
1.28938

(19)
(19)

(25)
(23)

(26)
(28)

(27)
(30)

(30)
(29)

(27)
(29)

(29)
(29)

pcm/K

Doppler Coef.
pcem/K
-4.38 (.20)
-4.13 (.20)

-2.92
-2.71

(.13)
(.13)

-2.55
-2.64

(.10)
(.10)

-2.36
-2.27

(.09)
(.10)

_2.29
-2.13

(.09)
(.09)

-2.01
-2.03

(.09)
(.09)

-1.95
-1.93

(.08)
(.08)
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Results — Fuel Assembly |

- Simplified PWR 15 x 15 fuel assembly

— From OECD/NEA fuel storage vault benchmark
* Fuel =900 K
» Clad & water =600 K %
« Quter iron rack = 293.6K

0
O

0

— Standard NJOY+MCNP5: %S
« 900K ACE data for fuel, | |e®
- 600K ACE data for clad & mod ::
| ee

0

C

0

ee

0

@0

« 293.6K ACE data for iron

— OTF+MCNP5
« use 293.6K ACE data for all nuclides
- OTF data for all nuclides (except iron)

« 20,000 neutrons/cycle,
« 10 inactive cycles, 1000 active cycle
+ Reflecting BCs
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Results - Fuel Assembly |

« K-effective

— NJOY+MCNP5: 1.13891 (15)
— OTF+MCNPS5: 1.13892 (15)
- Total Fission = 7]
— OTF+MCNP5: 0.464499 (.02%) eocooeoco00000®
] coooocooco000®0®
- Total Capture in fuel eoocoococo0000C®
: oeceoeoco0000e®
— NJOY+MCNP5: 0.250912 (.02%) s osascassss e e
— OTF+MCNP5: 0.250918 (.02%) eecoo00coeeceee
: oooo000 00000000
- U235 capture in fuel 00000000000
_ : oooco o000 R®0®®
NJOY+MCNP5: 0.089478 (.02%) socoecec0000000
— OTF+MCNP5: 0.089475 (.02%) ooooe00O0C0O®C®O®O®00®
: oocoo0c0cooec0R®
- U238 capture in fuel eoooeeecece o000
— NJOY+MCNPS5: 0.160302 (.03%) 0000000000000
— OTF+MCNP5: 0.160311(.03%) | |
+ 016 capture in fuel
— NJOY+MCNP5: 9.73621e-4 (.11%)

— OTF+MCNP5: 9.73248e-4 (.11%)
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Results — Fuel Assembly I

- Simplified PWR 15 x 15 fuel assembly, with varying temperatures

— From OECD/NEA fuel storage vault benchmark
« Fuel =900 K, 600 K, 300 K -
« Clad =900 K, 600 K, 300 K
« Water = 600 K, 300 K
« Quter iron rack = 293.6K

— Standard NJOY+MCNP5:
- ACE data at explicit temperatures

— OTF+MCNP5
« use 293.6K ACE data for all nuclides
« OTF data for all nuclides (except iron)

— MCNP5
« 20,000 neutrons/cycle,
« 10 inactive cycles, 1000 active cycle
+ Reflecting BCs

0000000 OOGOLS
00000006060 00000

Fuel=900K, clad=900K, mod=600K
Fuel=600K, clad=600K, mod=600K



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 504

Results — Fuel Assembly I

k-effective:
STD 1.11599 (15) Fuel=900K, clad=900K, mod=600K
OTE 111592 (15) Fuel=600K, clad=600K, mod=600K
900K 600K 300K
Total fission
STD .045140 (.08%) 161186 (.04%) .248782 (.03%) e
OTF .045081 (.08%) 161329 (.04%) .248731 (.03%) o
Total capture in fuel seese
STD 027672 (.09%) 096276 (.05%) 116745 (.04%) |
OTF .027667 (.09%) .096268 (.05%) 116829 (.04%)
U235 capture in fuel
STD .008993 (.08%) .031910 (.04%) .045998 (.03%)
OTF .008983 (.08%) .031932 (.04%) .045987 (.03%)
U238 capture in fuel
STD .018547 (.11%) .063887 (.06%) .070236 (.05%)
OTF 018551 (.11%) .063858 (.06%) .070332 (.05%)
016 capture in fuel
STD 1.15E-04 (.23%) 4.18E-04 (.14%) 4.37E-04 (.13%)

OTF 1.15E-04 (.23%) 4.16E-04 (.14%) 4.37E-04 (.13%)
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- Better integration into MCNP  (optimization)

FIT_OTF fitting program
— Investigate scaling & Chebychev, for better numerical stability
— Investigate regression, to vary fit order by energy & reaction [done]

U. Michigan work
— Create OTF libraries for all nuclides in ENDF/B-VII.0
— Test various applications: fuel assemblies, 3D whole core, LWR, HTGR, ...

Methodology for Unresolved Resonances & S(a,f3) data
— Probable 1st cut — tables with temperature interpolation
— Possible thesis topic for PhD student

Implement corrected free-gas scatter model
— Demonstrated, needs robust implementation

Easy to extend to any temperature range
— Need to investigate broadening for high-threshold reactions
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Fit. OTF Example (1)

Fit_OTF: Command-line options:

= perform fitting = T

= zaid = 92238.70c

= ace_file =

= ugrid_file = ugrid_92238.70c.txt
= otf file = otf_ file.txt

= fit order min = 1

= fit order max = 8

fit min temp = 293.600000000000 (if > ACE temp)
fit max temp 1000.00000000000
fit inc temp 10.0000000000000

= print n-th lines = 20
= create ugrid = F
= testing? = T

5.500000000000000E-006
7.500000000000000E-006

test_emin
= test_emax
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..... read ACE file =
92238.70c¢
xsdir = /Volumes/fbb/fbrown/LANL/MCNP_DATA/xsdir

file = /Volumes/fbb/fbrown/LANL/MCNP_DATA/endf70j

Info from ACE data file for ZAID = 92238.70c

Number of energies = 157754

Atomic weight ratio = 236.005800 amu

Temperature = 2.530100E-08 MeV, 293.6 K

Date = 08/25/07

Info = 92-U -238 at 293.6K from endf/b-vii.0 njoy99.248
endf MAT = mat9237

MT reactions (std+gpd+mtlist), n= 52
1 101 2 301 202 16 17 18 37 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 717 78 79 80 81
82 83 84 85 86 87 88 89 90 91

102 444
MT reactions for fission, n= 1
18

URR-probability tables are present
energy range: 2.000001E-02 MeV - 1.490287E-01 MeV

Doppler broadening info:
energy range: 1.000000E-11 MeV - 2.000001E-02 MeV
MT reactions for Doppler broadening, n= 8
1 101 2 301 202 18 102 444
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Fit. OTF Example (3)

..... read ugrid

168626
9.999999999999999E-012
2.074926000000000E-002

cee.. ugrid e pts

..... ugrid min e

..... ugrid max e

Broadening & fitting info:

number of ugrid pts = 168603

min energy = 1.000000E-11 MeV

max energy = 2.000001E-02 MeV

number of temps = 71

min temp = 293.6 K

max temp = 993.6 K

temp increment = 10.0 K

number of reactions = 8

MT numbers = 1 101 2 301 202 18 102 444
MT for tot fission = 18

fitting order is variable, to meet tolerance
min order = 1
max order = 8

max number coefs = 17
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Fit. OTF Example (4)

MT-order for kprt lines. Errors given if >tolerance.

k= 460, e= 5.60999 ev: 1-1 101-2 2-3 301-1 202-4 18-1 102-5 444-1
k= 480, e= 6.03017 ev: 1-2 101-3 2-4 301-1 202-5 18-1 102-6 444-1
k= 500, e= 6.28893 ev: 1-2 101-3 2-4 301-1 202-5 18-1 102-6 444-1
k= 520, e= 6.41344 ev: 1-4 101-5 2-6 301-1 202-7 18-1 102-8 444-1
k= 540, e= 6.47134 ev: 1-4 101-5 2-6 301-1 202-7 18-1 102-8 444-1
k= 560, e= 6.50794 ev: 1-4 101-5 2-6 301-1 202-7 18-1 102-8 444-8
k= 580, e= 6.53025 ev: 1-4 101-5 2-6 301-1 202-7 18-1 102-8 444-8
k= 600, e= 6.55195 ev: 1-3 101-4 2-5 301-1 202-6 18-1 102-7 444-8
k= 620, e= 6.57375 ev: 1-4 101-5 2-6 301-1 202-7 18-1 102-8 444-8
k= 640, e= 6.59798 ev: 1-3 101-4 2-5 301-1 202-6 18-7 102-8 444-8
k= 660, e= 6.65659 ev: 1-3 101-4 2-5 301-1 202-6 18-7 102-8 444-8
k= 680, e= 6.70483 ev: 1-3 101-4 2-5 301-1 202-6 18-7 102-8 444-8
k= 700, e= 6.76322 ev: 1-4 101-5 2-6 301-1 202-7 18-1 102-8 444-8
k= 720, e= 6.79844 ev: 1-3 101-4 2-5 301-1 202-6 18-1 102-7 444-8
k= 740, e= 6.85025 ev: 1-4 101-5 2-6 301-1 202-7 18-1 102-8 444-8
k= 760, e= 6.89968 ev: 1-3 101-4 2-5 301-1 202-6 18-1 102-7 444-1
k= 780, e= 6.98755 ev: 1-3 101-4 2-5 301-1 202-6 18-1 102-7 444-1
k= 800, e= 7.18240 ev: 1-2 101-3 2-4 301-1 202-5 18-1 102-6 444-1

>>>>> e-points/minute = 3624.46836348410



mt= 1
mt=101
mt= 2
mt=301
mt=202
mt= 18
mt=102
mt=444

Overall

Number of energies with

nctot_max

nctot
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Overall error checks:

max-err=

max-err=

max-err=

max-err=

max-err=

max-err=

max-err=

max-err=

0.100%
0.100%
0.097%
0.079%
0.026%
0.002%
0.005%
0.000%

maximum error

22930008
11074134

for
for
for
for
for
for
for

for

err > 0.10%

2883.54
5967.96
20.2401
7089.62
2664.37
723.161
4264.86
20.6344

0.100%

ev,
ev,
ev,
ev,
ev,
ev,
ev,
ev,

303.6
313.6
313.6
313.6
313.6
333.6
333.6
333.6

R AR R AR R AR
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Monte Carlo
Depletion Tutorial

* Overview

» Timesteps

« Geometry & Depletion

+ Materials & Nuclide Setup
« Cross-section Treatment
« Criticality & Depletion

- Concerns - Accuracy

* Error Propagation

From: FB Brown, WR Martin, RD Mosteller, "Monte Carlo - Advances and Challenges",
PHYSOR'08 Monte Carlo Workshop, LA-UR-08-03328 (2008)



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16-

Introduction

* There are now many Monte Carlo depletion systems

« MONTEBURNS - MCNP + ORIGEN

« MCODE - MCNP + ORIGEN

« MCOR - MCNP + ORIGEN

« MCNPX - MCNPX with built-in CINDER90
« MCNP-ACAB - MCNP + ACAB

- ALEPH - MCNP + ORIGEN

« BGCore - MCNP + SARAF

« OCTOPUS - MCNP + ORIGEN or FISPACT
« SCALE - KENO + ORIGEN

« SERPENT, PSG - standalone, or with ABURN

« MVP-BURN

« McCARD

- MCB

« MC21, RCP, RACER

» This tutorial provides an overview of Monte Carlo depletion, to help
researchers & code users interpret the details & differences in the different
MC depletion codes
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Introduction

 Monte Carlo depletion papers at the PHYSOR-2008 conference

Christos Trakas, Francois Thibout, Sebastien Thareau, Bernard Verboomen,
Gert Van den Eynde, "Benchmark of ALEPH and Monteburns on
French post-irradiation experiments"™

Hyung Jin Shim, Ho Jin Park, Han Gyu Joo, Yeong-il Kim, Chang Hyo Kim
"Uncertainty Propagation in Monte Carlo Depletion Analysis"

Emil Fridman, Eugene Shwageraus, Alex Galperin, "Implementation of
multi-group cross-section methodology in BGCore MC-depletion
code”

Michael Fensin, John Hendricks, Samim Anghaie, " MCNPX 2.6 depletion
method enhancements and testing"
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Introduction

Monte Carlo depletion calculations - basic idea

1. Monte Carlo calculation at a fixed time, t,

- All geometry, number densities, temperatures, cross-sections must
be constant

Keff eigenvalue calculation, normalized to required power level

Determine absorption rates, fission rates, fluxes for all depletable
regions

2. Depletion calculation for At=t, -t,

e Using number densities, absorption rates, fission rates, fluxes from
(1), determine new number densities at time t,

e Must account for fission product & actinide buildup/burnout
 May assume constant flux over At, or constant power

=» Repeat (1) & (2) for each time step

Sounds straightforward, but there are many, many subtleties &
complications



Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16-

Definitions

N, = N(t)
= vector of all the number densities for each isotope of every region
in the problem at time t,

¢ = @ (t) = @(Ny)
= Monte Carlo Keff calculation of fluxes ¢,, absorption rates A,
fission rates F, for all isotopes in all regions of problem at time t,,
normalized to a specified reactor power level

B, =B(t,At,N, ¢, A, F,A)
= burnup calculation from time t, to t +At,
USing Nk, (pk! Ak! Fk! Ak

Solve 1 region at a time, using @, A, F for the region from MC

ORIGEN: N,,, =exp{-D At} N,, where D, is a matrix of A, F, A for each isotope in region at time t,
CINDER: Coupled linear chains of ODE's involving A, F, A for each isotope in region at time t,
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Simple MC Depletion

* During a timestep At, if fluxes are constant,
then N, A, F change during the step

 Need very small At to get accurate results
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=Boc(Poc) =b =B (Pc) =—

q;w T q;Z’P

®o — Bop —N;p | &1 —Byp —N,p

No N, N,

Poc = (Pot+ dp)/2 Pic = (P1+ dyp)/2

* Predictor: MC at start, deplete to end-of-step, MC at end-of-step
« Corrector: deplete again, using average beginning- & end- flux

» Better accuracy, can use much longer time steps
« 2 MC's & 2 depletions per timestep

* Other prescriptions could be used for corrector flux, @, ¢ (eg, linear, ...)

» Could iterate until predictor-corrector N's are close

Note: For some depletion systems, computer time is
reduced by ~50% by assuming that ¢ j = ¢
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Geometry & Depletion

519

 Must choose geometry regions fine enough to represent spatial
detail need for accurate depletion

— MC fluxes, absorption, fission are tallied for a region (uniform)
— Material nuclides within a region are depleted uniformly

« Example - CASMO regions for a fuel assembly

000000006 S
000000000
Ceveeeeene

\A A A A A A A A A A A A A A A4 4

 Most MC depletion codes can't handle this level of detail (yet) for
the entire reactor

 If the depletion regions are too large, errors will be introduced
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Materials & Nuclide Setup
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Material compositions

At BOL, fission products & actinides are
not present

Later timesteps must include them

Generally, must specify trace amounts of
all FPs & actinides at BOL

Some MC depletion codes have built-in
options, others don't

Cross-sections

ENDF/B-VII has yield data for 1325 FPs

ENDF/B-VII has datasets for only 390
nuclides

Only nuclides with MC cross-sections can
be included in the MC simulation

All others must be treated outside of the
MC

Fuel mat - A List of all nuclides
U235 U235
© 0
Xe135
Fission products Sm149
Xe135
Sm149
Actinides
Pu239
Pu240

Decay & Other /

Reaction Products
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Cross-section Treatment

For depletion calculation, just need
overall (1-group) absorption &
fission in each nuclide

— These can be computed directly in the
MC, if cross-sections are available

For nuclides without MC cross-
sections

— Can tally multigroup fluxes in each
material

— Outside of the MC - can fold together
multigroup MC fluxes & multigroup
cross-sections
Cinder90 has its own multigroup library

with 3400 nuclides (63-group) & 1325 FP
yields

ORIGEN2 has 1-group xsecs for 1700
nuclides & 850 FP yields

ORIGENS-S has 1-group xsecs for 1946
nuclides & 1119 FP yields

List of all nuclides
U235
U238
O
Xe135
Sm149

|

Nuclides with
MC xsecs

Nuclides without
MC xsecs

| |

\

’

Monte Carlo
calculation

Multigroup/

Xsec library
1

MG ¢'s
Collapse ~
Nod 1-grp A, F, NF
U235
U238

l

-grp A, F, NF
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Criticality & Depletion

» Depletion should be performed with a flux distribution corresponding to a
critical system

— Real reactors are critical & deplete with a flux distribution corresponding to K =1
— If K.##1 in the Monte Carlo, subsequent depletion would use the wrong fluxes

— Lattice physics codes (eg, CASMO) perform a buckling search so that K =1, & the
depletion is performed with the critical fluxes

— Not clear what to do for MC depletion
* Choices
— Deplete anyway.
« For comparisons, turn off buckling search in lattice codes for consistency.
(wrong, but consistent)

— For portions of the reactor (eg, assemblies, unit cells), use albedo
boundary conditions to get the correct leakage (in/out, energy-dependent)
so that K =1

« Some MC codes don't allow albedo BCs (eg, MCNP)

» Getting the albedo BCs is a difficult computational problem
* This is an area that needs ideas & work .....
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Concerns - Accuracy

 Timesteps
— Should have short 1st timestep (~1 day), to allow Xe135 to build up to equilibrium
— Should have short 2nd timestep (~4-5 days), to allow Sm149 to build up to equilib.

— Some codes avoid the 2 short steps by automatically handling equilibrium Xe & Sm

— If timesteps are too long, results will not be accurate
* |deally, should run entire depletion lifestudy several times, reducing the
timestep sizes until results show convergence
* This is rarely done.

» Adequate timestep sizes could be investigated using CASMO/SIMULATE or
other codes, rather than with Monte Carlo

 Geometry & depletion regions
— MC materials & tallies are constant within a region

— Must subdivide depletable regions enough so that step-wise approximation to
materials & fluxes is acceptable

— May require 4-10 regions per fuel pin, or 10-40 regions per poison pin, rather than
just 1
— If the geometry of depletable materials is too coarse, results will not be accurate
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Concerns - Accuracy

* Fission products
— Need ~300 FPs in Monte Carlo

— If that many FPs cannot be used, should consider some sort of lumped
fission product approach for the "missing” FPs

* Could assume residual FP xsecs have simple behavior (eg, 1/vin thermal
range & constant in fast range) and lump them into 1, 2, or more lumps for the
MC

» Could use a multigroup background FP library, typically generated with a
lattice physics code (eg, CASMO)

 Normalization
— Need to normalize the MC calculations to the correct power level
— See other parts of this workshop regarding normalization

— Difficulties
» Straight neutron MC doesn't account for gamma transport & heating; must
assume local fission energy deposition
« MCNP only includes prompt energy from fission in Q values; need corrections

» Should normalize total (prompt) fission energy from MC to total (prompt)
fission energy of real problem

(note: MCNP manual suggests normalizing neutron source rate, rather than the resulting fission rate)
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Concerns - Accuracy
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 Regardless of timesteps, geometry, & fission products

— Because of the many materials, nuclides per material, & tallies, the MC
part of MC depletion runs much longer than normal, sometimes ~10x
longer

— While it is tempting to compensate by running fewer cycles & fewer
neutrons/cycle in the MC, BEWARE:

« Must discard enough initial cycles of each MC calculation to assure
fission source distribution has converged before tallies start

« Must run sufficient cycles after convergence to achieve acceptable
statistics

* Must run enough neutrons/cycle to assure that phase-space is
reasonably covered by enough neutrons
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Error Propagation

Uncertainties in input for MC calcs:
— Cross-sections (all calculations)
— Number densities (depletion calculations)

How do uncertainties in input affect results & std-dev's ?

Three basic approaches:

— Brute force - sample input params, run calc.; repeat many times
— Sensitivity/Uncertainty analysis - needs adjoints

— Perturbation theory approach

Outstanding paper on error propagation in MC depletion:

N. Garcia-Herranz, O. Cabellos, J. Sanz, J. Juan, J.C. Kuijper, "Propagation of statistical
and nuclear data uncertainties in Monte Carlo burn-up calculations", Annals of
Nuclear Energy 35, 714-730 (2008)
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Error Propagation

527

* From paper by Garcia-Herranz, et al.

To compare the impact of the statistical errors in the calculated flux
with respect to the cross uncertainties, a simplified problem is
considered, taking a constant neutron flux level and spectrum. It is
shown that, provided that the flux statistical deviations in the Monte
Carlo transport calculation do not exceed a given value, the effect of
the flux errors in the calculated isotopic inventory are negligible (even
at very high burn-up) compared to the effect of the large cross-section
uncertainties available at present in the data files.

My experience --

— If you run many instances of an entire MC depletion lifestudy, the
general trajectories of Keff & number densities are the same, with
superimposed noise

— Overall results & trajectories are not sensitive to the fluctuations in

number densities - if something is too low in one step, it will recover in
the next

— Never observed any kind of nonlinear behavior
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HTGR Modeling

HTGR Modeling with MCNP5
MCNPS5 Stochastic Geometry
HTGR Physics & Modeling
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Outline

Introduction

HTGR Modeling with MCNP5
— MCNP Geometry - Universes, Lattices
— HTGR Models - Fuel Kernels, Compacts, Pebbles, Core

MCNP5 Stochastic Geometry
— Random Translations for Stochastic Universes

— Discussion & Limitations

HTGR Physics & Modeling
— Fuel Kernel Modeling

— Stochastic Effects
— Compact or Pebble Modeling
— Full-core Calculations

Conclusions
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Introduction

 High Temperature Gas-Cooled Reactor
— One of the Next Generation Reactors ("Gen-IV")
— Coolant temperatures above 900 C, fuel temperatures above 1250 C

* Higher energy conversion efficiency

« Thermochemical hydrogen production
— Fuel kernels with several layers of coatings

» Contain fission products

- Safety aspects ...

» Two types of Reactor Design
— Prismatic fuel type reactor design, with fuel "compacts"”
— Pebble bed fuel type reactor design
— Double Heterogeneity problem
* Fuel kernels inside fuel compacts or pebbles in the core
* Fuel kernels randomly located within fuel elements

« Challenging computational problem

 Monte Carlo codes can faithfully model HTGRs
— Full 3D geometry
— Multiple levels of geometry, including embedded lattices
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TRISO Coated Fuel Particles

TRISO Coated Fuel Particles:
- Lots of cladding - extremely strong
- Little fuel - fully encapsulated

Each fuel particle forms a separate pressure
containment vessel for the fuel kernel

Fuel concept is same for block or pebble bed

Ceramic Coatings
Fuel Kernel

e I 1111 ) e —

PARTICLES COMPACTS FUEL BLOCK

(From INL)
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TRISO Coated Fuel Particles - Burnup

Very High Burnup

Fresh TRISO Fuel

TRISO Fuel

- Fission product
gases trapped within
the layers of coatings

- Coatings remain
intact, even with very
high burnup

(From General Atomics)
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HTGR Modeling
With MCNP5
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Embedded Geometry - Universes

* In most real-world applications, there is a need for modeling
detailed geometry with many repeating units

—10/0|0|0|0
o O|0|0|0
O|0|0|0/0

O|0|0|0/0

O|0|0|0|0

« All production Monte Carlo codes provide capabilities for multiple
levels of nested geometry
— Called universes & lattices in MCNP

— A collection of cells may be grouped into a universe

— Universe may be embedded in another cell,
with the universe ‘clipped’ by the cell boundaries
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Prismatic HTGR

Side permanent reflector _ < 2 Side feplasaable peflociar PIUkiene, R.and Ridi_kaS, D.,
Modelling of HTRs with Monte Carlo:
Active core from a homogeneous to an exact

heterogeneous core with
microparticles. Annals of Nuclear
Energy 30, 1573-1585 (2003).

Inner reflector
Graphite with B,C

R homogeneous core with hexagoBlIstructure (HTR1).

assem

NS
NG

compact kernels

Fig. 2. A fgss-section of the GT-

active core

(A) (B)

Fig. 4. Fragments of double-heterogeneous GT-MHR (HTR3): (A) fuel element (compact) cross section
with coated fuel particles; (B) magnified view of coated fuel particles: spherical kernels of PuO,. are sur-
rounded by protective coatings made of PyCpymer, PyC 1, SiC and PyC II layers correspondingly. The
same structure is valid for particles containing burnable poison—natural Er,0;.

@A) | (B)

Fig. 4

Fig. 3. Fragments of single-heterogeneous GT-MHR (HTR2): (A) an active core structure: three rings of
hexagonal fuel columns; (B) magnified view of a separate fuel assembly. Fuel compacts are presented in
small grey circles, burnable poison compacts in light grey. Bigger diameter holes stand for He channels,
while the rest material represents the graphite matrix.
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Pebble Bed HTGR

ZZ g

Difilippo, F.C., Monte Carlo
Calculations of Pebble Bed
Benchmark Configurations of
the PROTEUS Facility. Nucl.
Sci. Eng. 143, 240-253
(2003).

Core
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ations, case 4 with polyethylene rods. The fig Fig. 5. Case 4, vertical cross section. The black pebble
(fuel type) appears magnified in Figs. 6, 7, and 8 to show the
heterogeneous details of the fuel pebble.

Fig. 3. Cross section of the odd layers of the hep config
with the visualization tools of the MCNP program.

Pebles Fuel kernel lattice Fuel kernel
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I
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I
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- . o Fig. 8. Fuel kernel with the four coatings at each location

. Px:ﬁlz.o?;;;i_lss o the cubi ltice of fuel Keaels insice et L

Fig. 6. Magnified fuel pebble of Fig. 5.
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MCNP5
Stochastic Geometry
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MCNP Models for HTGRs

« Existing MCNP geometry can handle:

— 3D description of core

— Fuel compacts or lattice of pebbles
« Typically, hexagonal lattice with close-packing of spherical pebbles
* Proteus experiments: ~ 5,000 fuel pebbles
~ 2,500 moderator pebbles

— Lattice of fuel kernels within compact or pebble
» Typically, cubic lattice with kernel at center of lattice element

* Proteus experiments: ~ 10,000 fuel kernels per pebble
~50 M fuel kernels, total

— Could introduce random variations in locations of a few
thousand cells in MCNP input, but not a few million.

— See papers by: Difilipo, Plukiene et al, Ji-Conlin-Martin-Lee, etc.
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MCNPS Stochastic Geometry

« When a neutron enters a new lattice element, a transformation is
made to the neutron's position & direction to the local coordinates
of the universe embedded in that lattice element. [standard
MCNP]

» Users can flag selected universes as "stochastic” [new]

— A neutron entering a lattice element containing a stochastic universe
undergoes the normal transformations.

— Then, additional random translations are made:
X < X+(28,-1)-0,
y < y+(28,-1)-9,
Z—z+(28,-1)-0,

— Then, tracking proceeds normally, with the universe coordinates fixed
until the neutron exits that lattice element
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MCNPS Stochastic Geometry

* Neutron on lattice edge, about to enter embedded universe

™~

« Embedded universe,
before random translation after random translation

........ o

« Track normally, until neutron exits the lattice element

-\o
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MCNPS Stochastic Geometry

* On-the-fly random translations of embedded universes in lattice
— Does not require any extra memory storage

— Very little extra computing cost -
only 3 random numbers for each entry into a stochastic universe

* For K-effective calculations (KCODE problems)
— If fission occurred within fuel kernel, should have source site in next
cycle be at same position within fuel kernel
— Need to save S, 5 5, along with neutron coordinates in fission bank

_ On source for next cycle apply 9,,9,,9, after neutron pulled from
bank

 To preserve mass exactly, rather than on the average
stochastically, must choose 5,6 ,5, so that fuel kernels are not
displaced out of a lattice element

P maximum o,
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MCNP5 Stochastic Geometry - Testing

« MCNP5 stochastic geometry

Fuel kernels displaced randomly
on-the-fly within a lattice element
each time that neutron enters

,, Fuel kernels placed randomly in job input,
. using Random Sequential Addition
' Standard MCNP5 - geometry is fixed
for entire calculation
(Does not use stochastic geometry)
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MCNP5 Stochastic Geometry - Testing

LA-UR-16-
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MCNP5 Results for Infinite Lattices of Fuel Kernels

Method

K-effective

Fixed lattice with centered spheres

1.1531 £ 0.0004

Fixed lattice with randomly located
spheres ("on the fly")

1.1515 £ 0.0004

Multiple (25) realizations of lattice
with randomly located spheres

1.1513 £ 0.0004

Multiple (25) realizations of randomly
packed (RSA) fuel "box"

1.1510 £ 0.0003

« Small but significant effect from stochastic geometry, -.15% Ak

« New MCNP5 stochastic geometry matches multiple realizations

« New MCNPS5 stochastic geometry matches true random (RSA)
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HTGR Physics

&
Modeling
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HTGR Modeling with MCNP5

 Modeling HTGR core & assembly geometry is relatively
straightforward using standard MCNP5 features

« We have examined in detail some of the fine-points of
modeling

— Fuel kernels embedded in the graphite matrix
- Lattice arrangements
« Stochastic effects

— Compacts or pebbles
« Embedding a lattice of fuel kernels

 We have run full-core HTGR calculations to examine
the effects of detailed modeling techniques
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Fuel Kernels
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TRISO fuel kernels in graphite matrix

Fuel kernel geometry & composition taken from the NGNP Point Design
(MacDonald et al. 2003)

Pyrolytic Carbon
Silicon Carbide
Porous Carbon Buffer
Uranium Oxycarbide

TRISO Fuel Kernel Geometry and Composition

Region Name Outer radius Composition Density
# (1) (9/cc)
1 Uranium oxycarbide 175 UCO (UC°0™) 10.5
2 Porous carbon buffer 275 C 1.0
3 Inner pyrolytic carbon 315 C 1.9
4 Silicon carbide 350 SiC 3.2
5 Outer pyrolytic carbon 390 C 1.9

Fuel kernel packing fraction
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Fuel Kernel Modeling - Lattices

Simple cubic Body Centered Cubic = Face Centered Cubic
./. ./. ./. o ./.
®
® ® L °

Slice through base plane

0.09501 cm 0.119705 cm 0.150819 cm
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Fuel Kernel Modeling - Results

« MCNP5 calculations for infinite geometry,
fuel kernels in graphite matrix

Configuration K-effective * 1o
Homogenized matrix & fuel kernel 1.0996 + .0008
Simple cubic lattice 1.1531 £ .0004

pitch = 0.09501 cm

Body centered cubic lattice 1.1534 + .0003
pitch = 0.119705 cm

Face centered cubic lattice 1.1526 + .0003
pitch = 0.150819 cm

=» Large errors for homogenized model
=» Essentially same results for all lattice models
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Fuel Kernels - Radial Flux Profiles

Six-Region Heterogeneous Two-Region Heterogeneous

Reflecting b.c. on all sides of cubes
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Radial Neutron Flux Profile in 6-region Kernel
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Radial Neutron Flux in Resonance Range

 Resonance Energy Range:

1.1uETuL
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6.57eV -6.77eV

—— siX-region case

—— two-region case

0]
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0.025
Radial bins (cm)
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0.035 0.04
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0.05
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MCNP5 Simulations of Fuel Kernels

Configuration Kerl.lel keff std dev
location

Homogeneous .- 1.0995 0004
microsphere cell

Two-region

heterogeneous Centered 1.1535 0004
microsphere cell

Slf(-reglon heterogeneous Centered 1.1533 0003
microsphere cell

- Essential to model the microsphere heterogeneity

 Homogenizing the coatings into the matrix does not introduce any
significant errors, & can reduce model complexity

« Adequate to explicitly represent just the UCO spheres
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Compact or Pebble Modeling

* If an infinite lattice of fuel kernels is embedded in a compact or pebble,
clipping by the enclosing cylinder or sphere results in fragments of
kernels. This is not correct modeling - does not preserve mass

» A finite lattice of fuel kernels should be used, so that there are no
fragments. Vertical pitch of the lattice should be adjusted to
preserve total mass or packing fraction.

TGR Fuel Compact

0608

Bad Good

Infinite lattice of kernels, Finite lattice of kernels,
truncated by cylinder no intersections with cylinder
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Full-core Calculations

 Heterogeneous core, with simple cubic infinite lattice of kernels
(with partial kernels at cylinder boundary)

 Heterogeneous core, with simple cubic finite lattice of kernels
(with no partial kernels at cylinder boundary)

Case Configuration K-effective * 16

Heterogeneous core, with simple cubic
E |fixed infinite lattice (with partial kernels at 1.0948 + .0002
cylinder boundary)

Heterogeneous core, with simple cubic
F |fixed finite lattice (with no partial kernels at | 1.0974 * .0002
cylinder boundary)

=» Correct modeling of compacts, using a finite lattice to
avoid partial kernels at boundary, is important
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Full-core Calculations

LA-UR-16-
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* Heterogeneous core, simple cubic infinite lattice

* Heterogeneous core, simple cubic infinite lattice,

with new MCNPS5 stochastic geometry

Case Configuration K-effective * 10
Heterogeneous core, with simple cubic

F fixed finite lattice (with no partial kernels at | 1.0974 +.0002
cylinder boundary)
New MCNPS5 stochastic geometry, on-the-

G fly random location of kernels within 1.0968 + 0002

simple cubic finite lattice elements (with
no partial kernels at cylinder boundary)

=» Stochastic effects are small for full-core calculations,
may or may not be important
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Conclusions

558

The new stochastic geometry treatment for MCNP5 provides an
accurate and effective means of modeling the particle
heterogeneity in TRISO particle fuel

Homogenizing the fuel or core introduces very large errors (~8%)
Double heterogeneity important only in resonance energy range
— Increased resonance self-shielding due to "particle shadowing".

— Effect is more pronounced for fuel kernel or compact
calculations, and decreases as one goes to full core due to
increased moderation hence decreased effect of resonance
absorption

The effect of choosing either centered fixed spheres or randomly
located spheres is small

Can introduce significant errors by using an infinite lattice
truncated by compact or pebble (clipped), rather than a finite lattice

Homogenizing the fuel coatings into the graphite matrix is a
reasonable approximation
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Coupled Monte Carlo
& Thermal-Hydraulics
Calculations

From: FB Brown, WR Martin, RD Mosteller, "Monte Carlo - Advances and Challenges",
PHYSOR'08 Monte Carlo Workshop, LA-UR-08-03328 (2008)
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Temperature Dependence

 Temperature effects on Monte Carlo

« Accounting for temperature effects in MCNP

— Generate NJOY libraries during NTH iterations
— Generate NJOY libraries prior to the NTH iterations
— Pseudo-materials approach

« Applications
— Explicit coupling of MCNP5 and Star-CD for LWR configurations

— Explicit coupling of MCNP5 and RELAP-Athena for full-core
VHTR simulation
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Temperature Dependence

563

 Temperature effects on Monte Carlo calculations
— Thermal expansion: changes in dimensions and densities

— Cross-section data:

* Need to Doppler broaden cross sections including resolved and
unresolved resonances (probability tables)

» Need to change S(o,p) thermal scattering kernel

 For most Monte Carlo codes, temperature effects must be handled
explicitly by the code users

— Input changes are required to account for dimension & density changes

— Must use cross-section data generated at the correct problem
temperatures

« MCNP
— Automatically Doppler broadens elastic scattering cross-sections
— Does NOT adjust:
» resolved resonance data
* unresolved resonance data
 thermal scattering kernels
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Accounting for Temperature Effects in MCNP

Approaches to account for temperature
changes:

A. Generate explicit temperature — dependent cross section
libraries (NJOY)

B. Modify existing libraries (MAKXSF)

C. Approximate approach using pseudo-materials
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A. Generate explicit temp-dependent datasets (NJOY)

* Use NJOY (or similar cross-section processing code) to generate
nuclear cross-section datasets

— Must generate a separate dataset for each nuclide at each region
temperature

— NJOY routines take care of Doppler broadening (resolved &
unresolved) & thermal scattering kernels

 Two approaches:

— lterative NJOY updates: run NJOY during the neutronic-thermal/
hydraulic (NTH) iterations for each temperature needed for the current

T/H calculation.

— Pregenerated NJOY libraries: run NJOY beforehand for a range of
temperatures that adequately covers the temperatures expected for the
NTH calculation, e.g., every 5K from 300K to 1200K for fuel nuclides.
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Computational results (Downar, Monterey 2007)

* Iterative NJOY updating is very time-consuming

— 95 s to prepare a dataset for U-235 on 3 Ghz Pentium P4.

— Not practical for realistic reactor applications.

* Pregenerated NJOY libraries is a reasonable approach
— Used to couple STAR-CD and MCNP

— NJOY was run at 5K temperature increments over the temperature

range. (Temperature increments of 1-2 K cause memory problems with
MCNP.)

— A Perl script was used to manage the NTH iterations.

— The coupled code system (McStar) was applied to a 1/8 pin cell and a
3x3 array of pin cells.

— Good agreement with DeCart/STAR-CD results



Monte Carlo Techniques for Nuclear Systems — Theory Lectures

McSTAR

LA-UR-16- 567

e Monte Carlo Neutron
Transport: MCNP5

 Computational Fluid
Dynamics : STAR-CD

e Cross Sections: NJOY
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Results: coupled STAR-CD and MCNP results
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Preliminary conclusions for McStar

* The preliminary results for two simple PWR test
problems demonstrate the feasibility of coupling Monte
Carlo to CFD for a potential audit tool.

» Validation of the cross section update methodology
was performed to assess the accuracy of the 5K
increment tables for these problems.

* McSTAR is now being applied to advanced BWR fuel
assemblies with strong axial heterogeneities to verify

the accuracy of the 2D/1D solution methods in DeCART
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B. Modify exisiting MCNP library (MAKXSF)

* New version of MAKXSF

* Subset of NJOY routines, easy to use, part of MCNP5/1.51
distribution

 For ACE datasets (for MCNP), makxsf performs:
— Doppler broadening of resolved resonance data (explicit profiles)

— Interpolation of unresolved resonance data (probability tables) between
ACE datasets at 2 different temperatures

— Interpolation of thermal scattering kernels (S(o,) data) between ACE
datasets at 2 different temperatures

* For now, makxsf is run external to MCNP

 Long-term plan: put the makxsf routines in-line with the MCNP
coding
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C. Approximate method: pseudo-materials

571

* "Pseudo-materials" for temperature dependence

— Equivalent to "stochastic interpolation™

— To approximate the cross-sections for nuclide X at temperature T, use a
weighted combination of nuclide X at lower temperature T, and higher
temperature T,

— This weighted combination is input as an MCNP5 material with volume
fractions given by the weights

T—T; _
Wy = g s

%, =X(T))
2(T)=w, -2, +w, -2,
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Pseudo-materials example — MCNP input

LA-UR-16-

572

Example: 235y at 500 K

Existing datasets for MCNP:
(1) dataset for 23°U at 293.6 K: 92235.66¢C
(2) dataset for 23°U at 3000.1 K: 92235.65¢

Weight the datasets using T'2 interpolation

\/500-+/293.6 =.1389, w, =.8611

2 7 J3000.1-+293.6

In the MCNP input:
m1 92235.66¢c .8611 92235.65¢c .1389
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Application: VHTR geometry*
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1.5 1 Normal: explicit NJOY at given temperature
el Pseudo: interpolate between closest NJOY
libraries (every 100K)
1.46 +
1.44 + v ——
3P58r32160
1.42 | e
.
5 4 »
1.4 .
1.38 + g
1.36 | -
1.34 + ?
1.32
0 200 400 600 800 1000 1200

Temperature (K)
Figure 1. Comparison of k.4 between normal and pseudo materials with the VHTGR geometry.

*JL Conlin, W Ji, JC Lee, WR Martin, "Pseudo-Material Construct for Coupled
Neutronic-Thermal-Hydraulic Analysis of VHTGR", Trans. ANS 91 (2005)
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Application — LWR configuration
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Results for LWR configuration with NJOY cross sections at 325K
compared to pseudo-material approach using cross sections at
300K and 350K. Most deviations within statistics. (Downar, 2007
Monterey M&C)

325 K 325K Deviation
(NJOY) Interpolated
K 1.40974 1.41008 34 pcm
eff (£ 0.00043) (£ 0.00044)
£ Fuel 1.37933 1.37929 0.00003
In Fue (+ 0.0003) (+ 0.0003)
; 3.67362¢-03 3.67648E-03 0.0008
SaF (£ 0.0006) (£ 0.0006)
¢ 5.62964¢-03 5.63817E-03 0.0010
St (+ 0.0007) (+ 0.0007)
; 1.38341¢-02 1.38548e-02 0.0010
i (£ 0.0007) (£ 0.0007)




Monte Carlo Techniques for Nuclear Systems — Theory Lectures LA-UR-16- 575

Application — full core VHTR with T/H feedback

« MCNP5 code was coupled with the RELAPS5-3D/ATHENA code to
analyze full core VHTR with temperature feedback (pseudo-
materials) including explicit TRISO fuel

» Utilized a master process supervising independent computing platforms
to automate coupled Nuclear-Thermal-Hydraulic (NTH) calculations.

» Axial power fractions determined for 10 axial zones for each of three
rings by MCNP5 are input to RELAPS to determine assembly-average
temperature distributions.

» Updated RELAPS temperature distributions are used for the next
MCNP simulation to obtain updated power fractions. MCNP5 and
RELAPS iterations were performed in a cyclic fashion until convergence
iIn temperature and power distributions were obtained.

» Totally automated with a Perl script that reads output files and
generates input files.
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Descrigtion of VHTR reactor

MCNPS5 input decks were set up to represent the VHTR full core
with homogeneous and heterogeneous fuel assemblies.

Each ring has 10 axial fuel segments and 30, 36, and 36 fuel
assemblies, respectively, for the inner, middle, and outer core
rings.

Inner Ring (30 Fuel Blocks)

Middle Ring (36 Fuel Blocks)

Outer Ring (36 Fuel Blocks)

 Active Core Height: 7.93 m (10 blocks)
* Enrichment: 10.36%

* Natural Boron impurity: 6.9 ppm
» Total Number of Fuel Blocks:1020
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VHTR simulation - RELAPS Methodology

577

* For RELAPS5-3D/ATHENA calculations, the core was modeled
consistent with the MCNP5 setup.

« Each annular region is axially discretized into ten segments and is
represented as a cylindrical coolant channel comprising a central
coolant hole, surrounded by three inner graphite rings, four fuel
rings, and one outer graphite ring.

« An adiabatic boundary condition is imposed at the outer boundary
of the coolant channel.
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RELAPS5 Methodology (cont.)

LA-UR-16-
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Based on the NGNP target for the helium outlet temperature of
1273 K, together with the inlet temperature of 763 K, helium mass
flow rate was determined as 226 kg/s for rated power output of 600

MWt.

»

110
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200
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VHTR - Cross Platform NTH Architecture

« MCNP5 was run on a Mac G5 Unix cluster in parallel. 10K particles
per cycle were used with a total of 140 active cycles for each MCNP5
calculation.

« RELAPS5 was run on a remote Windows server.

___________________

G5 Unix Cluster
Head Node (ALC)

&
v
' Cisco Catalyst 3508G |
| GBit Switch
\d . 4 v -
A s A 'S
E G5 Unix Cluster : E G5 Unix Cluster : E G5 Unix Cluster : E G5 Unix Cluster :
Node #i [ Node #2 I Node #3 [ MNode #4 '

(MCNES) N (MCNEPS) N (MCNES) o (MCNES)
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VHTR - NTH Data Communication
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« Data was communicated between MCNP5 and RELAPS5 codes in a

cyclic fashion until convergence in temperature and power

distributions were obtained.

* Online monitoring of the RMSE was used to stop the iteration.

—_
=

DR NS O W -

Power
Frac.
(MCNP5)
0.01657 4
0.026557
0.035137
0.041325
0.045263
0.0453569
0.041935
0.035221
0.025524
0.015604

INPUT TO RELAPS l

Temp.
Dist.
(RELAPS)

926.045
1050.207
1175.686
1293.021
1401.4588
1486.059
1543.8685
1570.742
1564.520
1533.6804

INPUT TO MCNP5 l

Power
Frac.
(MCNP5)
0.028488
0.041420
0.047680
0.047675
0.043716
0.038116
0.031252
0.023775
0.016720
0.010059

INPUT TO RELAPS l

Temp.
Dist.
(RELAPS)

1035.256
1205.862
1333.691
1419.931
1475.661
1513.388
1531.816
1533.103
1523.647
1503.648
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RMS Error in Temperature vs. NTH lteration
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Converged Temperature/Power Distributions

Homogeneous Fuel
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Converged Temperature/Power Distributions

Heterogeneous Fuel
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Homogeneous vs Heterogeneous Fuel
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VHTR Temperature Feedback - Conclusions

585

» A cross-platform computer architecture connecting Mac G5 Unix
cluster and a Windows server was successfully developed to
automate the coupled NTH calculations for the VHTR core.

* Online monitoring of RMSE shows that it converges rapidly (4-7
iterations)

 The converged power distributions are nearly independent of the
double heterogeneity accounted for with MCNP5.

 We are now performing more highly resolved MCNP5 calculations
with 100,000 histories per cycle and the effect of the
heterogeneities appears to be more pronounced.

 The pseudo-material method works very well but the true test will
be the above higher resolution cases.
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Pseudo-materials — advantages/disadvantages

« Advantages
— Libraries needed at fewer temperatures (eg, every 100K)

— Can interpolate to any temperature bounded by the library
temperatures

— No data preprocessing required

 Disadvantages

— Approximate interpolation - stochastic interpolation is not functional
interpolation: one of the two datasets is chosen randomly during the
random walk

— Finite error due to interpolation — seems to be small

— Cannot be used for S(o,) thermal scattering kernels
« MCNP limitation: does not allow mixture of S(o.,[3) materials
* Need to pick S(o,p) dataset at nearest temperature
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Fission Energy
Deposition

From: FB Brown, WR Martin, RD Mosteller, "Monte Carlo - Advances and Challenges",
PHYSOR'08 Monte Carlo Workshop, LA-UR-08-03328 (2008)
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Estimation of the Spatial Distribution of
Fission Energy Deposition in a VHTR with
(only) MCNPS

How to perform fission energy deposition
calculations with standard MCNP tallies with
application to a full core VHTR configuration.
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Outline

589

 Acknowledgements

Motivation and summary
Fission energy release and deposition

Capabilities and limitations of MCNPS5 fission energy deposition
tallies for reactor applications

Methodology to account for fission energy deposition with MCNP5
Application to VHTR configurations

Alternative approach — a simplified methodology
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Motivation and summary

* Motivation — every few months there are conversations
on the MCNP Forum regarding how MCNP handles
fission energy deposition and how MCNP can be used
to estimate the spatial distribution for a realistic
reactor configuration.

* This talk is a summary of the process used at the
University of Michigan to estimate the fission energy
deposition in VHTR configurations. This is one
approach that makes use of standard MCNP tallies and
seemed to yield acceptable results. Comments or
suggestions are welcome.
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Components of energy release in fission
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Quantity
Kinetic energy of the fragments
Kinetic energy of the prompt neutrons
Kinetic energy of the delayed neutrons
Kinetic energy of the prompt gammas
Kinetic energy of the delayed gammas
Total energy released by delayed betas
Energy carried away by the neutrinos
Total energy release per fission (sum)
Total energy less neutrino energy

Value(eV)

1.6912E+08
4.7900E+06
7.4000E+03
6.9700E+06
6.3300E+06
6.5000E+06
8.7500E+06
2.0247E+08
1.9372E+08

Uncertainty
4.9000E+05
7.0000E+04
1.1100E+03
5.0000E+05
5.0000E+04
5.0000E+04
7.0000E+04
1.3000E+05
1.5000E+05

Interpreted ENDF file for U-235e (ENDF/B-VI)

F7 tally includes items in red
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Sources of Fission Energy (recoverable)

Qs = kinetic energy of fission fragments
Q,, = kinetic energy of fission neutrons

Q; = beta decay energy from fission

Q,, = prompt gamma energy from fission
Q, = delayed gamma energy from fission

Q,. = capture gamma energy from (n,y) reactions

Q=Q;+Q,+Q+Q,+Qq +Q,
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Energy Released per Fission (ENDF/B-VI)

Energy
released

Deposition site

Particle Notation

Fission
products

Neutrons

Prompt
gammas

Betas

Delayed
gammas

Capture
gammas

Total

(MeV)
169.1
4.79
6.97

6.5

6.33

Local

Global

Global

Local

Global

Global
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Physical Assumptions
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Fission fragments and betas deposit their energy locally

Prompt and delayed gammas (from fission product decay) deposit
their energy globally and must be transported

Fission neutrons must be transported and heat may be deposited
during the neutron trajectory due to:

— deposition of kinetic energy during moderation

— emission of gammas as a result of neutron capture

— energy release due to fission.

Capture gammas are a distributed source of gammas throughout
the reactor (including reflector) and they must be transported.
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MCNPS Capabilities/Limitations
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Tally Accounts for enerqy deposition due to
F7:n Fission products, prompt gammas, and neutrons
F6:n Fission products and neutrons

F6:p Prompt gammas and capture gammas

F6:np Fission products, neutrons, prompt gammas, and

capture gammas (F6:n + F6:p)

= F7 tally does not account for delayed gammas, betas, or capture gammas.

» No tallies account for betas or delayed gammas which comprise 6-7% of
the fission energy release

* This is not a problem if one assumes all fission energy is locally deposited
because the power normalization is arbitrary.

= An accurate prediction of the spatial distribution of fission energy
deposition, including neutron and gamma transport effects, should include

contributions of the betas and delayed gammas.
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Overall Approach to Compute Spatial Deposition
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 Goal: Compute H(r), where H(r)dr = amount of energy/s
deposited in dr about r in a reactor (including reflector) at power
P, accounting for all sources of fission energy.

« Use standard F6 / F7 tallies in MCNP5

 Use reasonable models for those quantities that are unknown or
not treated by MCNP5

— Beta energy is deposited locally and can be scaled from the
conventional F7 tally.

— Delayed gamma energy is deposited with the same spatial distribution
as the prompt gamma energy
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Overall methodology to estimate H(r)
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 Run multiple MCNP runs to get all contributions to the overall fission
energy deposition.

— Prompt gammas (H,,): F6:p tally with PIKMT card.

— Capture gammas (H,.): F6:p tally with PIKMT card.

— Delayed gammas (H,,): Scale H,, by Q_,/Q,,..

— Fission products + neutrons (H;, ): regular F6:n tally.

— Betas (H,): Scale regular F7:n tally by Q,/Q-,

where Q., = 180.88 MeV for U-235 fuel.

 Each run, scaled as indicated, yields a spatially dependent
contribution to H(r). The total is a simple sum of the individual
contributions since they are scaled properly.

H([) = an + ng + ch + Hgd + Hb

« Scale H(r) to get correct total power P.



Summary of overall methodology
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Energy
released

Fission
products

Neutrons

Prompt
gammas

Betas

Delayed
gammas

Capture
gammas

Total

f

(MeV)
169.1
4.79
6.97

6.5

6.33

MCNP

Normal

Normal

PIKMT

Scaled

Scaled

PIKMT
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ENDFE/B- TRISO Hom full Het full
VI particle core core
pisionproductsand 1 17389 | 171,59 | 17345 | 173.26
Prompt gammas 6.97 6.7 6.71 6.78
Delayed gammas 633 | 633 | 644 6.50
Betas 6.5 6.5 6.5 6.5
Subtotal| 193.69 | 191.12 | 193.1 | 193.05
Capture gammas - 696 | 436 3.70
Total 198.02 | 197.46 | 196.74
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Power distribution* for full core VHTR (het fuel)
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Inner Inner | Middle | Outer | Outer | Total
reflector | core core core | reflector

Bottom reflector - -
| (.06 2.72 2.92 2.87 ().08 8.65
2 (.10 4.59 4.89 4.88 0.14 14.59
3 0.13 6.42 6.85 6.82 0.19 20.41
4 (.16 7.81 8.11 8.17 (.24 24.49
5 (.18 8.5() 8.97 9.00 (.26 20.91
6 (.19 8.62 9.10 9.06 (.25 27.22
7 0.17 797 8.41 8.49 (.24 25.29
8 0.15 6.87 7.33 7.35 (.21 21.92
9 (.11 5.25 5.98 5.07 0.16 16.67
10) (.06 3.23 3.43 3.38 (.09 10.19

Top reflector - -
Total 1.31 61.96 65.56 65.57 1.86 196.60

*Error in simulation resulted in zero top and bottom reflector deposition rates
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Alternative approach — a simplified methodology

* Multiple MCNPS5 runs, especially with PIKMT cards
active, are very time-consuming. Not practical for
coupled MCNP5/RELAPS calculations.

* In principle, MCNP5 could be modified to tally these
quantities directly. This is probably a low-priority
change since work-arounds can yield acceptable
results.

« An alternative approach is based on the observation
that the F6:n tally accounts for global transport of
neutrons and perhaps the spatial distribution of the
neutron tally might approximate reasonably well the
spatial distribution of the overall fission energy
deposition.
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Comparison of F6:n with overall heat deposition*

Inner Inner | Middle | Outer Outer
reflector | core core core | reflector
Bottom reflector .
| ().26 ().90) ().89 ().90) ().20
2 ().20 ().90 ().88 ().90) ().26
3 ().26 ().90) ().89 ().90 (.27
4 (.26 ().90) ().88 ().90) ().20
D ().20 ().89 (.88 ().90) ().25
6 ().29 ().89 ().89 ().90 ().20
( ().25 ().89 ().88 ().90) ().20
8 ().26 ().89 ().88 ().90) ().20
9 (.26 ().90) ().89 ().90) ().27
L0) (.27 ().90) ().89 ().90) ().27
Top reflector -

*Ratio of F6:n tally to benchmark fission energy deposition
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Simplified methodology — preliminary thoughts
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* The F6:n tally (arbitrary normalization) yields fractional energy
depositions in the core regions which are 88-90% of the
benchmark fission energy fractions and within 25-27% for the
reflector regions.

» Although this ratio may change by ~10% in the reflector, only a
few % of the fission energy is deposited in the reflector.

* Implication: the F6:n tally, with prior calculations to estimate
ratios of the F6:n tally to the true heat deposition tally in the core
and reflector regions, may provide a very efficient and reasonably
accurate method to estimate the fission power distribution in a
realistic reactor configuration.

 These are preliminary results and more work needs to be done to
assess the sensitivity of these ratios and to examine the
possibility of using other tallies.



