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@ Optimization Utility in UQ

@ Inverse UQ — Bayesian methods
@ Statistical Inverse Problem
@ Optimal Experimental Design

@ Forward UQ with Polynomial Chaos Expansions
@ Optimal Sampling
@ Compressive Sensing
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intro
Introduction

@ Explore connections between Optimization and
Uncertainty Quantification
@ Optimization problems in UQ
e Inverse UQ

— Bayesian methods
— Statistical inverse problem
— Experimental design

e Forward UQ

— Polynomial Chaos (PC) methods
— Sampling ... quadrature, response surface fitting

@ UQ problems in optimization
e Forward model surrogate construction

e Estimation of moments/probabilities in optimization under
uncertainty
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Statistical Inverse Problems

@ Estimation of model parameters/inputs given (noisy) data
on model output observables

— with quantified uncertainty in inferred parameters
@ Conventional deterministic context:

e Modely,, =f(x;\), data y

e Least squares fitting, minimizing residual ||f(x; A) — y||

e Regularization with suitable norms

@ End result is xpegrit
@ Statistical Bayesian context:

e Use Bayes rule to infer parameter A

@ Combine prior information with learning from data

e Information on X is in terms of a posterior density
conditioned on the data p(\ly)
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Bayes formula for Parameter Inference

@ Data Model (fit model + noise model): y=f(\) *xg(e)
@ Bayes Formula:
p(A.y) = p(Ay)p(y) =pHINp(A)
Likelihood  Prior
pOIA) p(A
PO _ A p(A)
Posterior
p(y)
Evidence
@ Prior: knowledge of X prior to data
@ Likelihood: forward model and measurement noise
@ Posterior: combines information from prior and data
@ Evidence: normalizing constant for present context
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Exploring the Posterior

@ Given any sample ), the un-normalized posterior
probability can be easily computed

p(Aly) o< p(y|\)p(N)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings algorithm:
e Random walk with proposal PDF & rejection rules

— Computationally intensive, O(10°) samples
— Each sample: evaluation of the forward model

e Surrogate models
@ Evaluate moments/marginals from the MCMC statistics
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Optimization and MCMC

@ MCMC needs to get enough good A-samples to describe
the posterior density well

@ Frequently, the focus is on a given mode/peak
— although generally multimodal

@ In order to get good samples of a particular peak, the
random walk needs to be directed to the vicinity of the
peak as efficiently as possible

@ The structure of the proposal distribution and the random
walk algorithm are crucial

@ Generally, this is about climbing the posterior density
towards its peak at the Maximum A-Posteriori (MAP)
parameter value, employing a random walk

@ Gradient & Hessian information is useful in this regard
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Optimal Experimental Design — Stochastic Optimization

@ Setup:
e Choose experimental design x
o Collect data y to estimate parameters 6
@ Challenge:
e Choose an optimal design x* that maximizes the expected
information gain from the experiment

@ Bayesian formulation:
pOly,x) = pOl0,x)p0x)/p(ylx)

D) = Dralpl (1) = [ p(ol N as

UR) = EyyD02)] = / D(y. )p(ylx)dy

x* = argmax U(x)

x€D

@ A stochastic optimization problem
@ noisy random-sampling estimation of integrals for U(x)
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Probabilistic Forward UQ & Polynomial Chaos

Representation of Random Variables

With y = f(x), x a random variable, estimate the RV y

@ Can describe a RV in terms of its
e density, moments, characteristic function, or
e as a function on a probability space

@ Constraining the analysis to RVs with finite variance

= Represent RV as a spectral expansion in terms of
orthogonal functions of standard RVs

— Polynomial Chaos Expansion

@ Enables the use of available functional analysis methods
for forward UQ
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Polynomial Chaos Expansion (PCE)

@ Model uncertain quantities as random variables (RVs)
@ Givenagermé&(w) = {&, - ,&,} —asetof i.iid. RVs
— where p(&) is uniquely determined by its moments

Any RV in L2(Q, &(€), P) can be written as a PCE:

ulx,t,w) =f(x,1,&) ~ Zukxf‘l’k w))

— ug(x,t) are mode strengths
— W, () are multivariate functions orthogonal w.r.t. p(&)

(n+p)!

With dimension n and order p: P+1= alp!
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Orthogonality

By construction, the functions ¥, () are orthogonal with respect
to the density of £

(u\Ifk> 1

wie) = b= [ e ENOE) pe©) de

@ Hermite polynomials with Gaussian basis
@ Legendre polynomials with Uniform basis, ...
@ Global versus Local PC methods

e Adaptive domain decomposition of the support of &
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PC lllustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 1

. . 14 + ‘ ‘ ‘ ‘ Exact—P]jF - |
@ Wiener-Hermite PCE-PDF

PCE constructed for
a Lognormal RV

@ PCE-sampled PDF  **]
superposed on true

PDF 04 | /\
@ Order = 1 02 ¢ /

P 0 1 2 3 4 5 6

u = Z urWi(€)

k=0
= ug+ uié
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PC lllustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 2

. . 14 + ‘ ‘ ‘ ‘ éxact—PljF - i
@ Wiener-Hermite PCE-PDF

PCE constructed for
a Lognormal RV

@ PCE-sampled PDF |
superposed on true  *° [ /\
PDF 04 t
@ Order =2 02 ¢ /
P “To0 1 2 3 1 s s
wo= Y w6
k=0

= up+wmé+u (& 1)
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PC lllustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 3

. . 14 + ‘ ‘ ‘ ‘ éxact—P]jF - |
@ Wiener-Hermite PCE-PDF

PCE constructed for
a Lognormal RV

@ PCE-sampled PDF
superposed on true

PDF 04 | \\
@ Order =3 02t -
P o 1 2 3 4 5

u = Z urWi(€)

k=0
= uo+wmé +uw (& = 1) +us(& -3¢
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PC lllustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 4

. . 14 + ‘ ‘ ‘ ‘ éxact»PljF - i
@ Wiener-Hermite PCE-PDF
PCE constructed for

a Lognormal RV

@ PCE-sampled PDF I
superposed on true  *° [ /\
PDF o4 [\
@ Order = 4 o2f | N
P 0 1 2 3 4 5 6
o= > wU(€)
k=0

= up+ué +ur(& — 1) + uz(& — 3¢) + us(&* — 667 + 3)
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PC lllustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 5

. . 14 + ‘ ‘ ‘ ‘ éxact—PljF - i
@ Wiener-Hermite PCE-PDF

PCE constructed for
a Lognormal RV

® PCE-sampled PDF ™[ -

superposed ontrue  *°[ [\
PDF 04 | /f \.
@ Order=5 0z ‘
P 0 1 2 3 4 5 6
o= > wU(€)
k=0

o+ uré + up (€% — 1) + uz(& — 36) + ug(¢* — 667 + 3)
+ us (€% — 1083 + 15¢)
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Essential Use of PC in UQ

Strategy:
@ Represent model parameters/solution as random variables
@ Construct PCEs for uncertain parameters
@ Evaluate PCEs for model outputs

Advantages:
@ Computational efficiency
@ Utility
o Moments: E(u) = ug, var(u) =34 ul(¥3), ...
e Global Sensitivities — fractional variances, Sobol’ indices
e Surrogate for forward model

Requirement:
@ RVsin L?, i.e. with finite variance, on (2, &(&), P)

Najm Optim+UQ



optuq InvUQ fuQPC

Intrusive PC UQ: A direct non-sampling method

@ Given model equations: _

@ Express uncertain parameters/variables using PCEs

P P
u= Zuk\llk; A= Z pYAJS
k=0 k=0

@ Substitute in model equations; apply Galerkin projection

@ New set of equations: _

— with U:[uo,...,up]T,A:[Ao,...,)\p]T

@ Solving this deterministic system once provides the full
specification of uncertain model ouputs

Najm Optim+UQ



optuq InvUuQ fUQPC

Non-intrusive PC UQ

@ Sampling-based

@ Relies on black-box utilization of the computational model
@ Evaluate projection integrals numerically

@ For any quantity of interest ¢(x,#; \) = Zf:o Or(x, 1)Uy (€)

@ Integrals can be evaluated using

e A variety of (Quasi) Monte Carlo methods
— Slow convergence; ~ indep. of dimensionality

e Quadrature/Sparse-Quadrature methods
— Fast convergence; depends on dimensionality
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Optimal Sparse Quadrature — forward UQ

Integration problem, with x € D C RV:

. M
I:/Df(x)dx ~ I:Jijf(xj)

1

@ Optimization problem
e Minimize number of (sparse) quadrature points, M
o Optimize their locations and weights, {w;, 5},
o For a requisite integration accuracy, ||I — || < ¢
@ Regular domains — hypercubes Sinsbeck & Nowak, IJUQ 2015
@ Arbitrary domains Ryu & Boyd, Found. Comput. Math. 2015
e By construction
e f(x) model failure — unrealistic conditions
@ f(x) code failure — numerical stability / machine faults
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Greedy Sampling Algorithms

@ Find the optimal location for the next evaluation f(xy)
— given existing samples x;, j =1,...,k — 1

@ Maximize expected reduction in error
— given one additional sample/batch-of-samples

@ Adaptive multilevel/hierarchical sparse quadrature
e Selective evaluation of corner samples

@ Non-isotropic sparse quadrature
e Dimension-adaptive sampling

Najm Optim+UQ



optuq InvUQ fuQPC

Interpolant/Regression Surrogates — Optimal Design

@ PCE or other surrogate functions built via
e Interpolation
e Least-squares regression — noisy forward models
— intrinsic noise
— discretization errors
— sample-averaging noise
— sparse samples
@ The optimal set of points — design
e Minimize oscillations — particularly in Hi-D
e Minimize cross-validation fit errors
@ Recent work (Narayan et al.)
e Leja sequences for optimal interpolation in Hi-D

e Optimal random sampling of design points for weighted
least-squares regression

Najm Optim+UQ



optuq InvUQ fuQPC

PC coefficients via sparse regression

PCE: e
y=Fx) 2> aWi(x)
k=0

with x € R", ¥, max order p, and K = (p + n)!/p!/n!

@ N samples (x1,y1),- .-, (xn,yn)
@ Estimate K terms ¢, ...,cx_1, S.t.

min [[y — Ac|[3
wherey € RV, ¢ € RK Ay = Uy (x;), A € RVXK

With N << K = under-determined
@ Need some form of regularization
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Regularization — Compressive Sensing (CS)

@ /,-norm — Tikhonov regularization; Ridge regression:
min {|ly — Ac||3 + [le[3}
@ /;-norm — Compressive Sensing; LASSO; basis pursuit

min {[ly — Aell3 + llel|1}
min {|ly — Ac||3} subject to ||c||; < €
min {[lc|i} subject to [ly — Ac||3 < e

= discovery of sparse signals @ K
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Bayesian Regression

@ Bayes formula
p(e|D) o p(Dle)m(c)
@ Bayesian regression: prior as a regularizer, e.g.
o Log Likelihood < ||y — Ac|3

e Log Prior < |le|?
e Laplace sparsity priors 7 (cx|a) = 5e~lal/a
@ LASSO (Tibshirani 1996) ... formally:
min {[ly — Ac||3 + Alle(l1}

Solution ~ the posterior mode of ¢ in the Bayesian model

1
~ A I ~ — —‘L’k|/04
y ~ N(Ac,Iy), Gk~ 5 e

@ Bayesian LASSO (Park & Casella 2008)
@ Bayesian compressive sensing (Ji 2008)
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PC Extrema Estimation — Global Optimization

@ Often it is important to establish PCE positivity

uec(€) = Y uW(§)
k=1

Umin = minupc(§) > 0
[3SS)

@ A global optimization problem
@ Nonlinear
@ High-dimensional
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UQ Utility in Optimization

Deterministic optimization problems

— Model surrogates constructed using forward UQ

@ A wide range of UQ methods for efficient surrogate
construction in hi-D

@ Surrogates can be built over deterministic spaces
employing uniform RVs

@ Readily available surrogate gradient/hessian information

Optimization under uncertainty

@ Stochastic optimization
@ Distributionally Robust optimization
@ Robust optimization
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Stochastic Optimization

e.g. stochastic objective

mi;lien)}ize E,q[u(x,0)]
subject to c(x) >0

or penalize variability, and chance constraint

minirEize E, [u(x,8) — yVar(u(x,6))]
xXe
subject to Plc(x,0) > 0] > 1 — «

or minimize conditional value at risk (CVaR)

minil}(lize E,q [u(x,0)[u(x,8) > uo)
xe
subject to Plu(x,0) <up)=1—«
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Stochastic Optimization — SAA

miiliergflize {U(x) =Epgu(x,0)] }

where © ~ pg (), 0 € R", ¥ C RV
@ Presumes knowledge of pg(-)
@ Typically relies on sample averaged approximation (SAA)

@ Accurate Monte Carlo estimation requires large K
@ U(x) is a noisy estimator of U(x)
o Gradients of U(x) challenging to estimate
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Stochastic Optimization with PCE

Oec(€) = D aWi(é), upc(x,&) = > w(x)¥
k

k
U(x) = Ep[upc(x, )] = uo(x)

() = [ upeds = 3" wiulx.0(6)

is estimated using forward UQ methods
— perhaps intrusively, if u(x, 0) is relatively simple
— otherwise non-intrusive, e.g. sparse quadrature
Computational efficiency relative to Monte Carlo depends on
@ the dimensionality of ¢
@ the #-smoothness of u(x, 6)
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Gradients over the design space

@ Estimation of % requires
e A functional representation of u(x) to be differentiated, or
@ A hi-resolution estimation of upc(x;,£), i = 1,. .., Lnes, OF
e A PCE for %(x,g), and hence gradients of the Obj. func.

@ Alternatively, the PCE can be built over (x, &) Eidred, 1JUQ 2011

upc(x,§) = Zuk‘l’k x,§)

e Functional representation of upc(x, £) over x is built-in
e Easy access to gradients/hessians over x
e But a higher dimensional forward UQ problem
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PCE in Power Grid Stochastic Optimization

Scenario Generation — Random Field (RF) Inputs

@ Power-grid optimization involves uncertainties
@ in both loads and alternative energy sources
e The largest uncertainties are in wind and solar generation
e Being uncertain functions of time, these are RFs

@ The Karhunen-Loeve expansion (KLE) provides an optimal
representation of RFs, capturing both mean & covariance

W(t,w) = ult) + 3 v/ Ami(w)én(t)
i=1

@ u(r) is the mean of W(r,w) at ¢

@ )\; and ¢;(t) are the eigenvalues and eigenfunctions of the
covariance C(t, 1) = ([W(t1,w) — u(t1)][W(t2,w) — p(t2)])
@ The 7, are uncorrelated zero-mean unit-variance RVs

Najm Optim+UQ



ugopt Optimization under Uncertainty

PCE in Power Grid Stochastic Optimization

@ Consider the Economic Dispatch problem
e Given a set of generators online

e Find optimal expected power generation schedules over the
next 24 hr

o Feasibility and operational constraints
@ IEEE 118 bus system — 54 generators, 64 loads
@ 3 generators replaced by wind farms
@ wind data from two sites in Wyoming and one in California
@ KLE = 16-dimensional forward UQ problem

@ Minimum cost Q(x, W(r,w)) =~ Qpc(x,1()) = > qx(x) T (€)
e Estimate PC coefficients using sparse quadrature

e Expectation go(x)
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Scenario Generation — Random Field (RF) Inputs
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Distributionally Robust Optimization (DRO)

@ Presumes imperfect knowledge of pg(-)
@ Consider pg € D,

.. . E 0
minimize {prgéel% po [u(x,0)] }

@ Implementation: define ambiguity set D, e.g.
e given presumed S D supp(pe) & moments of O: (g, Xo)
— Allow uncertainty in moments Delage & Ye, OR 2010

e given max KL-divergence between pg and a nominal py
Hu & Hong, 2013

@ Utility of PC methods

e Moment constraints accessible with PCE  Eldred, 1JUQ 2011
@ Connections to "Optimal UQ" Owhadi, SIAM Review 2013
@ Possible role for Maximum Entropy methods?
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Robust optimization

@ Set-based approach — support of uncertain parameter PDF
@ Protect against worse case scenario in the set

@ Learn set based on samples/historical-realizations of the
uncertain-parameters as RVs

@ Topics:

Role for PDF quantiles?

o PCE extrema

e Data-analysis/classification for establishing set boundaries
e PDF tail behavior — Extreme Value Theory
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The End
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