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HyRAM in one slide
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e Software built to enable o=
industry-led quantitative risk
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— Puts the R&D into the hands
of H2 industry safety experts
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* Research background & motivation

* HyRAM method overview - Quantitative Risk
Assessment (QRA) and consequence models

* HyRAM Toolkit demo (interactive)
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H2 codes and standards (C&S) are usmg QRA

e NFPA 2 and ISO TC197 want to use science and engineering basis to
bring rigor into C&S requirements.

e Ongoing activities applying QRA & behavior models in NFPA 2 & ISO
TC197

GH2 separation distances - NFPA2 Ch. 7 (SAND2014-3416)
Indoor fueling requirements - NFPA2 Ch. 10: (SAND2012-10150)
Performance-based compliance option - NFPA2 Ch. 5) (SAND2015-4500)

Generalized approach for defining country-specific mitigations —1SO TC197
WG24 (1SO TR-19980-1)

Revision of LH, separation distances — NFPA 2 (In progress)

* Future possibilities, including: Enclosures (NFPA2 Ch7 and ISO
TC197); Evacuation zone analyses; Design insight...




Lg‘-lé F Hydroge. ‘and Fuel Cells Program
= "-“ : - -

What is Risk Assessment?

Risk = “the potential for loss” (more specifically,
“uncertainty about the potential for and severity of loss(es)”

Risk Analysis Risk Management
» A process used to * Provide inputs to
identify and characterize - decision makers on:
risk in a system | | « Sources of risk
* What could go wrong? | | - Strategies to reduce
* How likely is it? risk
 What are the * Priorities
consequences?

Can be qualitative or quantitative.

Quantitative form referred to as QRA (Quantitative Risk Assessment)




Risk Assessment

e Caution: One term, many methods!
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particular analysis method, goal, criteria, etc.

Rigorous QRA methods involve a wide range of models, data

Relatively new concept for C&S development
— SFPE guidance issued in 2006; NFPA in 2007: Does not require a
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Generic QRA Method

Region 1. Set analysis goals
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Farming. fishing. and forestry cccupations 138




| ﬁ &Hydrogen and Fuel Cells Program

HyRAM Motivation

= The general QRA method is robust — but...quality varies
based on the models and tools used

= Quality methods & strong technical basis are extremely
important for developing consensus for RCS

= Comprehensive QRA uses a range of models, techniques,

experts & disciplines — putting the pieces together is non-
trivial.
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Generic QRA Process & HYRAM philosophy
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Elements of QRA quality

= Repeatability
= Defined objectives and scope;
= (Clear definitions of failure modes, consequences, criteria, models, and data
= Document the system, assumptions,

= Validity & Verifiability

= Data, models, system, and analysis must be sufficiently documented for a
peer reviewer to evaluate assumptions, completeness, etc.

= Use experimentally validated models (as available) and published models
and data.

= Comparability
= Necessitates flexible modeling tools, documentation of methodology

= Completeness
= Ability to update models as knowledge improves
= Ensure that analyzed system matches the system as built and operated
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Project Approach: Three coordinated activities
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Recent Sandia R&D enabling QR

= Design brief template to facilitate documentation & transparency
= AC LaFleur, AB Muna & KM Groth. Fire Protection Engineering Design Brief Template:
Hydrogen Refueling Station SAND2015-4500, Sandia National Laboratories,
Albuquerque, NM, June, 2015.

= HyRAM software & technical basis (documented QRA approach,

models, data; synthesized from 40+ sources -- see next slide)

= KM Groth, ES Hecht & JT Reynolds. Methodology for assessing the safety of Hydrogen
Systems: HyRAM 1.0 technical reference manual SAND2015-DRAFT, “Nov 2015.)

= Ongoing development with state-of-the-art from R&D community
(HySafe, IEA HIA Task 37)

= Experimental work to validate models Turbulent Combustion Lab.
= Cold Hydrogen:
= E.S. Hecht, M. D. Zimmerman, A. C. LaFleur & M. Ciotti. Design of the Cryogenic
Hydrogen Release Laboratory. SAND2015-7521, Sept 2015
= |. W. Ekoto et al. Liquid Hydrogen Release and Behavior Modeling: State-of-the-Art

Knowledge Gaps and Research Needs for Refueling Infrastructure Safety
SAND2014-18776, October, 2014.

= GH2 releases, jet flame models, overpressure experiments — see next slide.
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QRA Methodology

Risk metrics calculations: FAR, PLL, AIR
e Scenario models & frequency

Release frequency

e Harm models

Generic freq. & prob. data

e Ignition probabilities

e Component leak frequencies (9 types)
Physics models

* Properties of Hydrogen

* Unignited releases: Orifice flow; Notional
nozzles; Gas jet/plume; Accumulation in
enclosures

e Ignited releases: Jet flames w/ and w/o
buoyancy; overpressures in enclosures

Mathematics Middleware

e Unit Conversion System

e Math.NET Numerics

Documentation
e Algorithm report (DRAFT ~*Nov 2015)
e User guide (SAND2015-7380 R)

|
|
|

Select risk metrics, and
tolerabilty criteria

v

R

( Analysis Scope (

Document the sysem and ste in
detail including mitigxionsto be

f Deflagration/
Jet fire Detonation

credited in the anaysis \ 4
‘ Flame radiation
3 Cakculate hex flux or extent
Release sizes of fiammableregion at exh
Define release sizesto be target location
analyzed *
‘ Flame contact
f, i Cakulate sze of fameor
Cakulatethefrequency of releases exent of flammableregion
for each reiease sze taking into
account sysem desgn and release +
miigxions
Thermal harm
+ Calculate probability of bos
- from thermal effects
Release characteristics (radiative, convective)
Calculatethe par ameters of the

release for each sze

v

Scenario probability
Calkulatethe probability of jet fres
deflagrations, and detonations,
taking into account system design
and igntion mitigations

Cakulatethe overpressure
and duration for each target

'

Overpressure harm
Calculate probability of os
from overpressure effects

'

Total ri
Cakulatetotal risk using total harm for all targets and xenar o
probabilty for all scenarios

Iterate 3z necessary

Engage with decision makers

Compare total risk to analysis criteria run sensitivity analysis, identify risk drivers, etc. to
address ecific questions, define C&S requirements demonstrate complance, etc,

)

+ Free download via web (~early 2016)
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HyRAM Toolkit demo




Next steps

Long-term vision Fully configurable, tested software product available
for users to calculate hydrogen risk values and independent
consequence models to design, develop and adapt system designs
globally.

Plans to release HyRAM 1.0 in early 2016 via web download

Upcoming extensions:

— Integration of overpressure model into QRA mode (undergoing internal
testing)

— Add risk-features for modeling root causes, ranking risk contributors,
adding mitigations (Fault Trees, Event Sequence Diagrams, Importance
Measures)

— Add validated model for liquid/cryogenic H, release (experimental work
ongoing)




5 — 3 l‘é F ijdrogen and Fuel Cells Program

o
NFPAMode |[QRAMods | Toms | System Description

2. System & hazard
description

3. Cause analysis

sy Woskng Houry 00
Output.
Locations
[ Seenan Siats :um = =
Flisk Metrics = 5 B ®
Mack: 5 SEEEEEEaE o | § o
wE SEEEEEER 23 SR 4. Consequence

—F N .
- = Results
Facility Parameters = b= == : —
-
This tab contains a description of the facility or si & e e e e e

HYDROGEN RISK ASSESSMENT MODELS

Thankyou!
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