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Background ) e,

* Fractographic features are important in failure
analysis. They help to:

* Locate site of critical defects.

* Figure out what the stress conditions at time fracture origin
of failure were.

mirror

 Sample of computational methods that have been
applied to crack instability (mainly 2D):
* Lattice method: Marder & Gross (1995)

*  MD: Abraham, Brodbeck & Rudge (1994, 1997),
Buehler & Gao (2006)

¢ VIB: Klein & Gao (2002) '
y CZ: Zhou' Molinari & Shioya (2005) Image: Weissmann, Univ. ErIangen-Nurnberg

* Cracking particle method: Rabczuk, Song &
Belytschko (2009)

*  XFEM: Menouillard & Belytschko (2010)

* Phase field: Karma & Kobkovsky (2004), Spatschek et
al (2006)



Purpose of peridynamics* ) .

e To unify the mechanics of continuous and discontinuous media within a single, consistent
set of equations.

Continuous body
with a defect

Discrete particles

Continuous body
e Why do this?
e Avoid coupling dissimilar mathematical systems (A to C).

e Model complex fracture patterns.
e Communicate across length scales.

* Peri (near) + dyn (force)
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Why this is important

* The standard PDEs are incompatible with the essential physical nature of cracks.

* Can’t apply PDEs on a discontinuity.
* Typical FE approaches implement a fracture model after numerical discretization.
* Need supplemental kinetic relations that are understood only in idealized cases.

Complex crack path in a composite

Real crack FE |

Figure 11.29 Pull-out: (a) schematic diagram; (b) fracture surface of ‘Silceram’
glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D.
Rawlings.)




Peridynamics basics: )
Horizon and family

e Any point x interacts directly with other points within a distance ¢ called the “horizon.”

e The material within a distance 0 of x is called the “family” of x, H.

Equilibrium equation

/ f(q,x) dVq+b(x) =0

X

f = bond force density

H,= family of x

General references
SS, Journal of the Mechanics and Physics of Solids (2000)
SS and R. Lehoucq, Advances in Applied Mechanics (2010)
Madenci & Oterkus , Peridynamic Theory & Its Applications (2014)




Point of departure: ) i
Strain energy at a point

Continuum Discrete particles Discrete structures

Family of x

Deformation

e

* Key assumption: the strain energy density at X is determined by the
deformation of its family.




Potential energy minimization yields the .
peridynamic equilibrium equation
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e Potential energy:
<I>:/(W—b-y) dVy
B

where W is the strain energy density, y is the deformation map, b is the
applied external force density, and B is the body.

e Euler-Lagrange equation is the equilibrium equation:

/ f(q,x) dVq+b(x) =0
Hx

for all x. f is the pairwise bond force density .




Peridynamics basics: = e,
Material model determines bond forces
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Each pairwise bond force vector f(q, x,t) is determined jointly by:

the collective deformation of Hy, and

the collective deformation of H,.

Bond forces are antisymmetric: f(x,q,t) = —f(q,x, t).

Deformation y (-, t)

Bond q

Undeformed families
Deformed families and bond forces




Peridynamic vs. local equations
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The structures of the theories are similar, but peridynamics uses nonlocal operators.

* Notation: State<bond>=vector
Relation Peridynamic theory Standard theory
Kinematics Y(q - x) = y(q) - y(x) F(x) = 2(x)
X

Linear momentum
balance

) = [ (8a30) — t(x.)) aVa -+ b(x)

Constitutive model

A

T=T(Y)

t(q,x) = T(q —x),

Angular momentum
balance

/Hz<q—><>><1<q—x> dVy = 0

Elasticity

T = Wy (Fréchet derivative)

o = Wy (tensor gradient)

First law

e=0c - F+q+r

T() - Y(&) dVe
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EMU numerical method

= |ntegral is replaced by a finite sum: resulting method is meshless and Lagrangian.

i) = [t AVt bixt) gy = Y1) AV 4 b
H
keH

* Linearized model:

Z Cir(u, — w;)AVy + by
keH;




Types of material models ) .

* A material model determines the bond forces in the family according to the
deformation of the family.

Material
models
Lattice-type Bond-based State-based
particle /\
discretization Ordinary Nonordinary
! j C d
_ : Composite orrespondence
Elastic-brittle (Madenci) TR o(F)
ori Beam/plate
Plasticity E"]'clﬁ?dan @ (O’Grady-Foster)
(Foster, SPH-type
M|tChe”) partic|e

discretization




Bond based material models )

* If each bond response is independent of the others, the resulting material model is
called bond-based.
* The material model is then simply a graph of bond force density vs. bond strain.
 Damage can be modeled through bond breakage.
* Bond response is calibrated to:
e Bulk elastic properties.
e Critical energy release rate.

Bond force densityA Bond
breakage

~
7

Bond strain




Autonomous crack growth ) 5.

Broken bond

Crack path

* When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.



Constant bond failure strain

reproduces (@) i
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the Griffith crack growth criterion

Total work — total strain energy

R, From bond
caky TN properties, energy
¢ . release rate
<1  should be

|

>

Slope =0.013

Crack tip position

» This confirms that the energy consumed per unit crack growth area equals the expected

value from bond breakage properties.




Fracture and debonding of membranes
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Simulation of peeling illustrates interplay between fracture (tearing) and debonding (peeling).

Y

Fracture
Membrane

/

\

Substrate




2D studies of brittle fracture with ) e
peridynamics: examples

Crack branching in a glass plate with effect of reflected waves:
Ha & Bobaru, Engin Fract Mech (2011)

Delamination in SiO,/Si,N, electronic components:
Agwai, Guven, & Madenci, IEEE (2008)
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3D peridynamic model of impact on glass @&z

* Steel sphere strikes a glass plate.
* The model predicts the evolution of some important features.

Transition from Hertz cone to fragmentation Photograph from impact side
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Concurrent multiscale method for defects

* Apply the best practical physics at the smallest length scale (near a crack tip).
e Scale up hierarchically to larger length scales.
* Each level is related to the one below it by the same equations.
* Any number of levels can be used.
e Adaptively follow the crack tip.

Crack process zone

The details of damage evolution are always
modeled at level 0.




Concurrent solution strategy ).

= The equation of motion is applied only within each level.
= Higher levels provide boundary conditions on lower levels.
= Lower levels provide coarsened material properties (including damage) to higher levels.

In principle, a large number of levels can be used, all coupled in the same way: “scalable
multiscale” method.

A Level
m
4491‘ , o
N0
%
> ‘8¢ o

Schematic of communication between levels in a 2D body




Concurrent multiscale example: ) i
shear loading of a crack

* Level O region adaptively follows the crack tip.

Bond strain Damage process zone

21



Failure of a glass rod in tension

e Aclassical test problem for fractography.
* We will try to reproduce key fractographic features.

* Multiscale approach allows us to make the horizon << geometric length scales.

Fixed displacement

p = 3000 kg/m3
E =70.5 GPa
v=0.25
Gie=7.0)/m?
6 =25um

PA

3mm \
Initial defect:

2mm > 120um diameter

N
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Failure of a glass rod in tension ) .

Level 1 displacement Level O surrounds the crack front

* Level 1 multiscale.
e 20,000,000 level O sites (most are never used).
* Level O horizon is 25um.

23



Failure of a glass rod in tension (movie) M&z.

Evolution of surface roughness (movie)

Wake from main crack

/
/
/
/

/ Microbranch
</ \

« Main crack growth

* Rough features branch off from the main crack.
e Each one grows slower than the main crack and eventually dies.

24



Crack surface for four values of
initial stress: mirror-mist-hackle

Colors show elevation of the fracture surface above the initial defect position.
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Mirror-mist-hackle rh) o

* Model predicts roughness and microbranches that increase in size as the crack grows.
* Transition radius decreases as initial stress increases — trend agrees with experiments.

Fracture surface in a glass optical fiber
(Castilone, Glaesemann & Hanson, Proc. SPIE (2002))

3D peridynamic model

26
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Crack front position vs. time

Crack tip position vs. time
T T T T T T T

102MPa
\

90MPa

Position a (mm)
o
o

1 1 1 1 1 1

_'IO 1 1 1 1 1
0 0.5 1.0

Time (us)

* The crack speeds up to a limiting velocity that depends on the stress.
* Higher stress leads to higher crack speed.
* 64MPa stress:

a =2500 m/s = 0.81 ¢,
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Higher stress causes branching

* 115 MPa




Failure in bending h

 Method reproduces the curvature in crack path that is observed as a
crack enters the compressive part of the stress field.

Crack tip position vs. time

"\

Crack slows down

Position (mm)
o
Ul

yq\

Compressive
failure

: N
Fiber fractured by bending (Image: J. Summerscales,
http://www.tech.plym.ac.uk/sme/MATS324/MATS324
A4%20fracture.htm)
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Two defects: =
Gull wing fractographic pattern
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* Glassrod in tension

* 120um diameter critical defect

* An additional 80um defect is elevated
33um out of the plane of the first.

* Crack from the first initializes the second

* Perturbed crack surface shows “gull wing”
pattern (similar to Wallner lines)

Image: R. W. Rice, in Fractography of ceramic and metal
failures, Vol 827 (1984) Peridynamic model result for the crack surface

Colors show elevation (axial coordinate)




Composite fracture features h) ..

Figure 11.20 Pull-out: (a) schematic diagram; (b) fracture surface of ‘Silceram’
glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D.
Rawlings.)

Complex crack path in a composite
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Summary

e Peridynamics is a continuum theory that is compatible with discontinuities.
* Dynamic fracture is predicted without additional relations.
* Multiscale method adaptively reduces the length scale near a crack front.
 Method appears to reproduce fractographic features such as:
* Branching, microbranching.
* Mirror-mist-hackle.
e Crack curvature under bending loads.
e Gull wing features near multiple defects.




Results with and without multiscale [@&:.

* All three levels give essentially the

2.25
same answer.

* Higher levels substantially reduce
the computational cost.
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