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Technical Report 

Our prior results for the program “Electrochemically smart bimetallic materials featuring Group 11 
metals:  in-situ conductive matrix generation and its impact on battery capacity, power and 
reversibility” have been highly successful: 1) we demonstrated material structures which 
generated in-situ conductive networks through electrochemical activation with increases in 
conductivity up to 10,000 fold, 2) we pioneered in situ analytical methodology to map the cathodes 
at several stages of discharge through the use of Energy Dispersive X-ray Diffraction (EDXRD) 
to elucidate the kinetic dependence of the conductive network formation, and 3) we successfully 
designed synthetic methodology for direct control of material properties including crystallite size 
and surface area which showed significant impact on electrochemical behavior.  We report here 
results from the program (DESC0008512) organized by material class.  Note that synthesis and 
mechanistic studies are included in each section including in-situ exploration of battery reactions.   

Bimetallic vanadium phosphorous oxide materials.  Polyanion compounds in the general 
class of MPO4 demonstrate exceptional stability and can provide high voltage and capacity when 
used in lithium based batteries, but their characteristically low electrical conductivities[1-5] are 
one of the biggest challenges for implementation as battery materials.  In order to enhance 
LixMPO4 electrical conductivity, several strategies have emerged in the scientific literature, 
including coating of LixMPO4 particles with carbon,[6, 7] co-
synthesizing the LixMPO4 materials with carbon to achieve 
intimate contact of the particles with the conductive 
material,[4, 8] adding silver and copper powder to the 
LixMPO4 matrix to achieve improved conductivity,[9, 10] or 
the solid-solution doping of LiFePO4.[11]  However, the 
strategies involving the addition of an external conducting 
material require additional processing steps and can 
significantly reduce energy density due to the presence of the 
extraneous inert conducting material.     

Figure 1.  Ag2VO2PO4 structure 

 



We hypothesized that the formation of electrically conducting metal particles upon metal ion 
center reduction might result in an enhancement of electrical 
conductivity of the material, which should address 
conductivity problems for poorly conducting materials.  Thus, 
we identified silver vanadium phosphorous oxides 
(AgwVxPyOz) as a material family of interest for next 
generation batteries, based on the desire to obtain the 
chemical stability observed in phosphate cathode materials, 
achieve multiple electron transfer inherent in bimetallic 
materials, and provide the opportunity for the in-situ 
generation of a conductive silver matrix. We reported the first 
example of this strategy applied to the MPO4 class of 
materials, specifically Ag2VO2PO4,[12-15] and have affirmed 
this hypothesis with three other members of this material class, Ag0.48VOPO4,[16, 17] 
Ag2VP2O8,[18-20] and Ag3.2VP1.5O8.[21] 

Ag2VO2PO4. The first member of this material family, Ag2VO2PO4 consists of layers of dimers of 
edge sharing VO octahedral and PO tetrahedra, extending parallel to the (001) crystallographic 
plane, Figure 1. The Ag+ cations reside in interlayer positions, allowing for their mobility along the 
VOPO layers.  As a cathode material, Ag2VO2PO4 displays several notable electrochemical 
properties: large capacity and an effective delivery of high current pulses.  The cells supported 
pulsing > 40 mA/cm2 above 2.0 V with a capacity >270 
mAh/g, demonstrating 4 electrons transferred per formula 
unit (Ag+ → Ago and V5+ → V3+). 

Ag2VO2PO4  
yLi (y ≤ 2)
→        LixAg2-yVO2PO4  + yAg0 

                     
zLi (2 < z ≤ 4)
→          Li2VO2PO4  + 2Ag0 

Ex-situ SEM and EDS analysis of partially discharged 
cathodes verified formation of silver nanoparticles, while 
XRD and XAS affirmed formation of metallic silver.[12, 14]  The impact of the formation of silver 
metal on an Ag2VO2PO4 cathode in a cell was studied by the use of AC impedance (ACI).[12, 13]  
Initially, cells with no conductive additives in the cathode showed cell resistance levels of 106 
ohms.  On reduction to 2% depth of discharge and then 5% depth of discharge the resistance 
decreased to 100 and then 50 ohms, Figure 2.  This remarkable 10,000 fold increase in 
Ag2VO2PO4 conductivity supported our original hypothesis. 

Full understanding of the electrochemical processes taking place in batteries continues to be 
elusive due to the multiplicity and complex natures of the reactions associated with discharge and 
charge processes, and the difficulties of analytical interrogation of these reactions.  A direct 
approach to the interrogation of the reactions taking place inside batteries is to employ in-situ 
strategies.  Unfortunately, in-situ measurements are often hindered by diminution of signal due to 
the housing of an electrochemical cell or by the need to create special housings that enable the 
measurement.  We presented an energy dispersive x-ray diffraction (EDXRD) analysis powerful 
enough to penetrate steel housings and thus enable in-situ study of lithium based cells and 
reported the first description of this technique being applied within lithium anode cells to probe a 
critical chemical reaction.[15]  In contrast to standard top down or transmission mode XRD 

 
Figure 3. Diffraction geometry 

used for EDXRD measurement 

 
Figure 2.  ACI of Li/Ag2VO2PO4  



methods which probe either the surface or the full 
sample thickness, the EDXRD technique allows 
interrogation of the electrode cross-section as a 
function of depth enabling “tomographic” profiling of 
the electrochemical phase changes in unmodified 
assembled electrochemical cells, Figure 3.  The 
formation of silver metal upon the reduction of 
Ag2VO2PO4 could be clearly seen at the electrode-
electrolyte interface with identification of the 
chemical reaction front within the electrode, Figure 
4, yielding locational information within an active 
battery.  This is the first report of EDXRD 
investigation of a lithium anode cell.   

Ag2VP2O8.  We reported the first electrochemical study of a silver vanadium diphosphate, 
Ag2VP2O8,[18]  where three electrons per formula unit were incorporated above >1.5 V.   
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Our synthesis of Ag2VP2O8 with a P21/c space group and structure formed by layers of VPO8 
chains comprised of VO6 octahedra and PO4 tetrahedra was confirmed by Rietveld refinement.  
Consistent with our hypothesis, the rigid diphosphate anion structure resulted in high thermal 
stability (>5000C), boding well for enhanced safety of batteries incorporating this material.  
Reminiscent of Ag2VO2PO4 reduction, in-situ formation of silver metal nanoparticles was observed 
with reduction of Ag2VP2O8, discernable by XRD and SEM.  However, counter to Ag2VO2PO4 
reduction, Ag2VP2O8 demonstrated a significant decrease in conductivity upon continued 
electrochemical reduction with concominent fracturing of the reduced active material.  

As the Ag2VP2O8 is reduced, silver metal forms to generate a conductive network.  We designed 
an experiment to utilized EDXRD permitting tomography-like measurements of intact Li/Ag2VP2O8 
cells at multiple depths of discharge (0, 0.1, and 0.5 electron equivalents) to visualize the 
formation of the conductive network.[19]  In this case, determining the position and homogeneity 
of the conducting silver nanoparticles provides the opportunity for keen insight into the factors 
that limit the discharge rate in lithium based batteries, including limitation of local electronic 
conductivity.  The determination of these factors is integral to improving performance.  Ag2VP2O8 
is a good model system of a non-conducting material with the special capability of forming its own 
conductive pathways in-situ.  Since silver metal is a high Z reduction product which can be tracked 
by diffraction, the spatial location of the conductive pathways can be identified as they form, 
providing unique insight into the discharge mechanism.   

The results of the EDXRD experiment are summarized in Figure 5.  Ag0 was present on side of 
the cathode facing the Li anode at all three depths of discharge (0, 0.1, 0.5 electron equivalents), 
with lowest intensity in the not-discharged cell and highest intensity in the 0.5 electron equivalent 
cell.  This is most apparent in the intensity at the Ag(111) peak position, in Figure 5 (d, e, f).  
Based on our estimates, at 0.1 electron equivalents, ~1.1% Ag0 is present by volume, exceeding 
the minimum percolation threshold of 0.3% indicating that sufficient Ag metal forms upon partial 
reduction of Ag2VP2O8 to create a conducting percolation network through the cathode causing or 
contributing to the observed decrease in impedance providing that the spatial location of the silver 
was appropriate.  Notably, the EDXRD data provided conclusive evidence of non-uniform 
discharge of the material, as evidenced by non-uniform Ag0 and Ag2VP2O8 intensity distributions.   

 
Figure 4.  Peak intensity as a function of 
cathode location, partially discharged 
cell.   



Interestingly, in the 0.1 and 0.5 electron 
equivalent cells, the presence of silver metal 
also can be observed on the side of the 
cathode facing the cell housing (not facing 
the anode), Figure 5 (e, f).  These results 
affirm significant discharge of the active 
cathode material near the cell housing acting 
as a current collector.  This provided 
evidence that the availability of electrons in 
addition to Li ions is a significant factor in the 
discharge of poorly conducting materials.  
The bulk Ag2VP2O8 cathode is an insulator 
with high resistance, manifesting in high 
measured impedance (Rct > 1 MΩ), Figure 
6.  Upon initiation of discharge, Ag0 is formed 
on the cathode, on the side adjacent to the 
cell housing as well as the side facing the 
lithium anode, resulting in > 700X decrease 
in Rct upon 0.1 electron equivalent of 
reduction.  With increasing discharge to 0.5 
electron equivalents, 3X further decrease in 
Rct is observed, consistent with formation of 
Ag0 throughout the thickness of the 
discharged cathode as is noted by the 
EDXRD results. 

We were recently able to reveal a revealing 
rate dependent discharge mechanism for 
Li/Ag2VP2O8 cells using in-situ visualization of active batteries 
via EDXRD leading to a publication in Science.[20]  Test 
batteries were discharged under several rates where the 
fastest (C/168, 7 day) discharge rate was used to provide a 
condition with notable evidence of polarization, while the 
slower (C/608, 25 day; C/1440, 60 day) discharge rates were 
used to provide conditions with reduced polarization.  
Electrochemical impedance spectroscopy (EIS) was used to 
probe the cell resistance, Figure 6.  Upon partial discharge 
(0.5 electron equivalents), the value of Rct decreases by more 
than three orders of magnitude, from ~1 MΩ in the not 
discharged cell to < 10 kΩ for the cells discharged at C/168 
and C/1440.   However, when comparing the fast- (C/168) and 
slow- (C/1440) discharged cells, Rct is 3x higher in the faster rate cell at the same discharge level, 
indicating significantly higher impedance resulting from the faster discharge.  

The use of in-situ EDXRD provided insight into the differences noted electrochemically.  The non-
discharged cell shows a uniform diffraction pattern throughout the cathode thickness, Figure 7(a), 
with differences apparent only in the first scan (Ag(111) peak apparent at 1/d = 0.4239 Å) 
indicating formation of some Ag0 on the cathode surface at the side opposing the anode.[19]  The 
spectra for the two positions in the slower-discharged cell (Figure 7(b) and (c)) are similar and 
the Ag(111) peak intensity at 1/d = 0.4239 Å relative to the intensity of the Ag2VP2O8 peaks is 
also similar between the two positions.  In contrast, at the faster discharge rate (C/168), the 
intensity of the Ag(111) peak varies greatly among the three positions.  At position 1 (Figure 7(d)), 

Figure 5. Li/Ag2VP2O8 electrochemical cells 
discharged to (a,d) 0, (b,e) 0.1, and (c,f) 0.5 
electron equivalents.  Beam position vs 1/d for (a, 
b, c).  Peak positions are represented by circles, 
high intensity red and low blue.  Diamonds are 
positions for Ag2VP2O8 (black), Li (grey), and Ag 
(red).  Intensity of Ag2VP2O8 and Ag0 as a function 
of beam position for (d, e, f).  Steel(211) - blue,  
Li(110) - grey, Ag(111) - red and Ag2VP2O8 - black 

Figure 6. Impedance of Li/ 
Ag2VP2O8 with initial discharge. 



the intensity of the Ag peak is larger than at positions 2 (Figure 7(e)) and 3 (Figure 7(f)).  To 
further clarify this point, the intensities of several characteristic peaks as a function of beam 
position along the z-direction were determined, Figure 8.   

Thus, two different reduction 
processes for the multifunctional 
bimetallic Ag2VP2O8 cathode 
material become apparent: Ag+ 
ions exit the structure and are 
reduced to Ag0, and V4+ is reduced 
to V3+.  Although at all discharge 
rates both reduction processes 
occur, the ratio of the reduction of 
silver to that of vanadium changes 
with discharge rate where the 
reduction of Ag+ is favored by 
slower discharge rates.  The 
spatial distribution of Ag0 is even in 
the cell discharged at the slower 
rate, indicating a comparatively 
even discharge throughout the 
cathode, with uniform Ag0 
concentration and consistent Ag0 
crystallite size.  In the cell 
discharged at the faster rate, non-
uniform reduction is observed with 
regions of higher and lower local Ag0 
content, leading to more and less 
favorable electron conduction 
pathways through the thickness of 
the cathode.  Upon further 
discharge, reduction will continue to 
occur preferentially at these 
favorable locations with enhanced 
electron access, with incomplete 
utilization under high rate discharge 
as a consequence. These 
observations provide a path to tune 
the electrical conductivity of cathode 
capable of forming conductive 
networks by deliberate selection of 
the initial discharge parameters.   

Ag3.2VP1.5O8. We reported the first study of the electrochemical 
reduction of a high Ag/V ratio silver vanadium phosphorous 
oxide, Ag3.2VP1.5O8.[21]  The initial reduction process involves 
the reduction of Ag+ with the in-situ formation of silver metal 
nanoparticles.  Upon reduction by 1 molar electron equivalent, 
associated conductivity increases of 9 orders of magnitude are 
observed.  Ag3.2VP1.5O8 demonstrates high voltage and high 
discharge capacity, with 175 mAh g-1 (~3.6 electron 

 
Figure 9.  Constant current 
discharge of Li/Ag3.2VP1.5O8  

 

Figure 8.  Intensities of Ag and Ag2VP2O8, and crystallite 
size of Ag as a function of beam position along the z-
direction.  A.  Cathode discharged to 0.5 electron 
equivalents at C/168.  Three x-direction locations were 
measured (see schematic inset).  B.  Cathode discharged 
to 0.5 electron equivalents at C/1440.  Two locations along 
the x-direction were measured in this cell.   

 
 

Figure 7.  Experimental setup and EDXRD spectra from in-

situ measurements on coin cells: (a) not-discharged, (b - c) 

two locations for a cell discharged to 0.5 elect. equiv. at 

C/1440, (d – f) three locations for 0.5 elec. equiv. at C/168.   

 

 

 

 



equivalents) delivered at > 2 V and ~ 125 mAh g-1 delivered at > 3 V, Figure 9. The proposed 
discharge mechanism is summarized as:  

Ag3.2VP1.5O8  
xLi (x ≤2.0)
→        LixAg3.2-xVP1.5O8  + xAg0 

LixAg3.2−xVP1.5O8
yLi (2.0 ≤y ≤ 3.0)
→             Lix+yAg3.2−x,yVP1.5O8 + (x, y)Ag

0
 

Lix+yAg3.2−x,yVP1.5O8 + x, yAg
0
zLi (z ≤ 4.5)
→         Lix+y++zVP1.5O8 + x, yAg

0 

The progression of the reduction of Ag3.2VP1.5O8 is reminiscent 
of the reduction of Ag2VO2PO4 where the reduction of Ag+ to Ag0 
is the favored initial process.[12, 13] Notably, the total delivered 
capacity above a voltage of 3.0 V was the largest for cells with 
Ag3.2VP1.5O8 cathodes among the AgwVxPyOz material series.  
Thus, the combination of increased conductivity early in the 
discharge, significant delivered capacity above 3.0 V and good 
pulse performance indicate promising performance attributes for 
Ag3.2VP1.5O8 based cells.  In addition to its high operating 
voltage, additional interest in the Ag3.2VP1.5O8 is motivated by 
consideration of its cyclic voltammetry data where similar to 
Ag0.48VOPO4•1.9H2O,[22]  the Ag3.2VP1.5O8 material exhibits quasi-
reversible behavior on cycle 1, with more reversible behavior on cycle 
2, Figure 10.  Further investigation of rechargeability will be the 
subject of a future study. 

Copper vanadium phosphorous oxide, Cu0.5VOPO4·2H2O.  We 
reported the first electrochemical investigation of Cu0.5VOPO4·2H2O 
as a cathode in a lithium based battery.[23]  Comparison with the 
structure of silver vanadium phosphorous oxide, Ag0.43VOPO4·2H2O, 
also investigated under this program,[17, 24] shows several 
similarities, Figure 11.  Both materials have a layered structure, with 
silver or copper ions (Ag+ and Cu2+) and water, H2O, located between 
the V-O-P-O layers.  The silver material has a larger interlayer spacing (6.53 Å) compared to the 
copper material (6.42 Å), which correlates with the larger size of Ag+ (129 pm) relative to Cu2 (87 
pm). 

Under galvanostatic discharge in lithium anode cells, 
Cu0.5VOPO4·2H2O delivered ~280 mAh/g to 1.5 V.  Unlike silver 
vanadium phosphorous oxides, crystallographic evaluation 
indicated little structural change upon electrochemical 
reduction, with no significant change in interlayer spacing and 
no evidence of copper metal formation.  On GITT-type test, the 
initial polarization was large and decreased after the first 0.2 
electron equivalents as the discharge progressed, Figure 12.  
On charge, the polarization increased between a reduction level 
of 2.0 and 1.3 electron equivalents.  Subsequent to that point, 
the polarization decreased.  The behavior during the second discharge and charge cycle was 
similar to the first.  Notably, secondary battery evaluation showed retention of ~100 mAh/g at C/20 
with little fade, a significant improvement under repeated cycling relative to the silver based 
material.   

Silver Ferrite, AgFeO2 .  The delafossite (ABO2) structure consists of close-packed double layers 
of edge-sharing BO6 octahedra with monovalent A+ ions positioned between the layers.   Silver 
ferrite, AgFeO2, exhibits a layered delafossite-type structure with the general chemical formula 

 
Figure 11.  Structure of 
Cu0.5VOPO4•2H2O 

 
Figure 12.  GITT-type test of 
Li/Cu0.5VOPO4•2H2O 

 
Figure 10.  Cyclic 
voltammetry of Li/Ag3.2VP1.5O8  

 



ABO2, Figure 13.  We recently reported the first investigation of the 
electrochemical properties of silver ferrite (AgFeO2), including its use 
as a cathode material in secondary lithium based batteries.[25]   

Our previous studies of crystallite size control of magnetite (Fe3O4) 
and silver hollandite (AgxMn8O16) provided fundamental crystal size / 
electrochemistry insight, along with a notable increase in cycling 
capacity with smaller crystallite size.[26-30]  We hypothesized that 
silver ferrite crystallite size control would be possible synthetically.  
Further, we anticipated a crystal size / electrochemistry relationship 
with silver ferrite reminiscent of magnetite and silver 
hollandite.  Silver ferrite was synthesized via a co-
precipitation reaction using reagent mixture containing 
Ag/Fe ratios ranging between 0.2 and 1.0.  XRD confirmed 
the structure and the relationship with crystallite size, Figure 
14.  Raman was used to probe the material and the spectra 
demonstrate intrinsic silver ferrite peaks while shoulders 
detected at 285, 374, and 707 cm-1 increase as the silver 
content decreases indicating the presence of maghemite (γ-
Fe2O3).[31, 32]  Galvanostatic cycling was conducted and 
the delivered discharge capacities over 50 cycles are shown, 
Figure 15.  There is a significant change in capacity between 
cycles 1 and 2 where the change in capacity is directly 
proportional to the Ag+ content in the silver ferrite when 
considered with respect to electron equivalents.  Between 
cycles 10 and 50 the discharge capacities show only gradual 
fade, indicating that the discharge-charge process is 
reversible for this system.  Notably, the silver ferrite AgxFeO2 

composite with the lowest silver content, x = 0.2, and 
smallest crystallite size delivers the highest capacity, ~200% 
that of stoichiometric AgFeO2 and higher than maghemite 
alone. The critical new discovery is the direct synthesis and 
electrochemistry of a composite consisting of a 
nanocrystalline silver ferrite and an 
amorphous maghemite with significantly 
enhanced electrochemical behavior. 

Copper Manganese Oxide, CuxMnO2. 
Manganese oxides can have diverse 
structures, including layered forms which 
can accommodate mono or divalent metal 
(M’n+) cations along with water 
molecules.[33]  Copper manganese oxide 
(CuMnO2) has a layered structure consisting of edge-shared MnO6 octahedra.   A series of six 
CuxMnOy

.H2O copper birnessite samples was prepared by varying the concentration of the Mn2+ 
precursor in the synthesis.  The six CuxMnOy

.nH2O samples showed an evolution in crystallite 
size and copper content (x) in CuxMnOy

.nH2O (0.20 to 0.28) where the copper content was 
inversely related to crystallite size which increased with the concentration of the Mn2+ precursor, 
Figure 16.  The small crystallite size samples delivered ~20% higher capacity than the larger size 
samples.  XANES analysis showed that the Cu2+ was reduced to Cu0 on discharge and returned 
to Cu2+ on charge indicating the possibility of reversibility of copper.   

Figure 16.  Crystallite size and x in CuxMnOy
.nH2O 

as a function of Mn2+ precursor concentration. 

 
Figure 15.  Discharge capacity 
vs. cycle number of Li/AgxFeO2  

 
Figure 14.  Crystallite size 
versus AgxFeO2 composition 

 

Figure 13.  Structure 
of AgxFeO2, x = 1.0 
 



 

Summary – Research Highlights 

The research performed under this award demonstrated the profound decrease in resistance that 
was achievable through the appropriate design of electrochemically active bimetallic materials.   
Materials that are highly resistive, such as polyanion materials including Ag2VO2PO4, increased 
in conductivity by 10,000 fold on initiation of reduction.  This work also included pioneering use of 
Energy Dispersive X-ray Diffraction (EDXRD) to map the progress of a cathode reaction in a 
lithium anode battery, the first report of a lithium anode cell studied by EDXRD.   EDXRD is a 
synchrotron based method for the tomographic mapping of the reaction progress through the 
location of the silver metal that formed in a cathode.   Five publications utilizing this analytical tool 
resulted from the research including the identification of a rate dependent reduction mechanism 
for bimetallic Ag2VP2O8, published in Science.  A total of 18 publications resulted from the 
program.  
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