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Abstract

Coherent change detection (CCD) can be used to de-
tect subtle scene changes in synthetic aperture radar
(SAR) imagery, such as vehicle tracks, which indi-
cate human activity. Automatic track detection in SAR
CCD is difficult due to various sources of low coherence
other than the track activity we wish to detect. Existing
methods require user cues or explicit modeling of track
structure, which limit algorithms’ ability to find tracks
that do not fit the model. In this paper, we present a
track detection approach based on a pizel-level labeling
of the image via a conditional random field classifier,
with features based on radial derivatives of local Radon
transforms. Our approach requires no modeling of track
characteristics and no user input, other than a train-
ing phase for the unary cost of the conditional random
field. Ezxperiments show that our method can success-
fully detect both parallel and single tracks in SAR CCD
as well as correctly declare when no tracks are present.

1. Introduction

Synthetic aperture radar (SAR) coherent change de-
tection (CCD) can indicate subtle scene changes, such
as vehicle tracks left by an individual driving through
the scene [7]. Detection of these tracks is useful for
surveillance and search and rescue applications; how-
ever, automatic detection of vehicle tracks in SAR CCD
is difficult due to various sources of low coherence other
than the vehicle track change we wish to detect, such as
ground surface change due to weather effects and veg-
etation, registration errors, and radar shadows. Cur-
rent techniques for vehicle track detection in SAR CCD
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[4, 5] require user cues for identification of roads or
other indicators for possible vehicle activity, or explicit
modeling of vehicle tracks as parallel low coherence ar-
eas. This knowledge is incorporated into a template
that is used to detect candidate vehicle track points,
followed by a curve-fitting step to link points. The
parallel template causes difficulty in detecting single
tracks. Another method [10] detects tracks by first
identifying likely track points, and then selecting the
simplest model for a set of curves that best fits the
data. These methods may also involve a pre-processing
smoothing or thresholding step to mitigate false alarms
caused by the non-track change described previously,
and some methods can find only a single track in an
image. In this paper, we present a pixel-level labeling
(track or non-track) of CCD images based on a condi-
tional random field classifier. We make no assumptions
about vehicle track characteristics, other than the gen-
eral assumption that man-made tracks are long and
thin in comparison to other CCD clutter. We require
no user input and no pre-processing steps, other than
a training phase for the unary cost of the conditional
random field. Since we do not explicitly model paral-
lel vehicle tracks, this method has application to de-
tecting other change phenomena, such as single vehicle
tracks, building edges, or ground surface disturbances.
Our unary cost is derived from radial derivatives of
local Radon transforms centered on each pixel to be
labeled. Experimental results show that our method
successfully detects both parallel and single tracks in
SAR CCD imagery and can also correctly label pix-
els in clutter areas as non-track when no tracks are
present.

2. Technical Approach

We frame track detection as a binary labeling prob-
lem on a CCD image: we classify each image pixel as
belonging to a track or not. Associated with each pixel
n is observation z,, and true class y,. We model con-
ditional dependencies between the class variables y as
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Figure 1: RT vs. RDRT: a) Example CCD image with track, b) Maximum values of RT windows, ¢) Maximum
values of RDRT windows. Note that the derivative of the RT suppresses background clutter.

a Markov random field, and thus we model the poste-
rior probabilities p(g|x), for labels 4, as a conditional
random field. Given a set of N image pixels, we seek
the image labeling ¢ such that [9]
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where y,, € {0,1} is the class assignment of pixel n,
U, (yn) is the unary cost associated with assigning la-
bel y,, to the observed (feature) value at pixel n, and
P, n(m, 1) is the pairwise cost associated with labeling
neighbors m and n as y,, and y,, respectively. Neigh-
bors are determined using a 4-neighbor system.

2.1. Radial Derivative of the Radon Transform

The Radon transform (RT) of a continuous 2D im-
age f(x,y) is given by
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At (r,0) in the transformed space, the RT takes the
value of a line integral along the ray in R? such that
the closest point of the ray to the origin can be rep-
resented in polar coordinates as (r,6). Given an im-
age for labeling, we base our unary cost for a pixel on
the radial (along r) derivative of a local Radon trans-
form (RDRT) centered at that pixel. The RDRT has
shown good performance in detection of faint tracks
in SAR imagery [6], and also effectively distinguishes
tracks from other background clutter in CCD imagery.
To motivate the use of the RDRT instead of the RT
for distinguishing tracks from background clutter, con-
sider Figure 1. Figure 1 (a) shows a CCD image that
contains large areas of contiguous clutter in addition
to tracks. Figure 1 (b) is the result of computing RT's
over 32x32 windows centered on each pixel in the orig-
inal image, and then taking the maximum value from

each window, i.e., each pixel in (b) is the maximum of
a RT computed over a window centered at that pixel.
Details about this process are explained in a later sec-
tion. Figure 1 (c¢) gives the maximum values of the
RDRT from each window. For image (a), as shown in
Figure 1 (b), both background clutter and tracks have
large RT values. Hence, the RT value itself may not
discriminate tracks from background clutter. Now we
consider the rate-of-change of RT values for thin tracks
vs. background clutter. For thin tracks, at a given 6,
the derivative of the RT will have large values only at r
that coincide with the track edges. On the other hand,
clutter will result in a range of r with similar RT values,
and so clutter will generally result in low derivatives of
the RT, as shown in Figure 1 (¢). Although there may
be high derivatives at edges of clutter regions, the mag-
nitude of the derivatives at clutter edges are generally
lower than that of track edges, as visible in Figure 1
(¢c). Hence, the RDRT has the potential to distinguish
tracks from background clutter, and we take advantage
of this fact in our labeling.

2.2. Track Detection via Conditional Random Field

The unary cost Uy,(y,) at pixel n € 1,..., N takes
the form

Un(yn) = _ZOQ(PT(‘Tn]yn))» (3)

where x,, is the maximum RDRT value over a window
centered on pixel n. The probabilities Pr(x,|y,) are
determined using logistic regression on ground truth
images containing tracks. We choose the submodular
pairwise cost

L Ym # Yn
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for neighboring (in a 4-neighbor system) pixels m, n.
The magnitudes of the pairwise costs were chosen to
have value at most 1 to encourage continuity along
tracks while preserving track edges.
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Figure 2: Example RDRT and labeling: a) Example CCD image with track, b) Maximum values of RDRT windows,

¢) Labeling.

3. Implementation and Experimental
Results

3.1. Implementation details

We compute local RTs over 32x32 windows using the
sliding window method in [6]. If an image contains N
pixels, we compute N RTSs, where each RT window is
centered on one of the image pixels (and hence any
two adjacent windows will have 31 rows or columns of
overlap). This window size was chosen as the optimal
tradeoff between separation in the track pixel and non-
track pixel RDRT value distributions and computation
time. To obtain valid RT values at edge pixels, we pad
the CCD image by replicating edges. After comput-
ing an RT for each image pixel (i.e., centered on each
image pixel), we find the numerical gradient of the lo-
cal RTs along the r-dimension. To find a single value
at each pixel for input to the unary function, we take
the maximum magnitude of the RDRT in each window
(hence, we obtain N maximum RDRT values, one for
each pixel). These are the values z, in (3). We find
the optimal labeling y via graph cuts [2, 3, 8]. Fig-
ure 2 shows an example CCD image containing tracks,
the maximum RDRTSs, and the resulting conditional
random field labeling. Due to high gradients at the
boundaries of isolated clutter or buildings, we re-label
any small connected components of track-labeled pixels
as non-track. A good threshold for this re-labeling can
be computed from the size distribution of connected
components over the detector outputs of a set of test
images.

3.2. Experimental Results

Figure 3 shows results of our algorithm on real SAR
CCD images from a publicly available dataset [1].
There has been no removal of small components in
these images. Note that Figure 3 (c) shows detection of
a single-track-like structure. In Figure 3 (e) the CRF

correctly identifies no tracks (the small detections at
the image edges are caused by the padding step for
the Radon transform windows, and can be removed by
the thresholding step described previously). Due to
the lack of available ground truth in collected data, we
quantify the performance of our algorithm on a set of
40 real CCD images of size 600x800 pixels that contain
simulated tire tracks of various curvatures. Each CCD
image is generated from a real SAR image pair (from
the same publicly-available data set) and contains a
single randomly-generated pair of tire tracks. For a
given SAR image pair of the same scene and randomly-
generated pair of tire tracks, we place the tire tracks in
the output CCD image by adding random (Gaussian)
phase shifts to pixels along the track trajectory in the
non-reference image of the SAR image pair [12]. We
generate two test sets of varying thicknesses: we call
the two sets dark and medium. Example images from
each of the two sets as well as a CCD background im-
age containing no tracks are shown in Figure 4. We use
the same set of CCD background images and simulated
tracks to generate both test sets for fair comparison
among the two sets. This allows comparison of the al-
gorithm results in response to different signal-to-noise
ratios. The average track length is 705 pixels. We also
tested our algorithm on the CCD background images,
with no simulated tracks added. The algorithm cor-
rectly labeled all pixels as non-track in all but three of
the images; in these three images, some linear clutter
along the image edges were labeled as track, due again
to the padding in the Radon transform step. These
components can again be removed by thresholding on
component size. In quantifying the performance of our
algorithm, ground truth is taken to be the midline of
the tire tracks (midline between the two tracks). De-
tection is quantified with respect to this midline. To
compare candidate track pixels (labeled as a track pixel
by the algorithm) to ground truth, we compute the



Figure 3: Results on real SAR CCD images. No post-processing or removal of small components has been performed
on these images. (c¢) shows detection of a single-track-like structure in addition to parallel tracks. In (d), the CRF
picks up building edges in addition to tracks. Approaches to mitigate detection of buildings is discussed in a later
section. (e) contains no tracks, and the CRF correctly declares that. The small detections at the left edge of
the image are caused by the padding step for the Radon transform, and can be removed through thresholding on
component size.

tire track midline via morphological dilation followed Euclidean distance (in pixel space) between pixels p;
by erosion. In the following, we define D(p1,p2) as the and ps. Let m denote a midline pixel we wish to de-
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Figure 4: Example test images: (a) dark, (b) medium, (c) original CCD image. Each set consists of 40 images of
size 800 x 600 containing various track curvatures and background clutter. The average track length is 705 pixels.

tect, d the candidate track pixel closest in Euclidean
pixel distance to m, and ¢ the closest tire track pixel
to d. Then m is detected if and only if d is contained
within the area bounded by the outer edges of the tire
tracks, i.e., candidate pixels may lie on the tracks or
between the tracks. We write this mathematically as
the condition

D(m,d) < D(m,t). (5)

To evalute false alarms, for a given candidate track
pixel d, we define m as the track midline pixel closest
to d, and t as the tire track pixel closest to d. Then
d is a false alarm if and only if d lies outside the tire
track area (detections may lie between the tracks). We
write this mathematically as the condition

D(m,d) > D(m,t). (6)

Given the above definitions of detection and false
alarms, we quantify the accuracy of our algorithm using
the following metric:

CD

GT + FA’ @

where G'T" denotes the number of ground truth midline
pixels, CD denotes the number of correct detection
pixels, and F'A denotes the number of false alarm pix-
els. Our metric gives a real number between 0 and 1,
with value 1 if and only if all ground truth pixels are
correctly detected with zero false alarms. The metric
value will decrease as the number of false alarm pixels
increases or the number of correct detections decreases.
We note that this metric only quantifies the tradeoff
between correct detections and false alarms, and does
not consider number of tracks in the image or the lo-
cation/distribution of false alarms in the image. For
an image with multiple true tracks, the metric would

not quantify the number of tracks found. A metric to
quantify these aspects of track detection remains an
open problem.

Figure 5 (a) shows the mean, median, and standard
deviation of the metric values for each of the two test
sets. We use the same unary and pairwise costs in the
labeling of both test sets. The results show that the al-
gorithm performs well for the dark and medium tracks.
Previous work [10] using the Bayesian Information
Criterion (BIC) for detection achieved similar results;
however, our method can detect single tracks. Figure
5 (b) shows results using the BIC method, for com-
parison. Our method shows slightly increased mean
and median accuracies for the dark and medium tracks,
with comparable or lower standard deviation.

4. Discussion

SAR CCD can be used to detect vehicle tracks and
other subtle scene changes; however, automatic track
detection is difficult due to a variety of sources of
low coherence. Existing methods often require user
cues or modeling of vehicle tracks which limit perfor-
mance. Our approach successfully detects both sin-
gle and parallel vehicle tracks in CCD images, with
only a training phase for the data cost of the condi-
tional random field. Our algorithm does not assume a
particular track structure, and thus could be applied
to detection of other human activity. The algorithm
showed good performance for typical tracks. In future
work, we will address two issues: detection of build-
ing edges and improved detection of very faint tracks.
To mitigate detection of building edges, we can use a
post-processing step that distinguishes label configu-
rations of tracks from those of buildings, or we could
first detect buildings (using a pre-existing building de-
tector, such as [11]) in images and ignore track de-
tections that occur on top of the building detections.
Alternatively, we could add a feature to the CRF that



Mean Median Std. Dev.
dark 0.9840  0.9973 0.0562
medium | 0.9015  0.9418 0.1009

(a) Conditional random field

Mean Median Std. Dev.
dark 0.9721  0.9872 0.0471
medium | 0.8352 0.9108 0.1812

(b) Bayesian Information Criterion

Figure 5: (a) Mean, median, and standard deviation of accuracies for the three test sets. (b) Previous results from

[10].

discriminates tracks from buildings. The detection of
very faint tracks can be improved using larger (64x64)
Radon transform windows; however, the use of larger
windows also increases false alarms. To both improve
detection while keeping a low false alarm rate, a mul-
tiscale approach may be appropriate, in which we fuse
detector outputs from multiple Radon window sizes.
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