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1 Executive Summary

The University of Tennessee (UTK) and University of Texas at El Paso (UTEP) partnership
supported the three main thrusts of the SUPER project—performance, energy, and resilience.
The UTK-UTEP effort thus helped advance the main goal of SUPER, which was to ensure
that DOE’s computational scientists can successfully exploit the emerging generation of high
performance computing (HPC) systems. This goal is being met by providing application
scientists with strategies and tools to productively maximize performance, conserve energy,
and attain resilience.

The primary vehicle through which UTK provided performance measurement support to SU-
PER and the larger HPC community is the Performance Application Programming Interface
(PAPI). PAPI is an ongoing project that provides a consistent interface and methodology
for collecting hardware performance information from various hardware and software com-
ponents, including most major CPUs, GPUs and accelerators, interconnects, I/O systems,
and power interfaces, as well as virtual cloud environments. The PAPI software is widely
used for performance modeling of scientific and engineering applications—for example, the
HOMME (High Order Methods Modeling Environment) climate code, and the GAMESS
and NWChem computational chemistry codes—on DOE supercomputers. PAPI is widely
deployed as middleware for use by higher-level profiling, tracing, and sampling tools (e.g.,
CrayPat, HPCToolkit, Scalasca, Score-P, TAU, Vampir, PerfExpert), making it the de facto
standard for hardware counter analysis. PAPI has established itself as fundamental software
infrastructure in every application domain (spanning academia, government, and industry),
where improving performance can be mission critical. Ultimately, as more application sci-
entists migrate their applications to HPC platforms, they will benefit from the extended
capabilities this grant brought to PAPI to analyze and optimize performance in these envi-
ronments, whether they use PAPI directly, or via third-party performance tools. Capabilities
added to PAPI through this grant include support for new architectures such as the lastest
GPU and Xeon Phi accelerators, and advanced power measurement and management fea-
tures.

Another important topic for the UTK team was providing support for a rich ecosystem of
different fault management strategies in the context of parallel computing. Our long term
efforts have been oriented toward proposing flexible strategies and providing building boxes
that application developers can use to build the most efficient fault management technique
for their application. These efforts span across the entire software spectrum, from theoretical
models of existing strategies to easily assess their performance, to algorithmic modifications
to take advantage of specific mathematical properties for data redundancy and to extensions
to widely used programming paradigms to empower the application developers to deal with
all types of faults. We have also continued our tight collaborations with users to help
them adopt these technologies to ensure their application always deliver meaningful scientific
data.

Large supercomputer systems are becoming more and more power and energy constrained,
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and future systems and applications running on them will need to be optimized to run under
power caps and/or minimize energy consumption. The UTEP team contributed to the
SUPER energy thrust by developing power modeling methodologies and investigating power
management strategies. Scalability modeling results showed that some applications can scale
better with respect to an increasing power budget than with respect to only the number of
processors. Power management, in particular shifting power to processors on the critical
path of an application execution, can reduce perturbation due to system noise and other
sources of runtime variability, which are growing problems on large-scale power-constrained
computer systems.

2 University of Tennessee, Knoxville

During the last year of the grant, UTK focuses primarily on activities related to two central
areas of SUPER: (1) architecture aware areas focusing on performance and energy measure-
ments and engineering, and (2) resilience and fault tolerance. Each of these areas will be
discussed in further detail below.

2.1 Architecture Awareness

The primary workhorse through which UTK provides performance measurement support to
SUPER and the larger HPC community is the Performance Application Programming Inter-
face (PAPI). PAPI is an ongoing project that provides a consistent interface and methodology
for performance counter information of varied hardware and software components, including
most major CPUs, GPUs, accelerators, interconnects, I/O systems, and power interfaces as
well as virtual cloud environments. The PAPI software is available for download from the
PAPI website at http://icl.cs.utk.edu/papi/.

The UTK PAPI development team also works closely with vendors and tool developers
to incorporate PAPI into their products and research software. For instance, the release
of the most recent PAPI version 5.5 incorporates power measurements and power capping
control for recent Intel CPUs using the Linux powercap interface. Energy efficiency has been
identified as a major concern for extreme-scale platforms, and PAPI can provide details about
the power efficiency of an implementation. Additionally, we have worked closely with Intel—
long before the official release of Intel’s Knights Landing (KNL)—to add core and uncore
support for KNL as well as power monitoring via the RAPL and powercap components. This
close collaboration with vendors enabled us to ship PAPI with KNL support shortly after
the processor was officially released.

We released two PAPI versions during the reporting period:

1. PAPI 5.4.3 was released in January 2016.

2. The most recent version is PAPI 5.5, released in August 2016.
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The progress on each of these accomplishments is reported and explained, in further detail,
in the subsections below.

2.1.1 PAPI support for multiple GPUs

The PAPI CUDA component is a hardware performance counter measurement technology for
the NVIDIA CUDA platform that provides access to the hardware counters inside the GPU.
The PAPI CUDA component is based on CUPTI support in the NVIDIA driver library. In
any environment where the CUPTI-enabled driver is installed, the PAPI CUDA component
is able to provide detailed performance counter information regarding events on the GPU
kernels.

As a major extension, and as part of our effort during the last year of the SUPER project,
the PAPI CUDA component has undergone a major redesign to provide CUDA support
for multiple GPU devices and multiple CUDA contexts. Part of the PAPI CUDA com-
ponent enhancement is the newly added test case, so that users can easily take advantage
of LD_PRELOAD on a Linux system to intercept function calls and “PAPI-enable” an un-
instrumented CUDA binary. These CUDA enhancements were tested and hardened, and
officially released with PAPI in January 2016.

2.1.2 Power Management via PAPI

Activities during the last year of this grant focused primarily on the exploration of incor-
porating power measurements and power control into PAPI. Current directions for PAPI
development include providing applications the ability to achieve a trade-off between power
and performance. The 2016 PAPI releases have incorporated power measurements and power
capping control for recent Intel CPUs using the RAPL interface. Energy efficiency has been
identified as a major concern for exascale platforms, and PAPI can provide details about the
power efficiency of an implementation. This power-efficiency information can determine the
choice between alternative algorithmic implementations of an operation (e.g., linear algebra
block-layout versus tile-layout algorithms), leading to the design of energy-efficient algo-
rithms. We have developed two new power-management components, which are discussed
below:

A. Power Management using the Intel RAPL Interface (via msr-safe and libmsr)
We’ve been experimenting with a PAPI component that includes control aspects (i.e., this
component has an *active* interface that writes values to the RAPL/MSR interface). This
is a significant change from all prior PAPI components that have had an entirely passive
measurement interface to read information and events. In our SUPER project report from
last year (2015), we included a detailed discussion about our early version of the RAPL/MSR
component. This component was further optimized and tested, and released in January 2016
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(PAPI version 5.4.3). We are awaiting feedback from our interdisciplinary partners who
integrate our software with their tools and applications.

B. Power Management using the Intel RAPL Interface (via the Linux powercap
interface) The August 2016 PAPI release has a new component that provides read and
write access to the power/energy information and controls exposed via the Linux powercap
interface. This interface exposes various power-related values to the user via a sysfs interface.
The information is displayed in the form of sets of directories with subdirectories. These
directories are organized by “zones” or “domains”. Essentially, the top level is the power
planes. Some systems will have one power plane, and others will have two. What is nested
inside a power plane also varies; these can be referred to as “subdomains” or “subzones.”
For some processors, memory, uncore, and core “subdomains” may be nested within a given
power plane. Each of these “parent” and “children” power domains contains individual
power-constraint information that is divided up between short- and long-term time windows.
This is presented to the user in the form of system files whose name indicates the type of value
they contain. For example, constraint_0_power_limit would contain the value associated
with the power limit relative to the time window that is associated with ID number 0.

This PAPI powercap component uses the Linux interface that was designed to expose power
constraint values for various Intel processors. Each processor has a different set of power
constraints available via this Linux interface. The PAPI powercap component will show only
the available constraints for the specific system that it is being run on. It is important to
note that some inconsistencies exist in the Linux interface. Some writable constraints for one
processor may not be writable for another processor. This has been identified as a known
issue by Intel.

Figure 1 shows a Hessenberg reduction kernel from the MAGMA library (http://icl.cs.
utk.edu/magma/) computed on the Intel Xeon Phi Knights Landing processor utilizing all
68 cores utilizing all 4 hardware threads per core. For the power readings, we are using
the PAPI powercap component and the measurement utility with a sampling rate of 100
milliseconds. The Hessenberg reduction is computed nine times, each with a different ma-
trix size. The numbers on top of each curve show the chosen matrix size. The measured
power data clearly mimics the computational intensity of the Hessenberg computations. The
factorization begins on the entire matrix—in this case consuming most of the power—and
as the factorization progresses, it operates on smaller and smaller matrices, resulting in less
and less power usage.

Next steps/goals: As one of our next steps, we are working on consolidating all the different
PAPI power components into one component rather than having multiple approaches of
measuring and controlling the power.
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Figure 1: Example of power controlling with PAPI powercap component.

2.1.3 New Architecture Support in PAPI

Another objective that is always crucial to PAPI’s success is extending and verifying support
for new processor architectures.

A. Intel Xeon Phi Knights Landing We have worked closely with Intel—long before
the official release of Intel’s Knights Landing (KNL)—to add core and uncore support for
KNL as well as power monitoring via the RAPL and powercap components. This close
collaboration with the vendor enabled us to ship PAPI with KNL support shortly after the
processor was officially released.

A.1 Native Events: In Figure 2, we compare the PAPI support for the first Xeon Phi
co-processor (Knights Corner) and the latest Xeon Phi processor (Knights Landing). PAPI
offers two components for CPU counters:

1. A CORE component for on-core-specific events that are not shared (e.g., instruction
count, cache-related events, etc.).

2. An UNCORE component for shared counters.

There was no UNCORE support for Knights Corner. But for Knights Landing, we offer
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Figure 2: PAPI CPU components: Knights Corner versus Knights Landing.

almost 900 UNCORE events (such as memory-related events like any kind of “retired memory
operations”, event support for the 2D-mesh interconnect that’s on KNL, IO support, event
support for memory-to-PCI operations, etc.). On Knights Landing, we have five counters
that are available (per hardware thread) for simultaneous event monitoring. However, three
of these five are fixed-purpose counters. Each can measure only one specific event:

1. Number of all Instruction at retirement.

2. Number of Core cycles when CPU is not halted.

3. Number of Reference Cycles when CPU is not halted.

That leaves two general-purpose counters (equal to what was available on Knights Corner)
that can be used to measure any event.

A.2 Predefined Events: A PAPI predefined event (preset event) is typically derived
using a combination of native events to provide guidance to the user regarding meaningful
performance counter monitoring, and also to check for correctness. Figure 3 shows the list
of the 26 predefined events that PAPI provides on KNL.
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Figure 3: PAPI Preset event on Knights Landing.

B. Floating-point operation counter issues Another activity we focused on is the
exploration of the issues with counting accurate floating-point operations.

On previous Intel architectures, measuring floating-point operations (FLOPs) was either a
mess or not possible at all. For instance, on Intel’s Sandy Bridge and Ivy Bridge products,
the counters were there but they didn’t accurately count FLOPs. They were mainly useful
for determining what kinds of floating-point instructions were being executed (scalar, 128-bit
vector, 256-bit vector) and in what precision (single, double).

On the next generation, the Intel Haswell cpu architecture, Intel decided to disable FLOP
counters altogether. The good news is that, on *some* of Intel’s latest products, specifically
the Broadwell and Skylake CPU architectures, we have a number of FLOP events that are
supposedly counted at retirement. For instance, for Intel’s Skylake CPU, the PAPI double-
precision FLOP counter is a combination of the following four native events:
DOUBLE-precision FLOPs =

1 * FP_ARITH_INST_RETIRED.SCALAR_DOUBLE +

2 * FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE +

4 * FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE +

8 * FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE

Similarly, PAPI’s predefined counter for counting single-precision FLOP operations is a com-

7



bination of another four native events:
SINGLE-precision FLOPs =

1 * FP_ARITH_INST_RETIRED.PACKED_SINGLE +

4 * FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE +

8 * FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE +

16 * FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE

Still, this does not allow us to count the total number of FLOPs in a single run (with-
out multiplexing) as this would require eight general-purpose registers while there are only
four general-purpose registers available on Broadwell and Skylake. Nonetheless, being able
to count double- and single-precision FLOPs separately is an improvement compared with
earlier generations of Intel processors.

The bad news is that, on Intel’s latest Knights Landing (KNL) processor, events for counting
accurate floating-point instructions/operations are not publicly available. The current KNL
events (UOPS_RETIRED.SCALAR_SIMD and UOPS_RETIRED.PACKED_SIMD) cannot be used to
accurately measure FLOPs, as they count the number of retired micro-ops, not instruc-
tions.

2.1.4 C. Other Intel Processor Support

In addition to the Xeon Phi work, PAPI support for other new processors was enhanced.
Support was added for the new Intel Skylake processors, and support for the Intel Broadwell
processors was improved.

2.1.5 Impact of PAPI on Domain Disciplines

The PAPI software is widely used for performance modeling of applications in other dis-
ciplines of science and engineering. For example, PAPI has been used to model the per-
formance of the HOMME (High Order Methods Modeling Environment) climate code, and
the GAMESS and NWChem codes—both computational chemistry suites—on DOE super-
computers. PAPI is widely deployed as a middleware by third-party profiling, tracing, and
sampling tools (e.g., CrayPat, HPCToolkit, Scalasca, Score-P, TAU, Vampir, PerfExpert).
As more application scientists migrate their applications to HPC platforms, PAPI will enable
these scientists to use familiar tools to analyze and optimize performance in these environ-
ments as well.

Continued effective collaboration with systems developers at Cray and Intel ensures that
PAPI is a viable component of the software stack that they deliver with their high-performance
computing systems. We also collaborate with operating system vendors, such as RedHat,
which ships PAPI to their downstream users.
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2.2 Resilience

UTK developed a multi-criteria research approach for resilience. From a software perspective
we investigated different application behavior patterns and programming models to compre-
hend the most recurrent constructs in HPC. Simultaneously, we developed different practical
approaches to fault mitigation, and built theoretical models allowing simulation of current
and future execution platforms.

From the perspective of programability, our approach to resilience involves the combination
of multiple existing techniques, ranging from checkpoint/restart fault-tolerance, to automat-
ically tolerating failures, to algorithm-specific approaches that involve resilient middleware
and resilient algorithms that exploit internal redundancy to detect and correct failures. In
order to assess the overhead and the cost (in terms of time-to-completion and energy as
an example) of these techniques, we have developed theoretical models of some of the most
commonly used fault management techniques (checkpoint/restart, incremental checkpoint-
ing, and ABFT). These models were then validated using in-house simulators as well as
experiments on some of the largest platforms available today.

In this light, we continued our effort on the Resilience area in complementary directions.
While overall we strictly followed the milestones defined in the original project, the last year
the stronger push was toward theoretically defining bounds for the different programming
constructs added for handling faults, and delivering efficient software components critical to
the users communities.

2.2.1 Resilience Models

Despite the increasing importance of fault tolerance in achieving sustained, predictable per-
formance, the lack of models and predictive tools has restricted the analysis of fault tolerant
protocols to experimental comparisons only, which are painfully difficult to realize in a con-
sistent and repeated manner. We developed a set of comprehensive models for a wide range
of checkpoint/restart protocols, allowing their quantitative assessment.
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K-Computer

Reliability Fault-tolerant protocols have different
overheads in fault-free and recovery situations. These
overheads depend on many factors (type of protocols,
application characteristics, system features, etc.) that
introduce complexity and limit the scope of experimen-
tal comparisons conducted in the past. Using the models
developed in the context of this project, we can estimate
the waste (overhead) of particular types of applications
on specific execution environments. As an example, Fig-
ure 4, instantiates the C/R model with features of the
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K-Computer; the checkpoint growth rate is set according
to a matrix-matrix multiply operation. The results present the waste from the platform
perspective (green lines) and from the application perspective (red lines). The optimal
checkpoint period is computed by minimizing the model-computed waste.

Energy While reliability is a major concern for Exascale, another key challenge is to
minimize energy consumption, both for economic and environmental reasons. One of the
most power-consuming components of todays systems is the processor: even when idle, it
dissipates a significant fraction of the total power. However, For future Exascale systems,
the power dissipated to execute I/O transfers, to create a reliable storage for checkpoints,
is likely to play a crucial role, because the relative cost of communication is expected to
dramatically increase, both in terms of latency and consumed energy [2].

2.2.2 Message Passing building box for application-level fault mitigation algo-
rithms

User Level Failure Mitigation is a set of MPI interface extensions enabling Message Passing
programs to restore MPI communication capabilities affected by process failures. It supports
rebuilding communicators, RMA windows, and I/O Files. No particular recovery model
is imposed or favored; instead a set of versatile APIs is included that provides support
for different recovery styles. The application directs the recovery using the constructs, as
necessary, in order to pay for the cost of repairing only the necessary MPI objects. The
ULFM specification is a crucial infrastructure for enabling the deployment of advanced,
production quality fault tolerant techniques, and is a versatile solution for improving the
efficiency of novel and established fault tolerant techniques.

Working together with application developers of two chemistry oriented frameworks, Fenix [9]
and LFLR [17], we have improved the performance of one of the most critical fault man-
agement routines. Based on communication concepts used by most parallel programming
paradigms, we have presented an algorithm that implements an Early Returning Agree-
ment (ERA) in pseudo-synchronous systems. This algorithm optimistically allows a process
to resume its activity while guaranteeing strong progress on an agreement operation. We
proved the correctness of our ERA algorithm and exposed its logarithmic behavior, an ex-
tremely desirable property for any algorithm targeting future exascale platforms. We have
detailed a practical implementation of this consensus algorithm in the context of an MPI
library, and evaluated both its efficiency and scalability through a set of benchmarks and
two fault tolerant scientific applications. The results of this study have been presented at
SC’15 [11].
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2.3 2015-2016 Peer-reviewed Publications

The peer-reviewed publications during the final year (Sep/2015 to Aug/2016) of the grant
are listed below:

• Jagode, H., YarKhan, A., Danalis, A., Dongarra, J. “Power Management and
Event Verification in PAPI”, Tools for High Performance Computing 2015, 9th
International Workshop on Parallel Tools for High Performance Computing, September
2015, Dresden, Germany, Springer International Publishing, Andreas Knuepfer et al.
(Eds.), pp. 41-51, 2016.

• Jagode, H., Danalis, A., Bosilca G., Dongarra, J. “Accelerating NWChem Cou-
pled Cluster through dataflow-based Execution”, Parallel Processing and Ap-
plied Mathematics: 11th International Conference, PPAM 2015, Krakow, Poland,
September 6-9, 2015, Springer International Publishing, R. Wyrzykowski et al. (Eds.):
PPAM 2015, Part I, LNCS 9573, pp. 366-376, 2016.

• Danalis, A., Jagode, H., Bosilca G., Dongarra, J. “PaRSEC in Practice: Optimiz-
ing a legacy Chemistry application through distributed task-based execu-
tion”, 2015 IEEE International Conference on Cluster Computing, Chicago, Illinois,
USA, IEEE, pp. 304-313, September 8-11, 2015.

• Herault, T., Bouteiller, A., Bosilca, G., Gamell, M., Teranishi, Keita, Parashar, M.,
Dongarra, J. “Practical Scalable Consensus for Pseudo-synchronous Distributed
Systems”, Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, Austin, Texas, ACM, pp. 31:1–31:12, Nov,
2015.

• Bosilca, G., Bouteiller, A., Guermouche, A., Herault, T., Robert, Y., Sens, P., Don-
garra, J. “Failure Detection and Propagation in HPC systems”, The Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis,
November 24-26, 2016.

2.4 Summary of Project Activities for entire Grant

The PAPI software is widely used in the field of computer science for application level as
well as system-level performance monitoring and modeling. This DOE research funding
has allowed us to make substantial progress in providing PAPI performance and power
measurements for new architectures. Over the entire period of the grant, the following
aspects of the goals of hardware performance counter monitoring have been achieved:

PAPI provides a coherent, operating-system-independent interface to performance counter
information for varied hardware and software components, including CPUs [18], GPUs [12],
memory, networks [13, 6], I/O systems [18] and power interfaces [14, 8, 5] as well as virtual
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cloud environments [19, 20]. Below is a list of architectures that are currently supported by
PAPI:

• AMD

• ARM Cortex A8, A9, A15, ARM64

• CRAY: Gemini and Aries interconnects, power/energy

• IBM Blue Gene Series, Q: 5D-Torus, I/O system, EMON power/energy

• IBM Power Series

• Intel Westmere, Sandy Bridge, Ivy Bridge, Haswell, Broadwell, Skylake, Knights Cor-
ner, Knights Landing

• Intel power/energy: Knights Corner, Knights Landing

• Intel RAPL (power/energy); power capping

• InfiniBand

• Lustre FS

• NVIDIA Tesla, Kepler: CUDA support for multiple GPUs; PC Sampling

• NVIDIA NVML (temperature, etc.)

• Virtual Environments: VMware, KVM

PAPI can be used independently as a performance-monitoring library and tool for application
analysis. However, PAPI finds its greatest utility as middleware component for a number
of third-party profiling, tracing, and sampling toolkits (e.g., CrayPat [7], HPCToolkit [1],
Scalasca [10], Score-P [15], TAU [16], Vampir [3], PerfExpert [4]), making it the de facto
standard for hardware counter analysis. As the middleware component, PAPI handles the
details for each hardware component in order to expose a clean API to the higher-level
toolkits. The sustained use of PAPI on large DOE hardware procurement over the years
confirms the validity of having one high-level interface (PAPI) that provides a consistent API
platform as well as operating-system-independent access to hardware-performance counters
within CPUs, GPUs, and across the entire compute system.
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3 University of Texas at El Paso

Funding at the University of Texas at El Paso (UTEP) began September 1, 2012. Four
graduate students have been partially supported under the project. Work focused on the
performance and energy areas as described below. UTEP also continued to maintain the
SUPER website and publish the SUPER newsletter.

3.1 Performance

we contributed to performance analysis of the XGC1 fusion code by analyzing performance
of the CPU version using HPCToolkit from Rice University and PerfExpert from Texas
Advanced Computing Center (TACC). Our analysis, which was presented in the SUPER
performance poster at the July 2013 SciDAC PI meeting, determined the causes for low
performance in terms of instructions per cycle (IPC) in two key subroutines called by the
pushe kernel. In one of the routines, low IPC was due to a high number of expensive floating
point operations, such as square root. In the particle search routine, low IPC was due to a
high number of data accesses.

We worked with the XGC1 developers on a software engineering approach to map compu-
tationally intensive portions of the code to GPUs using OpenACC directives. The particle
push routine has already been ported to GPUs using CUDA Fortran, but this approach
required maintaining two separate versions of the code for the CPU-only and CPU+GPU
implementations. Using OpenACC directives has the advantage of maintaining only a single
code base. We worked with the new development version of the XGC1 code that contains
the new collision operator. Our original plan was to collect data about data access patterns
using the MACPO [16] tool from TACC and to automate the generation and optimization
of the OpenACC code using an autotuning framework being developed by TACC. Note that
this is not a completely separate approach from the SUPER autotuning framework since the
TACC framework uses some of the same components, such as PAPI, PerfExpert, and ROSE,
and the two frameworks could be made to interoperate and even be more tightly integrated.
The TACC framework is based on ROSE, and unfortunately, the Fortran support in ROSE
is not robust enough to parse the XGC1 code and construct the required abstract syntax tree
on which the TACC framework operates. Thus, we changed our approach to use the Cray
performance tools, including Reveal, which gives guidelines on placement of the OpenACC
directives and on optimizing data movement. To use the Cray tools, we had to build XGC1
and the libraries it depends on, including a special thread-safe version of PETSc, using the
Cray compiler. We were able to build the code, but it crashed when we tried to run it.
Although we were able to obtain some performance data using CrayPat with the code built
with the PGI compiler, we were not able to complete the software engineering workflow with
the Cray tools.

This work was part of master’s project that was completed in December 2014 and presented
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at the SE4HPC15 workshop in May 2015 [4]. Although our attempts at using software engi-
neering methodology and tools to produce an OpenACC port of the XGC1 collision operator
code did not result in a successful port, such a methodology and tool chain could be highly
effective in increasing developer productivity if further work were done on the tools. Cur-
rently, porting a code to a new architecture is done by trial and error and takes on the order
of man years of effort. Furthermore, the codes that result are hard to maintain and port to
new platforms. Scientific application developers desperately need methodologies and tools to
help shorten code development time and increase code quality. Our study showed that two
proposed methodologies and their corresponding tool chains are not yet effective for codes
such as XGC1, but we pointed out weaknesses that need to be addressed to achieve the
desired goals. We found that inadequate Fortran 90 support with open source tools such as
MACPO and ROSE severely limits their usefulness with scientific application codes written
in Fortran. Vendor tools, while more robust, require using the vendor compiler and pro-
gramming environment. Switching compilers requires recompiling the library dependencies.
Specifically, we made the following recommendations:

1. Use a version control system for application code development. We obtained multiple
versions of the code from different developers and it was hard to keep straight which
version was which. We kept detailed notes but it would have been much easier to have
version numbers for the different code versions.

2. Document the application codes with proper comments in the code. We spent much
time in email and phone calls with the code developers to try to understand what
various parts of the code did. It would save our time and theirs to have the code better
documented.

3. Remove compiler dependencies with libraries. This is not something that application
developers can accomplish on their own. If libraries had clean interfaces rather than
relying on shared data structures, the requirement to use a specific library version
compiled with a specific compiler could be reduced, thus enabling more agile code
development and porting.

4. Incorporate tool use into code development and increase collaboration between tool and
application developers. Such collaboration would expose tool inadequacies and moti-
vate tool developers to address them and provide better interoperability and language
support.

To help make performance tools that analyze non-uniform memory access (NUMA) perfor-
mance problems more accessible to users, we worked on the design and preliminary imple-
mentation of a NUMA sampling interface for PAPI [10]. Recent processors include hardware
support for detailed instruction sampling. For example, Intel Precise Event Based Sampling
with Load Latency (PEBS-LL) and AMD Instruction Based Sampling (IBS) enable gath-
ering detailed information for a sample, including register state, pipeline status, and stall
accounting. For memory access events, information such as access latency, operand address,
data source for loads (e.g., cache level or memory and whether the access is local or remote)
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can be returned. Such information is extremely useful for performance tuning on modern
multicore systems. For example, being able to sample memory accesses that exceed a speci-
fied latency threshold and map these accesses to the data addresses responsible can help code
developers analyze and improve data layout on a NUMA system. Performance tools such as
HPCToolkit-NUMA from Rice University [] and MemAxes from LLNL [] use such facilities
to collect NUMA data for analysis and visualization of NUMA performance problems. TAU
developers have expressed interest in extending TAU to include NUMA data in TAU profiles.
Other NUMA analysis tools that have been developed by the research community include
Memphis [] and MemProf [].

NUMA analysis tools have used either the low-level Linux perf event interface [] or a custom
kernel module to collect NUMA data. It is a burden for tool developers to have to keep
updating their data collection tools to work with the lastest Linux kernel releases. It is also
a burden for users to have to install the data collection tools or their dependencies and they
may not have permissions to do so. Having a tool interface for NUMA sampling as part of
PAPI would enable a tool built on top of this interface to work anywhere PAPI is installed
and supported, thus improving accessibility and usability of the tool.

In our experimental PAPI-NUMA prototype implementation [Lopez 2015], the client code
calls PAPI sample init() to set up sampling on a desired hardware event. The client code is
then required to set up an mmap buffer for and associate it with each file descriptor that
is returned by the PAPI sample init() call. The client code also must provide an interrupt
handler that gets called whenever there is an overflow for the sampled event. Although
not part of the PAPI library, a utility routine is provided that the developer of the client
code can use as is or modify as needed to parse the mmap buffer and read the sample data.
PAPI-NUMA has routines for configuring, starting, and stopping sampling.

Performance portability and programming productivity are becoming increasingly important
in the current petasacle and the approaching exascale eras. Project managers are interested
in applying software engineering methodologies to address these issues. We have carried
out preliminary investigations in scientific programming productivity [13] and performance
portability [14]. Our work on an evaluation framework for scientific programming produc-
tivity pointed out that long-term productivity goals, such as portability and maintainability
of scientific codes, need to be evaluated with metrics, in addition to short-term development
time metrics. In fact, ”quick and dirty” development practices can shorten development
time but adversely affect maintability and portability. We used our evaluation framework to
compare programming productivity with linear algebra libraries with two different groups of
domain scientists using 1) library and platform documentation and 2) the Lighthouse tool
[5]. We found that while Lighthouse assisted in automatically generating working PETSc
codes, the generated code needed modifications to work with the target problem and more
guidance for the user was needed to make correct and efficient use of the code. In our work
on performance portability, we compared code complexity and performance for three dif-
ferent GPU implementations (CUDA, OpenCL, and OpenACC) for three benchmark codes
(Game of Life, CloverLeaf, LULESH). We measured the source lines of code (SLOC) and
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various types of complexity (cyclomatic, design, and essential complexity), as well as the
runtimes for the different implementations of the benchmarks on a GPU node on the Titan
supercomputer. The CUDA implementations ran significantly faster than the OpenACC im-
plementations, and the CUDA and OpenCL implemenations had higher SLOC counts. Code
complexity measures are used by the software engineering community to estimate coding er-
ror rates and amount of programmer effort to develop or maintain codes. Our complexity
results were pretty much the same across different GPU implementations, with the excep-
tion that the CUDA implementation tended to have lower cyclomatic complexity due to
not having branches in the routines. This result is counter to the intuition in the scientific
programming community that CUDA and OpenCL codes are harder to develop, port, and
maintain than OpenACC implementations. Thus, our conclusion is that different complexity
measures are needed for GPU programming.

3.2 Energy

We formulated a new metric called iso-power-efficiency that describes scaling under a power
budget. The idea is to scale up the problem size with increasing power budget, rather than
just with increasing numbers of processors. For many applications, speedup saturates and
parallel efficiency decreases if the problem size is held fixed while increasing the number of
processors (the form of scaling known as strong scaling). For some problems, it is possible to
maintain a fixed parallel efficiency by increasing both the problem size and the number
of processing elements. The rate at which the problem size must increase to maintain
constant efficiency for a given rate of increase of the number of processors is given by the
iso-efficiency function [3]. We have developed a new scalability function called iso-power-
efficiency that determines the rate at which the problem size must increase to maintain
constant efficiency for a given rate of increase of the application’s power budget. For a given
power budget, an application can choose to use a larger number of processors running at
lower power. As shown in [15], speedup can often be obtained within a given power budget
by such overprovisioning. Deriving the iso-power-efficiency function for a given problem
involves 1) determining optimal configurations for problem instance/power budget pairs,
and 2) expressing the parallel overhead as a function of problem size and power budget. We
have shown that the rate of growth required for problem size can be lower with iso-power-
efficiency than with iso-efficiency, thus yielding better scalability, and we have developed a
regression modeling methodology, similar to the focused regression modeling described in [1],
for fitting observed execution data to an iso-power-efficiency function. This work is expected
to lead to a PhD disseration, and the UTEP PhD student had an internship for summer
2014 to work on this topic in collaboration with LLNL researchers. A publication described
the iso-power-efficiency metric and including initial experimental results [9].

We worked with researchers at Oak Ridge National Laboratory on a preliminary implemen-
tation of power modeling for the ASPEN performance modeling tool [12]. ASPEN is part of
the COMPASS modeling framework [6] and is a semi-analytical performance modeling tool.
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ASPEN machine and application models are generated in the ASPEN modeling language,
either by hand or with tools such as OpenARC for source code analysis. The machine and
application models are used to predict the runtime performance of the application on the
machine architecture. Since ASPEN is semi-analytical and not black-box, machine and ap-
plication characteristics can be varied to predict performance on architectural variants (e.g,
more cores with decreased memory bandwidth per core) or of possible application optimiza-
tions (e.g., if a certain degree of vectorization could be achieved).

We used the Berkeley Roofline Toolkit benchmark [7] to vary W (flops) and Q (bytes moved
from memory to cache) and did several runs for which we measured runtime and energy (using
RAPL). We fit the data to the regression equation E = Wεf lop+Qεbyte+ π1T , where E is
energy in Joules, epsilonf lop is energy per flop, epsilonbyte is energy per byte moved, π1 is
static power, and T is runtime. We used the power model from [2] to implement a powerline
tool that constructs and graphically displays a powerline for a given machine model. The
powerline for one node of Catalyst, which is an IvyBridge system at LLNL with 12-core nodes,
is shown in Figure 5. We can also use the measured machine parameters to predict runtime
and energy consumption for an application code, provided we can determine the application
parameters. Examples are shown in Tables ?? and ??. In these tables, p is the number
of processing cores and n is the problem size. We determined application parameters with
both source code analysis and hardware counter measurements. The predicted runtimes are
generally 15-20% under the measured runtimes. This is probably because we are assuming
complete overlap of computation and data movement and we are not considering costs of
moving data up and down the cache hierarchy. The predicted energy consumption is very
close to the measured energy consumption. This is because we are using a black-box model
parameterized by benchmarks that have the same characteristics as our application (for
example, vectorized or non-vectorized). We are currently working on: increasing the accuracy
of the runtime prediction by considering the costs of accessing various levels of cache, 2)
making our energy prediction more analytical by better understanding contributions from
different components of the system.

In collaboration with researchers at Lawrence Livermore National Laboratory, we have in-
vestigated aspects of power shifting in a power bounded system for 1) mitigating the effects
of noise and 2) ensuring that power shifting is carried out in a safe manner. As the number
of cores in HPC systems grows, so does the effect of system noise on applications running
on these systems. With the knowledge that future large-scale parallel computer systems,
including exascale systems, will operate under an overall power bound, we propose solutions
that can counter the effects of noise. We have developed two methods that estimate the
effects of noise on an application and then redistribute power among nodes, such that the
effects of noise are hidden [8]. The workload investigated is a load balanced stencil code. In
the first method, we create groups of nodes. The size of these groups must be small enough so
that the communication cost amongst nodes in these groups does not outweigh our benefit.
Every T iterations, each node compares its runtime to that of its immediate neighbors, and
then sends the largest runtime to its group leader. Each node also sends its current power
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budget. The group leader then takes these runtimes and power budgets and redistributes
power among the nodes in its group. Power is redistributed in such a way that slower nodes
get more power and faster nodes get less. This is done in an attempt to compensate for any
noise bubbles that may have occurred. This process is continued every T iterations, but each
iteration the nodes in a given group shift by one. By doing this, all nodes will eventually
have their power redistributed appropriately. Our second method builds on the first. The
only difference is that we do not shift nodes in a group every iteration and our leader nodes
are part of an additional group. Lets call the groups from the first method the local group
and the group of leader nodes the global group. So every T steps when power is to be redis-
tributed, the leader nodes gather the same information from the nodes in their local group.
They then broadcast the worst runtime and total power from their local group to all other
leader nodes in the global group. Each leader node takes this information, does the exact
same calculations, and redistributes total power among local groups. Once figuring out their
own local groups power, they redistribute power within their local group as previously shown
in the first method. Our first method has the advantage of very little communication cost
among nodes, but the disadvantage of not globally redistributing power. Through both an
analytical model and simulation using actual noise data, we showed that the first method is
more effective in hiding system noise. We are working on extending the method to handle
arbitrary DAG (directed acyclic graph) representations of parallel computations.

Future large-scale parallel computer systems, including exascale systems, will operate under
an overall power bound. This bound will be enforced by having nodes adhere to local power
caps, the sum of which cannot exceed the global power bound. To make efficient use of the
available power, protocols have been developed to shift power between nodes, for example
to compensate for load imbalance or system noise. The distributed power shifting protocol
needs to provide a guarantee of safety that the global power bound will never be exceeded
and it needs to have acceptably low overhead under normal operating conditions. We present
a variant of the Paxos protocol in [11] that guarantees safety. We give an upper bound for
the communication overhead of this protocol, along with suggestions for how the overhead
can be lowered.
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