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Multi-disciplinary Approaches to Radiation Balanced Lasers:
Rare-Earths and Semiconductors in Disks, Fibers, and Microstructures

MURI Kickoff Meeting, Nov. 21, 2016

Markus P. Hehlen 
UNM / New Mexico Consortium / LANL

Advancing RBLs in rare-earth (RE)-doped solids
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UNCLASSIFIED

1.  Mid-IR lasers in crystals using two-tone RBL
o Single-dopant two-tone RBLs: Tm3+, Er3+

o Co-doped two-tone RBLs: (Yb3+, Nd3+) and (Ho3+, Tm3+)

2.  Advanced approaches to RBL crystals 
o Precursor purification
o Micro-pulling-down crystal growth
o Bridgman crystal growth

3.  Advanced approaches to RBL fibers
o Materials for RBL glass fibers
o Micro-structured fibers for RBL 
o Fiber preform synthesis

4.  Objectives

Outline
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UNCLASSIFIED

1. Mid-IR lasers in crystals using two-tone RBL

Traditional “single-tone” RBL:
• One pump laser (𝜈𝜈𝑝𝑝)
• Stimulated (lasing, 𝜈𝜈𝑙𝑙) and spontaneous 

(cooling, 𝜈𝜈𝑓𝑓) emission on the same transition
• Drawback: Constrained by the crystal-field 

transitions provided by the ion in the host 
material

Proposed “two-tone” RBL:
• Separate pump lasers for lasing (𝜈𝜈𝑝𝑝𝑝𝑝) and cooling (𝜈𝜈𝑝𝑝𝑝𝑝)
• Stimulated (lasing, 𝜈𝜈𝑙𝑙) and spontaneous (cooling, 𝜈𝜈𝑓𝑓) 

emission on different transitions
• Two types: two-ion or one-ion systems
• Potential advantage: lasing and cooling partially 

decoupled → greater design freedom 
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1. Mid-IR lasers in crystals using two-tone RBL

Two-tone RBL adds complexity
• Yb3+ (and Ce3+) are special: only one excited state!
• All other RE3+ ions have a large number of excited states
• Competing radiative and non-radiative processes may 

become active
• We will perform a comprehensive analysis of potential RE 

ions to identify promising two-tone RBL candidates

ESA MR ETU CR
Excited state 
absorption

Multiphonon 
relaxation

Energy transfer 
upconversion

Cross 
relaxation
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1. Mid-IR lasers in crystals using two-tone RBL
Type-II Candidate: Tm3+ two-tone RBL

• Cooling and lasing can be implemented using the 
3H6↔3H5 (~1.2 µm) and 3F4↔3H6 (~2 µm) 
transitions, respectively

• The cooling / lasing transitions could also be 
reversed. Cooling on 3F4↔3H6 has been 
demonstrated by UNM  

• Multiphonon relaxation of 3H5 must be negligible    
→ low-energy phonon material (e.g. fluoride)

• 3H5 has a high branching ratio to the ground state
• Potential for relatively high 300 K cooling efficiency 

( ⁄~2.5𝑘𝑘𝑘𝑘 Δ𝐸𝐸): ~6% for 3H5 and ~10% for 3F4

• Competing processes are ESA and MR (heating)
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1. Mid-IR lasers in crystals using two-tone RBL
Type-II Candidate: Er3+ two-tone RBL

• Lasing possible on 4I13/2→4I15/2 (~1.55 µm) with 
pumping at ~1.48 µm

• Cooling on the 4I13/2↔4I9/2 (~865 nm) transition has 
been demonstrated, but it has a low cross section 
(10× lower than Yb3+) and a low branching ratio to 
the ground state (~85%)

• Alternatively, the 4I13/2↔4F9/2 (~650 nm) transition 
has a cross section comparable to Yb3+ and a 
~92% branching ratio to the ground state. 
However, relatively low cooling efficiency (~3.3% 
at 300 K) .

• Cooling and lasing transitions could be reversed to 
achieve higher cooling efficiency

• Competing processes are ESA and MR (heating)
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1. Mid-IR lasers in crystals using two-tone RBL
Type-I Candidate : Nd3+, Yb3+ two-tone RBL

UNCLASSIFIED

• Yb3+↔Nd3+ energy transfer (and associated 
heating) expected to be relatively inefficient

• Cooling on Yb3+ well established
• Lasing on the 4F3/2→4I9/2 (~900 nm) transition with 

pumping at ~880 nm
• Potential for ESA of the pump laser on Nd3+

causing heating via subsequent MR. Depends on 
specific material.
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1. Mid-IR lasers in crystals using two-tone RBL
Type-I Candidate : Tm3+, Ho3+ two(?)-tone RBL
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• Interesting case: lasing on Ho3+ and cooling on Tm3+ might each be driven by a single 
pump laser at ~1890 nm

• The balance between lasing and cooling could be tuned by varying the pump laser 
wavelength around ~1890 nm

• Potential for high cooling efficiency on Tm3+ (~10% at 300 K)
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2. Advanced approaches to RBL crystals
Precursor purification

UNCLASSIFIED

• Any RBL material has to first be a 
“cooling-grade” material

• Requires host material with (1) low 
intrinsic multiphonon relaxation and (2) 
high purity to minimize background 
absorption

• Primary impurities are believed to be 
transition metals such as Fe, Cu, Co, Ni, 
etc. present in commercial starting 
materials and introduced during sample 
preparation and growth

• Impurities absorb pump laser and decay 
non-radiatively (heating)

• Purification of precursors prior to growth 
is necessary in order to maximize the 
cooling efficiency

Correlation of background absorption and Fe impurity 
concentration in YLF:Yb samples (Melgaard et al, UNM)
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2. Advanced approaches to RBL crystals
Precursor purification

Concentration of transition metal impurities in a 
solution of YCl3 as a function of electroplating time 
(LANL).

• Preliminary successes with electroplating of impurities:
o Demonstrated electrochemical reduction of copper 

impurities in a concentrated YCl3 aqueous solution 
(LANL)

o Electrochemical processing of fluoride melts 
(ZBLAN) shown to improve laser cooling 
performance (Fajardo et al)  

• These purification methods are particularly suited for 
small batches (~10 g) 

• Use in conjunction with small-scale micro-pulling-down 
and Bridgman crystal growth methods

• Further development is needed to identify a suited 
process  
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2. Advanced approaches to RBL crystals
Micro-pulling-down (µPD) crystal growth

from Alshourbagy et al, Cryst.
Res. Technol., 41 (2006) 1154.

• Crystal growth downward from the melt, which flows through a small hole at the bottom of the 
stationary crucible. 

• µPD growth can start from relatively small (1-5 g) quantities of starting material (compare to 
>100 g for traditional Czochralski growth)

• Small starting material quantities are (1) ideal for material screening and (2) advantageous to 
maintaining high purity

Growth of small-diameter 
(~1 mm) LiSAF crystal
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Crucible

LiSAF crystal

Heat shield
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2. Advanced approaches to RBL crystals
Micro-pulling-down (µPD) crystal growth

• LANL collaboration with Prof. Mauro Tonelli (University of 
Pisa, Italy) has established a µPD crystal growth facility

• This infrastructure is available to the MARBLE project for 
the growth of RE-doped RBL materials

• Prof. Tonelli is a MARBLE project collaborator and will 
continue to contribute to the refinement of the system

• System offers flexibility in growing a wide range of 
materials under inert atmosphere

Growth chamber

Translation stage with 
overpressure capability

RF generator



2. Advanced approaches to RBL crystals
Micro-pulling-down (µPD) crystal growth

• µPD growth is ideally used for systems that melt congruently, e.g. LiLuF4.
• The crystal diameter / shape is determined by the design of the crucible:

o Circular hole for the growth of small-diameter crystal fibers (0.3 – 2.0 mm). Maximum diameter 
limited by surface tension and viscosity of melt.

o Addition of die enables growth of larger diameters (~5 mm) and non-circular shapes (plates, 
tubes, etc.)

o Need to design glassy carbon crucible with die for the µPD bulk growth of RE-doped RBL crystals

from Shaped Crystals, Fukuda, 
Chani (Eds.), Springer 2007
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2. Advanced approaches to RBL crystals
µPDsystem used for Bridgman crystal growth

Bridgman growth of LiSAF crystal 
from 1 gram of starting material 

using the LANL µPD system

• Crystal growth upward in a crucible that is 
translated downward in a stationary temperature 
gradient. 

• Bridgman growth is suited for systems that melt 
incongruently (YLiF4 is borderline incongruent) 
and/or suffer from evaporative losses (e.g. LiF 
evaporation from LiSAF melts)

• The LANL µPD system allows translation of a 
Bridgman crucible through the temperature 
gradient established by the RF coil 

• Single crystals of LiSAF have been grown 
successfully this way. Additional process 
development is necessary (crucible shape, 
temperature gradient)
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3. Advanced approaches to RBL fibers
Glassy materials for fiber-based RBL

LA-UR-16-28860

“Single-tone” RBL “Two-tone” RBL

One material
e.g. Yb3+

Potentially two materials
e.g. Yb3+ (cooling) and Nd3+ (lasing)

Traditional single-mode 
optical fiber

Micro-structured 
optical fiber

∆E ≈ 9800 cm-1

ℏ𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 < 850 cm-1
∆E < 5000–6000 cm-1 

ℏ𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 < 420 − 500 cm-1
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3. Advanced approaches to RBL fibers
Materials for RBL glass fibers: Heavy-metal oxides for “single-tone” RBL

• Oxide glasses:
o Excellent properties for optical fiber fabrication
o SiO2-based glass has high phonon energies (~1100 cm-1) → significant multiphonon relaxation 

→ reduced quantum efficiency → reduced laser-cooling efficiency
o Some oxide glasses have lower phonon energies: e.g. TeO2-based glass (790 cm-1) → may 

offer sufficiently low multiphonon relaxation to enable efficient “single-tone” RBL in Yb3+

• Fluorides glasses (e.g. ZrF4 based, such as ZBLAN):
o Moderate phonon energies (350–600 cm-1)
o Prone to crystallization due to small Tx-Tg range
o Prone to oxidation
o Drawing of low-loss fibers is challenging 

• Heavy halide glasses (Cl, Br, I):
o Low phonon energies (100–260 cm-1)
o Extremely hygroscopic
o Only chlorides form glasses in very limited compositional ranges
o Chloride glasses have very low Tg
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3. Advanced approaches to RBL fibers
Materials for RBL glass fibers : Chalcogenides for two-tone RBL

• Relatively low phonon energies (300-400 cm-1); lower than fluorides
• Band edge at ~500 nm (sulfides) and ~800 nm (selenides) enables active systems in the near IR
• High refractive index: ~2.35 (sulfides) and ~2.72 (selenides) can be both detrimental (low escape 

efficiency) and beneficial (tailoring of  temperature gradient) 
• Candidate material Ga2S3-La2S3 (~320 cm-1)
• Can be drawn into solid and micro-structured fibers of high optical quality
• Laser cooling has not yet been investigated in these systems
• Fabrication must mitigate OH, H2S, H2Se, H2O, and C-H impurities
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Infrared transmittance of different 
glasses (Cui et al, Molecules, 2013)
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3. Advanced approaches to RBL fibers
Micro-structured fibers for two-tone RBL

• Approach: Create an optical fiber with a micro-structured core which consists of a laser-cooling 
material and a lasing material to create an RBL overall

• This allows for:
o separate optimization of the laser-cooling and lasing materials 
o spatial tailoring of the transverse temperature profile in the fiber

• The microstructure is chosen to be:
o sub-wavelength such as to appear homogeneous for the optical mode
o large compared to typical RE-RE energy transfer distances (<100 nm), allowing the two 

materials to exist side by side without much interaction
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• Fabrication of micro-structured fibers by the “stack-and-draw” method:
1.Fabrication of glass rods (composition, cross-sectional shape) e.g. by extrusion
2.Manual assembly of rods to create a preform
3.Drawing of preform to the final fiber diameter 

• Suitable for solid or holey fibers
• Sufficient overlap of the Tx-Tg ranges must exist when using different materials in the preform
• Extrusion method may enable control of the composition in the longitudinal direction 

3. Advanced approaches to RBL fibers
Fiber preform synthesis

Selenide holey fibers produced 
by the stack-and-draw method 
(Cui et al, 2013)



Project Year 1:
• Grow Tm and Er doped fluoride crystals (single-dopant 2-tone RBL)
• Explore electrochemical purification methods
• Fabricate and characterize RE-doped chalcogenide and heavy-metal oxide glasses
• Procure load frame for the extrusion of glass preforms

Project Year 2:
• Grow YLF:Yb,Nd and YLF:Tm,Ho crystals (co-doped 2-tone RBL)
• Refine electrochemical purification methods
• Fabricate Yb-doped heavy-metal oxide glass preform
• Develop chalcogenide glass extrusion process

Project Year 3:
• Explore large-diameter µPD growth from purified starting materials
• Synthesize and characterize target chalcogenide glass
• Fabricate micro-structured chalcogenide glass preform

4. Objectives
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Thank you!
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