

Optimization and Uncertainty Quantification

Habib N. Najm

hnnajm@sandia.gov

Sandia National Laboratories
Livermore, CA, USA

Optimization Program Planning Workshop
SAMSI, RTP, NC
Nov 16, 2015

Outline

1 Introduction

2 Optimization Utility in UQ

- Inverse UQ – Bayesian methods
 - Statistical Inverse Problem
 - Optimal Experimental Design
- Forward UQ with Polynomial Chaos Expansions
 - Optimal Sampling
 - Compressive Sensing
 - PC Extrema Estimation

3 UQ Utility in Optimization

- Optimization under Uncertainty

Introduction

- Explore connections between Optimization and Uncertainty Quantification
- Optimization problems in UQ
 - Inverse UQ
 - Bayesian methods
 - Statistical inverse problem
 - Experimental design
 - Forward UQ
 - Polynomial Chaos (PC) methods
 - Sampling ... quadrature, response surface fitting
- UQ problems in optimization
 - Forward model surrogate construction
 - Estimation of moments/probabilities in optimization under uncertainty

Statistical Inverse Problems

- Estimation of model parameters/inputs given (noisy) data on model output observables
 - with quantified uncertainty in inferred parameters
- Conventional deterministic context:
 - Model $y_m = f(x; \lambda)$, data y
 - Least squares fitting, minimizing residual $\|f(x; \lambda) - y\|$
 - Regularization with suitable norms
 - End result is x_{BestFit}
- Statistical Bayesian context:
 - Use Bayes rule to infer parameter λ
 - Combine prior information with learning from data
 - Information on λ is in terms of a posterior density conditioned on the data $p(\lambda|y)$

Bayes formula for Parameter Inference

- Data Model (fit model + noise model): $y = f(\lambda) * g(\epsilon)$
- Bayes Formula:

$$p(\lambda, y) = p(\lambda|y)p(y) = p(y|\lambda)p(\lambda)$$

$$p(\lambda|y) = \frac{\text{Likelihood} \quad \text{Prior}}{\text{Posterior}} = \frac{p(y|\lambda) \quad p(\lambda)}{p(y)}$$

Evidence

- Prior: knowledge of λ prior to data
- Likelihood: forward model and measurement noise
- Posterior: combines information from prior and data
- Evidence: normalizing constant for present context

Exploring the Posterior

- Given any sample λ , the un-normalized posterior probability can be easily computed

$$p(\lambda|y) \propto p(y|\lambda)p(\lambda)$$

- Explore posterior w/ Markov Chain Monte Carlo (MCMC)
 - Metropolis-Hastings algorithm:
 - Random walk with proposal PDF & rejection rules
 - Computationally intensive, $\mathcal{O}(10^5)$ samples
 - Each sample: evaluation of the forward model
 - Surrogate models
- Evaluate moments/marginals from the MCMC statistics

Optimization and MCMC

- MCMC needs to get enough good λ -samples to describe the posterior density well
- Frequently, the focus is on a given mode/peak
 - although generally multimodal
- In order to get good samples of a particular peak, the random walk needs to be directed to the vicinity of the peak as efficiently as possible
- The structure of the proposal distribution and the random walk algorithm are crucial
- Generally, this is about climbing the posterior density towards its peak at the Maximum A-Posteriori (MAP) parameter value, employing a random walk
- Gradient & Hessian information is useful in this regard

Optimal Experimental Design – Stochastic Optimization

- Setup:
 - Choose experimental design x
 - Collect data y to estimate parameters θ
- Challenge:
 - Choose an **optimal** design x^* that maximizes the **expected information gain** from the experiment
- Bayesian formulation:

$$p(\theta|y, x) = p(y|\theta, x)p(\theta|x) / p(y|x)$$

$$D(y, x) = D_{\text{KL}}(p(\cdot|y, x) \| p(\cdot|x)) \equiv \int p(\theta|y, x) \ln \frac{p(\theta|y, x)}{p(\theta|x)} d\theta$$

$$U(x) = \mathbf{E}_{p(\cdot|x)}[D(y, x)] \equiv \int D(y, x)p(y|x) dy$$

$$x^* = \underset{x \in \mathcal{D}}{\operatorname{argmax}} U(x)$$

- A stochastic optimization problem
 - noisy random-sampling estimation of integrals for $U(x)$

Probabilistic Forward UQ & Polynomial Chaos

Representation of Random Variables

With $y = f(x)$, x a random variable, estimate the RV y

- Can describe a RV in terms of its
 - density, moments, characteristic function, or
 - as a function on a probability space
- Constraining the analysis to RVs with finite variance
 - ⇒ Represent RV as a spectral expansion in terms of orthogonal functions of standard RVs
 - Polynomial Chaos Expansion
- Enables the use of available functional analysis methods for forward UQ

Polynomial Chaos Expansion (PCE)

- Model uncertain quantities as random variables (RVs)
- Given a *germ* $\xi(\omega) = \{\xi_1, \dots, \xi_n\}$ – a set of *i.i.d.* RVs
 - where $p(\xi)$ is uniquely determined by its moments

Any RV in $L^2(\Omega, \mathfrak{S}(\xi), P)$ can be written as a PCE:

$$u(\mathbf{x}, t, \omega) = f(\mathbf{x}, t, \xi) \simeq \sum_{k=0}^P u_k(\mathbf{x}, t) \Psi_k(\xi(\omega))$$

- $u_k(\mathbf{x}, t)$ are mode strengths
- $\Psi_k()$ are multivariate functions orthogonal w.r.t. $p(\xi)$

With dimension n and order p :
$$P + 1 = \frac{(n + p)!}{n! p!}$$

Orthogonality

By construction, the functions $\Psi_k()$ are orthogonal with respect to the density of ξ

$$u_k(\mathbf{x}, t) = \frac{\langle u \Psi_k \rangle}{\langle \Psi_k^2 \rangle} = \frac{1}{\langle \Psi_k^2 \rangle} \int u(\mathbf{x}, t; \lambda(\xi)) \Psi_k(\xi) p_\xi(\xi) d\xi$$

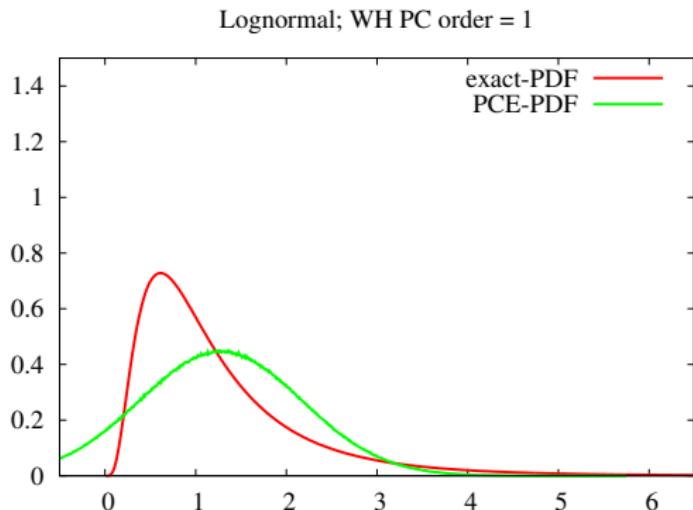
Examples:

- Hermite polynomials with Gaussian basis
- Legendre polynomials with Uniform basis, ...
- Global versus Local PC methods
 - Adaptive domain decomposition of the support of ξ

PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 1

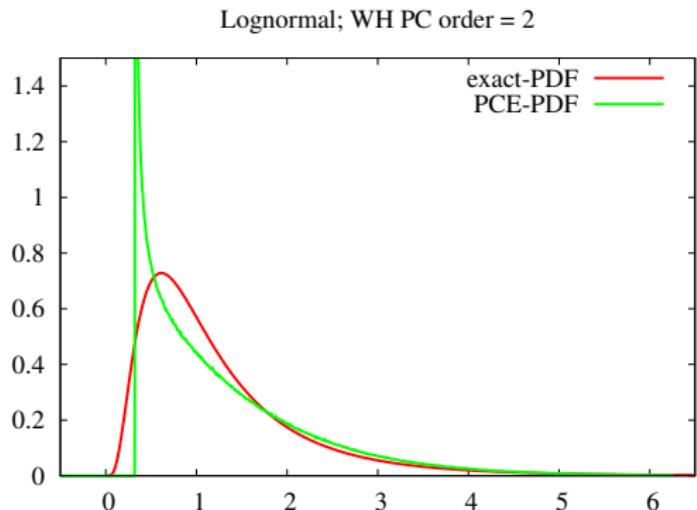
$$\begin{aligned} u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\ &= u_0 + u_1 \xi \end{aligned}$$



PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 2

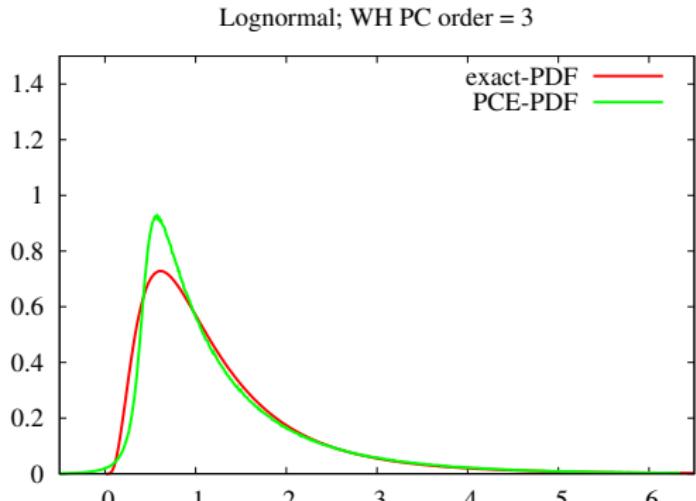
$$\begin{aligned} u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\ &= u_0 + u_1 \xi + u_2 (\xi^2 - 1) \end{aligned}$$



PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 3

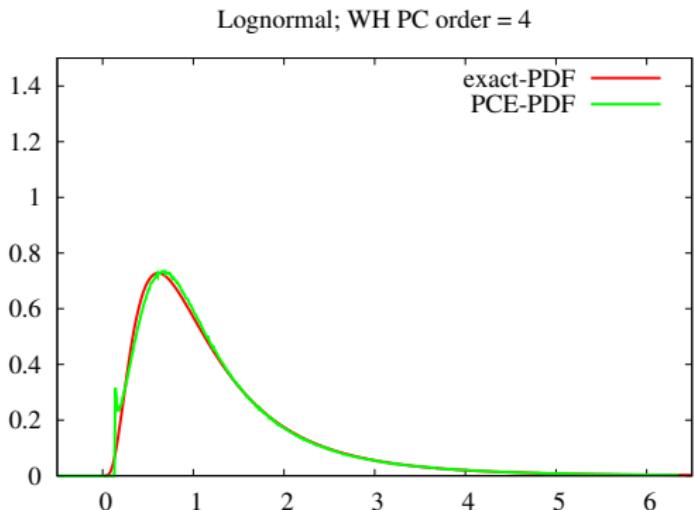
$$\begin{aligned} u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\ &= u_0 + u_1 \xi + u_2 (\xi^2 - 1) + u_3 (\xi^3 - 3\xi) \end{aligned}$$



PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 4

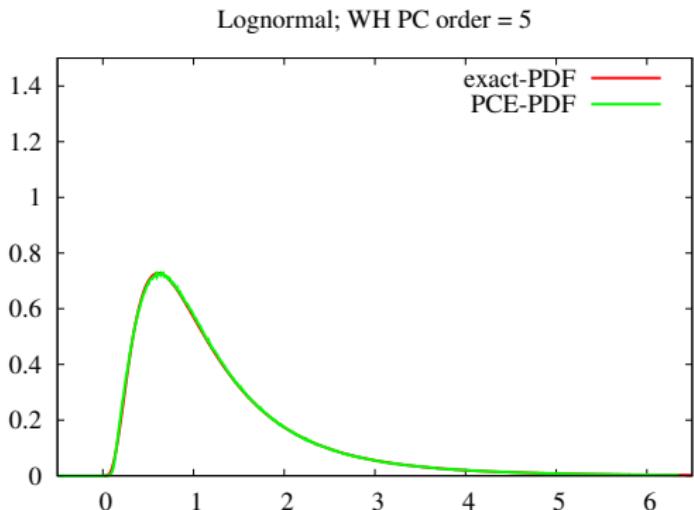
$$\begin{aligned}
 u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\
 &= u_0 + u_1 \xi + u_2 (\xi^2 - 1) + u_3 (\xi^3 - 3\xi) + u_4 (\xi^4 - 6\xi^2 + 3)
 \end{aligned}$$



PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 5

$$\begin{aligned}
 u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\
 &= u_0 + u_1 \xi + u_2 (\xi^2 - 1) + u_3 (\xi^3 - 3\xi) + u_4 (\xi^4 - 6\xi^2 + 3) \\
 &\quad + u_5 (\xi^5 - 10\xi^3 + 15\xi)
 \end{aligned}$$



Essential Use of PC in UQ

Strategy:

- Represent model parameters/solution as random variables
- Construct PCEs for uncertain parameters
- Evaluate PCEs for model outputs

Advantages:

- Computational efficiency
- Utility
 - Moments: $E(u) = u_0, \text{ var}(u) = \sum_{k=1}^P u_k^2 \langle \Psi_k^2 \rangle, \dots$
 - Global Sensitivities – fractional variances, Sobol' indices
 - Surrogate for forward model

Requirement:

- RVs in L^2 , *i.e.* with finite variance, on $(\Omega, \mathfrak{S}(\xi), P)$

Intrusive PC UQ: A direct *non-sampling* method

- Given model equations: $\mathcal{M}(u(\mathbf{x}, t); \lambda) = 0$
- Express uncertain parameters/variables using PCEs

$$u = \sum_{k=0}^P u_k \Psi_k; \quad \lambda = \sum_{k=0}^P \lambda_k \Psi_k$$

- Substitute in model equations; apply Galerkin projection
- New set of equations: $\mathcal{G}(U(\mathbf{x}, t), \Lambda) = 0$
 - with $U = [u_0, \dots, u_P]^T$, $\Lambda = [\lambda_0, \dots, \lambda_P]^T$
- Solving this deterministic system once provides the full specification of uncertain model outputs

Non-intrusive PC UQ

- *Sampling*-based
- Relies on black-box utilization of the computational model
- Evaluate projection integrals *numerically*
- For any quantity of interest $\phi(\mathbf{x}, t; \lambda) = \sum_{k=0}^P \phi_k(\mathbf{x}, t) \Psi_k(\boldsymbol{\xi})$

$$\phi_k(\mathbf{x}, t) = \frac{1}{\langle \Psi_k^2 \rangle} \int \phi(\mathbf{x}, t; \lambda(\boldsymbol{\xi})) \Psi_k(\boldsymbol{\xi}) p_{\boldsymbol{\xi}}(\boldsymbol{\xi}) d\boldsymbol{\xi}, \quad k = 0, \dots, P$$

- Integrals can be evaluated using
 - A variety of (Quasi) Monte Carlo methods
 - Slow convergence; \sim indep. of dimensionality
 - Quadrature/Sparse-Quadrature methods
 - Fast convergence; depends on dimensionality

Optimal Sparse Quadrature – forward UQ

Integration problem, with $x \in D \subset \mathbb{R}^N$:

$$I = \int_D f(x) \, dx \approx \hat{I} = \sum_{j=1}^M w_j f(x_j)$$

- Optimization problem
 - Minimize number of (sparse) quadrature points, M
 - Optimize their locations and weights, $\{w_j, x_j\}_{j=1}^M$
 - For a requisite integration accuracy, $\|I - \hat{I}\| < \epsilon$
- Regular domains – hypercubes Sinsbeck & Nowak, IJUQ 2015
- Arbitrary domains Ryu & Boyd, Found. Comput. Math. 2015
 - By construction
 - $f(x)$ model failure – unrealistic conditions
 - $f(x)$ code failure – numerical stability / machine faults

Greedy Sampling Algorithms

- Find the optimal location for the next evaluation $f(x_k)$
 - given existing samples $x_j, j = 1, \dots, k - 1$
- Maximize expected reduction in error
 - given one additional sample/batch-of-samples
- Adaptive multilevel/hierarchical sparse quadrature
 - Selective evaluation of corner samples
- Non-isotropic sparse quadrature
 - Dimension-adaptive sampling

Interpolant/Regression Surrogates – Optimal Design

- PCE or other surrogate functions built via
 - Interpolation
 - Least-squares regression – noisy forward models
 - intrinsic noise
 - discretization errors
 - sample-averaging noise
 - sparse samples
- The optimal set of points – design
 - Minimize oscillations – particularly in Hi-D
 - Minimize cross-validation fit errors
- Recent work (Narayan *et al.*)
 - Leja sequences for optimal interpolation in Hi-D
 - Optimal random sampling of design points for weighted least-squares regression

PC coefficients via sparse regression

PCE:

$$y = f(x) \simeq \sum_{k=0}^{K-1} c_k \Psi_k(x)$$

with $x \in \mathbb{R}^n$, Ψ_k max order p , and $K = (p + n)!/p!/n!$

- N samples $(x_1, y_1), \dots, (x_N, y_N)$
- Estimate K terms c_0, \dots, c_{K-1} , s.t.

$$\min ||\mathbf{y} - \mathbf{A}\mathbf{c}||_2^2$$

where $\mathbf{y} \in \mathbb{R}^N$, $\mathbf{c} \in \mathbb{R}^K$, $\mathbf{A}_{ik} = \Psi_k(x_i)$, $\mathbf{A} \in \mathbb{R}^{N \times K}$

With $N \ll K \Rightarrow$ under-determined

- Need some form of regularization

Regularization – Compressive Sensing (CS)

- ℓ_2 -norm — Tikhonov regularization; Ridge regression:

$$\min \{ \| \mathbf{y} - \mathbf{A} \mathbf{c} \|_2^2 + \| \mathbf{c} \|_2^2 \}$$

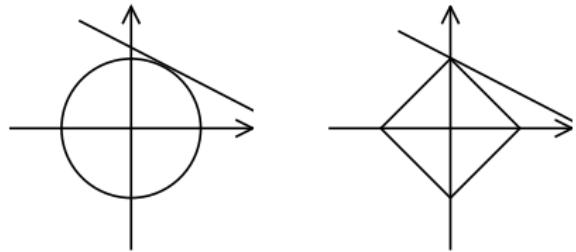
- ℓ_1 -norm — Compressive Sensing; LASSO; basis pursuit

$$\min \{ \| \mathbf{y} - \mathbf{A} \mathbf{c} \|_2^2 + \| \mathbf{c} \|_1 \}$$

$$\min \{ \| \mathbf{y} - \mathbf{A} \mathbf{c} \|_2^2 \} \quad \text{subject to } \| \mathbf{c} \|_1 \leq \epsilon$$

$$\min \{ \| \mathbf{c} \|_1 \} \quad \text{subject to } \| \mathbf{y} - \mathbf{A} \mathbf{c} \|_2^2 \leq \epsilon$$

⇒ discovery of sparse signals



Bayesian Regression

- Bayes formula

$$p(\mathbf{c}|D) \propto p(D|\mathbf{c})\pi(\mathbf{c})$$

- Bayesian regression: prior as a regularizer, e.g.

- Log Likelihood $\Leftrightarrow \|\mathbf{y} - \mathbf{A}\mathbf{c}\|_2^2$
- Log Prior $\Leftrightarrow \|\mathbf{c}\|_p^p$

- Laplace sparsity priors $\pi(c_k|\alpha) = \frac{1}{2\alpha}e^{-|c_k|/\alpha}$
- LASSO (Tibshirani 1996) ... formally:

$$\min \{\|\mathbf{y} - \mathbf{A}\mathbf{c}\|_2^2 + \lambda \|\mathbf{c}\|_1\}$$

Solution \sim the posterior mode of \mathbf{c} in the Bayesian model

$$\mathbf{y} \sim \mathcal{N}(\mathbf{A}\mathbf{c}, \mathbf{I}_N), \quad c_k \sim \frac{1}{2\alpha}e^{-|c_k|/\alpha}$$

- Bayesian LASSO (Park & Casella 2008)
- Bayesian compressive sensing (Ji 2008)

PC Extrema Estimation – Global Optimization

- Often it is important to establish PCE positivity

$$u_{\text{PC}}(\boldsymbol{\xi}) \equiv \sum_{k=1}^P u_k \Psi_k(\boldsymbol{\xi})$$
$$u_{\min} \equiv \min_{\boldsymbol{\xi} \in \Xi} u_{\text{PC}}(\boldsymbol{\xi}) > 0$$

- A global optimization problem
- Nonlinear
- High-dimensional

UQ Utility in Optimization

Deterministic optimization problems

- Model surrogates constructed using forward UQ
 - A wide range of UQ methods for efficient surrogate construction in hi-D
 - Surrogates can be built over deterministic spaces employing uniform RVs
 - Readily available surrogate gradient/hessian information

Optimization under uncertainty

- Stochastic optimization
- Distributionally Robust optimization
- Robust optimization

Stochastic Optimization

e.g. stochastic objective

$$\begin{aligned} & \underset{x \in \mathcal{X}}{\text{minimize}} && \mathbf{E}_{p_\Theta}[u(x, \theta)] \\ & \text{subject to} && c(x) > 0 \end{aligned}$$

or penalize variability, and chance constraint

$$\begin{aligned} & \underset{x \in \mathcal{X}}{\text{minimize}} && \mathbf{E}_{p_\Theta}[u(x, \theta) - \gamma \text{Var}(u(x, \theta))] \\ & \text{subject to} && \mathbf{P}[c(x, \theta) > 0] > 1 - \alpha \end{aligned}$$

or minimize conditional value at risk (CVaR)

$$\begin{aligned} & \underset{x \in \mathcal{X}}{\text{minimize}} && \mathbf{E}_{p_\Theta}[u(x, \theta) | u(x, \theta) > u_0] \\ & \text{subject to} && \mathbf{P}[u(x, \theta) < u_0] = 1 - \alpha \end{aligned}$$

Stochastic Optimization – SAA

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad \{ U(x) \equiv \mathbf{E}_{p_\Theta}[u(x, \theta)] \}$$

where $\Theta \sim p_\Theta(\theta)$, $\theta \in \mathbb{R}^n$, $\mathcal{X} \subset \mathbb{R}^N$

- Presumes knowledge of $p_\Theta(\cdot)$
- Typically relies on sample averaged approximation (SAA)

$$U(x) \approx \hat{U}(x) := \frac{1}{K} \sum_{k=1}^K u(x, \theta_k)$$

- Accurate Monte Carlo estimation requires large K
- $\hat{U}(x)$ is a noisy estimator of $U(x)$
 - Gradients of $\hat{U}(x)$ challenging to estimate

Stochastic Optimization with PCE

$$\begin{aligned}\theta_{\text{PC}}(\xi) &= \sum_k \alpha_k \Psi_k(\xi), & u_{\text{PC}}(x, \xi) &= \sum_k u_k(x) \Psi_k(\xi) \\ \hat{U}(x) &= \mathbf{E}_{p_\xi}[u_{\text{PC}}(x, \xi)] = u_0(x)\end{aligned}$$

where

$$u_0(x) = \int u p_\xi d\xi = \sum_i w_i u(x, \theta(\xi_i))$$

is estimated using forward UQ methods

- perhaps intrusively, if $u(x, \theta)$ is relatively simple
- otherwise non-intrusive, e.g. sparse quadrature

Computational efficiency relative to Monte Carlo depends on

- the dimensionality of θ
- the θ -smoothness of $u(x, \theta)$

Gradients over the design space

- Estimation of $\frac{du_0}{dx}$ requires
 - A functional representation of $u_0(x)$ to be differentiated, or
 - A hi-resolution estimation of $u_{\text{PC}}(x_i, \xi)$, $i = 1, \dots, I_{\text{mesh}}$, or
 - A PCE for $\frac{du}{dx}(x, \xi)$, and hence gradients of the obj. func.
- Alternatively, the PCE can be built over (x, ξ) [Eldred, IJUQ 2011](#)

$$u_{\text{PC}}(x, \xi) = \sum_k u_k \Psi_k(x, \xi)$$

- Functional representation of $u_{\text{PC}}(x, \xi)$ over x is built-in
- Easy access to gradients/hessians over x
- But a higher dimensional forward UQ problem

PCE in Power Grid Stochastic Optimization

Scenario Generation – Random Field (RF) Inputs

- Power-grid optimization involves uncertainties
 - in both loads and alternative energy sources
 - The largest uncertainties are in wind and solar generation
 - Being uncertain functions of time, these are RFs
- The Karhunen-Loeve expansion (KLE) provides an optimal representation of RFs, capturing both mean & covariance

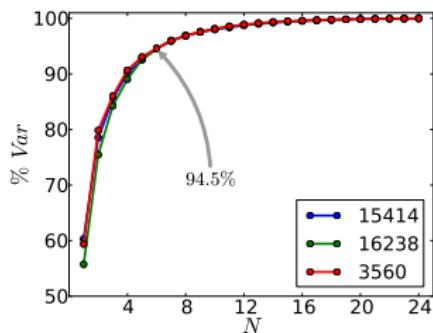
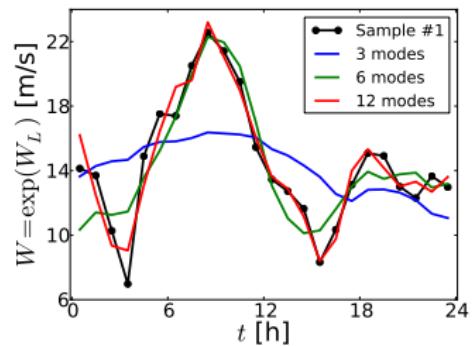
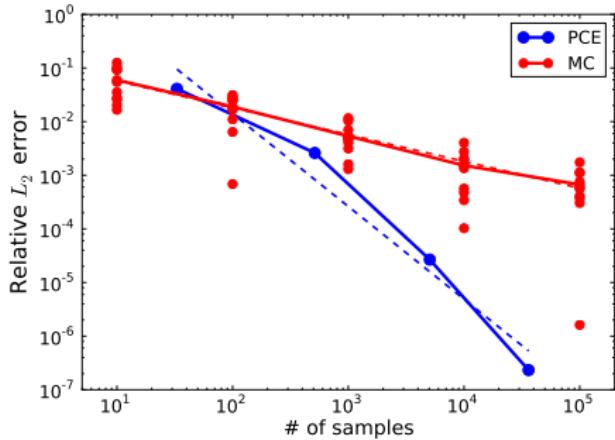
$$W(t, \omega) = \mu(t) + \sum_{i=1}^{\infty} \sqrt{\lambda_i} \eta_i(\omega) \phi_i(t)$$

- $\mu(t)$ is the mean of $W(t, \omega)$ at t
- λ_i and $\phi_i(t)$ are the eigenvalues and eigenfunctions of the covariance $C(t_1, t_2) = \langle [W(t_1, \omega) - \mu(t_1)][W(t_2, \omega) - \mu(t_2)] \rangle$
- The η_i are uncorrelated zero-mean unit-variance RVs

PCE in Power Grid Stochastic Optimization

- Consider the Economic Dispatch problem
 - Given a set of generators online
 - Find optimal expected power generation schedules over the next 24 hr
 - Feasibility and operational constraints
- IEEE 118 bus system – 54 generators, 64 loads
- 3 generators replaced by wind farms
- wind data from two sites in Wyoming and one in California
- KLE \Rightarrow 16-dimensional forward UQ problem
- Minimum cost $Q(x, W(t, \omega)) \approx Q_{\text{PC}}(x, \eta(\xi)) = \sum_k q_k(x) \Psi_k(\xi)$
 - Estimate PC coefficients using sparse quadrature
 - Expectation $q_0(x)$

Scenario Generation – Random Field (RF) Inputs



Distributionally Robust Optimization (DRO)

- Presumes imperfect knowledge of $p_\Theta(\cdot)$
- Consider $p_\Theta \in \mathcal{D}$,

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad \left\{ \max_{p_\Theta \in \mathcal{D}} \mathbf{E}_{p_\Theta}[u(x, \theta)] \right\}$$

- Implementation: define ambiguity set \mathcal{D} , e.g.
 - given presumed $\mathcal{S} \supset \text{supp}(p_\Theta)$ & moments of Θ : (μ_0, Σ_0)
 - Allow uncertainty in moments [Delage & Ye, OR 2010](#)
 - given max KL-divergence between p_Θ and a nominal p_0 [Hu & Hong, 2013](#)
- Utility of PC methods
 - Moment constraints accessible with PCE [Eldred, IJUQ 2011](#)
- Connections to "Optimal UQ" [Owhadi, SIAM Review 2013](#)
- Possible role for Maximum Entropy methods?

Robust optimization

- Set-based approach – support of uncertain parameter PDF
- Protect against worse case scenario in the set
- Learn set based on samples/historical-realizations of the uncertain-parameters as RVs
- Topics:
 - Role for PDF quantiles?
 - PCE extrema
 - Data-analysis/classification for establishing set boundaries
 - PDF tail behavior – Extreme Value Theory

The End