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HyRAM in one slide

• Integration platform for 
state-of-the-art hydrogen 
safety models & data

– Generic reliability data for H2 
systems

– Standardized scenarios and 
models

– H2 phenomena (gas release, 
ignition, heat flux, overpressure)

• Software built to enable 
industry-led quantitative risk 
assessments (QRAs)

– Puts the R&D into the hands 
of H2 industry safety experts
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Outline

• Research background & motivation

• HyRAM method overview - Quantitative Risk 
Assessment (QRA) and consequence models

• HyRAM Toolkit demo (interactive)



H2 codes and standards (C&S) are using QRA

• NFPA 2 and ISO TC197 want to use science and engineering basis to 
bring rigor into C&S requirements.

• Ongoing activities applying QRA & behavior models in NFPA 2 & ISO 
TC197

– GH2 separation distances - NFPA2 Ch. 7 (SAND2014-3416)

– Indoor fueling requirements - NFPA2 Ch. 10: (SAND2012-10150)

– Performance-based compliance option - NFPA2 Ch. 5) (SAND2015-4500)

– Generalized approach for defining country-specific mitigations  – ISO TC197 
WG24 (ISO TR-19980-1)

– Revision of LH2 separation distances – NFPA 2 (In progress)

• Future possibilities, including:  Enclosures (NFPA2 Ch7 and ISO 
TC197); Evacuation zone analyses; Design insight…



What is Risk Assessment?

Can be qualitative or quantitative.
Quantitative form referred to as QRA (Quantitative Risk Assessment)

Risk Analysis

• A process used to 
identify and characterize 
risk in a system

• What could go wrong? 

• How likely is it? 

• What are the 
consequences? 

Risk Management

• Provide inputs to 
decision makers on:

• Sources of risk

• Strategies to reduce 
risk

• Priorities

Risk = “the potential for loss” (more specifically, 
“uncertainty about the potential for and severity of loss(es)”



Risk Assessment
• Caution: One term, many methods!

• Rigorous QRA methods involve a wide range of models, data

• Relatively new concept for C&S development

– SFPE guidance issued in 2006; NFPA in 2007: Does not require  a 
particular analysis method, goal, criteria, etc.
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Generic QRA Method

2. System & hazard 
description

1. Set analysis goals

3. Cause analysis

4. Consequence analysis

5. Communicate 
Results
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HyRAM Motivation 
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 The general QRA method is robust – but…quality varies 
based on the models and tools used

 Quality methods & strong technical basis are extremely 
important for developing consensus for RCS 

 Comprehensive QRA uses a range of models, techniques, 
experts & disciplines – putting the pieces together is non-
trivial.



Generic QRA Process & HyRAM philosophy
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2. System & hazard 
description

1. Set analysis goals

3. Cause analysis

4. Consequence analysis

5. Communicate 
Results

User-specific – Each analyst can 
establish own analysis goals, defines 
own system

User-neutral – All analysts 
apply established science 
& engineering basis 
(encoded in HyRAM)



Elements of QRA quality
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 Repeatability

 Defined objectives and scope; 

 Clear definitions of failure modes, consequences, criteria, models, and data

 Document the system, assumptions, 

 Validity & Verifiability

 Data, models, system, and analysis must be sufficiently documented for a 
peer reviewer to evaluate assumptions, completeness, etc. 

 Use experimentally validated models (as available) and published models 
and data.

 Comparability

 Necessitates flexible modeling tools, documentation of methodology

 Completeness

 Ability to update models as knowledge improves

 Ensure that analyzed system matches the system as built and operated



Project Approach: Three coordinated activities
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Apply risk 
assessment 

techniques in step-
out hydrogen 
technologies

Develop integrated 
algorithms for 

conducting QRA 
(Quantitative Risk 

Assessment) for H2

facilities and vehicles

Develop and validate 
scientific models to 

accurately predict 
hazards and harm 

from liquid releases, 
flames, etc.

Enabling methods, data, tools for H2 safety & RCS community

H2 behavior R&DQRA methods, tools R&DApply R&D in RCS



Recent Sandia R&D enabling QRA
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 Design brief template to facilitate documentation & transparency
 AC LaFleur, AB Muna & KM Groth. Fire Protection Engineering Design Brief Template: 

Hydrogen Refueling Station SAND2015-4500, Sandia National Laboratories, 
Albuquerque, NM, June, 2015.

 HyRAM software & technical basis (documented QRA approach, 
models, data; synthesized from 40+ sources -- see next slide)
 KM Groth, ES Hecht & JT Reynolds. Methodology for assessing the safety of Hydrogen 

Systems: HyRAM 1.0 technical reference manual SAND2015-DRAFT, ~Nov 2015.)

 Ongoing development with state-of-the-art from R&D community 
(HySafe, IEA HIA Task 37)

 Experimental work to validate models Turbulent Combustion Lab.
 Cold Hydrogen: 

 E. S. Hecht, M. D. Zimmerman, A. C. LaFleur & M. Ciotti. Design of the Cryogenic 
Hydrogen Release Laboratory. SAND2015-7521, Sept 2015

 I. W. Ekoto et al. Liquid Hydrogen Release and Behavior Modeling: State-of-the-Art 
Knowledge Gaps and Research Needs for Refueling Infrastructure Safety 
SAND2014-18776, October, 2014.

 GH2 releases, jet flame models, overpressure experiments – see next slide.
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Major elements of HyRAM software
QRA Methodology 
• Risk metrics calculations: FAR, PLL, AIR
• Scenario models & frequency
• Release frequency
• Harm models

Generic freq. & prob. data 
• Ignition probabilities
• Component leak frequencies (9 types)

Physics models 
• Properties of Hydrogen
• Unignited releases: Orifice flow; Notional 

nozzles; Gas jet/plume; Accumulation in 
enclosures

• Ignited releases: Jet flames w/ and w/o 

buoyancy; overpressures in enclosures

Mathematics Middleware 
• Unit Conversion System
• Math.NET Numerics

Documentation
• Algorithm report (DRAFT ~Nov 2015)
• User guide (SAND2015-7380 R) + Free download via web (~early 2016)



HyRAM Toolkit demo



Next steps

• Long-term vision Fully configurable, tested software product available 
for users to calculate hydrogen risk values and independent 
consequence models to design, develop and adapt system designs 
globally.

• Plans to release HyRAM 1.0 in early 2016 via web download
• Upcoming extensions:

– Integration of overpressure model into QRA mode (undergoing internal 
testing)

– Add risk-features for modeling root causes, ranking risk contributors, 
adding mitigations (Fault Trees, Event Sequence Diagrams, Importance 
Measures)

– Add validated model for liquid/cryogenic H2 release (experimental work 
ongoing)
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