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Introduction

Explore connections between Optimization and
Uncertainty Quantification
Optimization problems in UQ

Inverse UQ
– Bayesian methods
– Statistical inverse problem
– Experimental design

Forward UQ
– Polynomial Chaos (PC) methods
– Sampling ... quadrature, response surface fitting

UQ problems in optimization
Forward model surrogate construction
Estimation of moments/probabilities in optimization under
uncertainty
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Statistical Inverse Problems

Estimation of model parameters/inputs given (noisy) data
on model output observables

– with quantified uncertainty in inferred parameters
Conventional deterministic context:

Model ym = f (x;λ), data y
Least squares fitting, minimizing residual ‖f (x;λ)− y‖
Regularization with suitable norms
End result is xBestFit

Statistical Bayesian context:
Use Bayes rule to infer parameter λ

Combine prior information with learning from data

Information on λ is in terms of a posterior density
conditioned on the data p(λ|y)
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Bayes formula for Parameter Inference

Data Model (fit model + noise model): y = f (λ) ∗ g(ε)

Bayes Formula:

p(λ, y) = p(λ|y)p(y) = p(y|λ)p(λ)

p(λ|y)
Posterior

=

Likelihood

p(y|λ)

Prior

p(λ)

p(y)
Evidence

Prior: knowledge of λ prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant for present context
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Exploring the Posterior

Given any sample λ, the un-normalized posterior
probability can be easily computed

p(λ|y) ∝ p(y|λ)p(λ)

Explore posterior w/ Markov Chain Monte Carlo (MCMC)
– Metropolis-Hastings algorithm:

Random walk with proposal PDF & rejection rules

– Computationally intensive, O(105) samples
– Each sample: evaluation of the forward model

Surrogate models

Evaluate moments/marginals from the MCMC statistics
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Optimization and MCMC

MCMC needs to get enough good λ-samples to describe
the posterior density well
Frequently, the focus is on a given mode/peak
– although generally multimodal
In order to get good samples of a particular peak, the
random walk needs to be directed to the vicinity of the
peak as efficiently as possible
The structure of the proposal distribution and the random
walk algorithm are crucial
Generally, this is about climbing the posterior density
towards its peak at the Maximum A-Posteriori (MAP)
parameter value, employing a random walk
Gradient & Hessian information is useful in this regard
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Optimal Experimental Design – Stochastic Optimization

Setup:
Choose experimental design x
Collect data y to estimate parameters θ

Challenge:
Choose an optimal design x∗ that maximizes the expected
information gain from the experiment

Bayesian formulation:

p(θ|y, x) = p(y|θ, x)p(θ|x) / p(y|x)

D(y, x) = DKL(p(·|y, x)‖p(·|x)) ≡
∫

p(θ|y, x) ln
p(θ|y, x)

p(θ|x)
dθ

U(x) = Ep(·|x)[D(y, x)] ≡
∫

D(y, x)p(y|x)dy

x∗ = argmax
x∈D

U(x)

A stochastic optimization problem
noisy random-sampling estimation of integrals for U(x)

SNL Najm Optim+UQ 8 / 33



intro optuq uqopt InvUQ fUQPC

Probabilistic Forward UQ & Polynomial Chaos
Representation of Random Variables

With y = f (x), x a random variable, estimate the RV y

Can describe a RV in terms of its
density, moments, characteristic function, or
as a function on a probability space

Constraining the analysis to RVs with finite variance
⇒ Represent RV as a spectral expansion in terms of

orthogonal functions of standard RVs
– Polynomial Chaos Expansion

Enables the use of available functional analysis methods
for forward UQ
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Polynomial Chaos Expansion (PCE)

Model uncertain quantities as random variables (RVs)
Given a germ ξ(ω) = {ξ1, · · · , ξn} – a set of i.i.d. RVs

– where p(ξ) is uniquely determined by its moments

Any RV in L2(Ω,S(ξ),P) can be written as a PCE:

u(x, t, ω) = f (x, t, ξ) '
P∑

k=0

uk(x, t)Ψk(ξ(ω))

– uk(x, t) are mode strengths
– Ψk() are multivariate functions orthogonal w.r.t. p(ξ)

With dimension n and order p: P + 1 =
(n + p)!

n!p!
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Orthogonality

By construction, the functions Ψk() are orthogonal with respect
to the density of ξ

uk(x, t) =
〈uΨk〉
〈Ψ2

k〉
=

1
〈Ψ2

k〉

∫
u(x, t;λ(ξ))Ψk(ξ) pξ(ξ) dξ

Examples:
Hermite polynomials with Gaussian basis
Legendre polynomials with Uniform basis, ...
Global versus Local PC methods

Adaptive domain decomposition of the support of ξ
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PC Illustration: WH PCE for a Lognormal RV

Wiener-Hermite
PCE constructed for
a Lognormal RV
PCE-sampled PDF
superposed on true
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Order = 1
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P∑
k=0

ukΨk(ξ)

= u0 + u1ξ

+ u2(ξ2 − 1) + u3(ξ3 − 3ξ) + u4(ξ4 − 6ξ2 + 3)

+ u5(ξ5 − 10ξ3 + 15ξ)
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PC Illustration: WH PCE for a Lognormal RV
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PC Illustration: WH PCE for a Lognormal RV
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PC Illustration: WH PCE for a Lognormal RV
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Essential Use of PC in UQ

Strategy:
Represent model parameters/solution as random variables
Construct PCEs for uncertain parameters
Evaluate PCEs for model outputs

Advantages:
Computational efficiency
Utility

Moments: E(u) = u0, var(u) =
∑P

k=1 u2
k〈Ψ2

k〉, . . .
Global Sensitivities – fractional variances, Sobol’ indices
Surrogate for forward model

Requirement:
RVs in L2, i.e. with finite variance, on (Ω,S(ξ),P)
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Intrusive PC UQ: A direct non-sampling method

Given model equations: M(u(x, t);λ) = 0

Express uncertain parameters/variables using PCEs

u =

P∑
k=0

ukΨk; λ =

P∑
k=0

λkΨk

Substitute in model equations; apply Galerkin projection

New set of equations: G(U(x, t),Λ) = 0

– with U = [u0, . . . , uP]T , Λ = [λ0, . . . , λP]T

Solving this deterministic system once provides the full
specification of uncertain model ouputs
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Non-intrusive PC UQ

Sampling-based
Relies on black-box utilization of the computational model
Evaluate projection integrals numerically
For any quantity of interest φ(x, t;λ) =

∑P
k=0 φk(x, t)Ψk(ξ)

φk(x, t) =
1〈

Ψ2
k

〉 ∫ φ(x, t;λ(ξ)) Ψk(ξ)pξ(ξ)dξ, k = 0, . . . ,P

Integrals can be evaluated using

A variety of (Quasi) Monte Carlo methods
– Slow convergence; ∼ indep. of dimensionality

Quadrature/Sparse-Quadrature methods
– Fast convergence; depends on dimensionality
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Optimal Sparse Quadrature – forward UQ

Integration problem, with x ∈ D ⊂ RN :

I =

∫
D

f (x) dx ≈ Î =

M∑
j=1

wj f (xj)

Optimization problem
Minimize number of (sparse) quadrature points, M
Optimize their locations and weights, {wj, xj}M

j=1

For a requisite integration accuracy, ‖I − Î‖ < ε

Regular domains – hypercubes Sinsbeck & Nowak, IJUQ 2015

Arbitrary domains Ryu & Boyd, Found. Comput. Math. 2015

By construction
f (x) model failure – unrealistic conditions
f (x) code failure – numerical stability / machine faults
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Greedy Sampling Algorithms

Find the optimal location for the next evaluation f (xk)

– given existing samples xj, j = 1, . . . , k − 1
Maximize expected reduction in error

– given one additional sample/batch-of-samples

Adaptive multilevel/hierarchical sparse quadrature
Selective evaluation of corner samples

Non-isotropic sparse quadrature
Dimension-adaptive sampling
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Interpolant/Regression Surrogates – Optimal Design

PCE or other surrogate functions built via
Interpolation
Least-squares regression – noisy forward models

– intrinsic noise
– discretization errors
– sample-averaging noise
– sparse samples

The optimal set of points – design
Minimize oscillations – particularly in Hi-D
Minimize cross-validation fit errors

Recent work (Narayan et al.)
Leja sequences for optimal interpolation in Hi-D
Optimal random sampling of design points for weighted
least-squares regression
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PC coefficients via sparse regression

PCE:

y = f (x) '
K−1∑
k=0

ckΨk(x)

with x ∈ Rn, Ψk max order p, and K = (p + n)!/p!/n!

N samples (x1, y1), . . . , (xN , yN)

Estimate K terms c0, . . . , cK−1, s.t.

min ||y− Ac||22

where y ∈ RN , c ∈ RK , Aik = Ψk(xi), A ∈ RN×K

With N << K ⇒ under-determined
Need some form of regularization
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Regularization – Compressive Sensing (CS)

`2-norm — Tikhonov regularization; Ridge regression:

min {‖y− Ac‖2
2 + ‖c‖2

2}

`1-norm — Compressive Sensing; LASSO; basis pursuit

min {‖y− Ac‖2
2 + ‖c‖1}

min {‖y− Ac‖2
2} subject to ‖c‖1 ≤ ε

min {‖c‖1} subject to ‖y− Ac‖2
2 ≤ ε

⇒ discovery of sparse signals
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Bayesian Regression

Bayes formula
p(c|D) ∝ p(D|c)π(c)

Bayesian regression: prior as a regularizer, e.g.
Log Likelihood⇔ ‖y− Ac‖2

2

Log Prior⇔ ‖c‖p
p

Laplace sparsity priors π(ck|α) = 1
2αe−|ck|/α

LASSO (Tibshirani 1996) ... formally:

min {‖y− Ac‖2
2 + λ‖c‖1}

Solution ∼ the posterior mode of c in the Bayesian model

y ∼ N (Ac, IN), ck ∼
1

2α
e−|ck|/α

Bayesian LASSO (Park & Casella 2008)

Bayesian compressive sensing (Ji 2008)
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PC Extrema Estimation – Global Optimization

Often it is important to establish PCE positivity

uPC(ξ) ≡
P∑

k=1

ukΨk(ξ)

umin ≡ min
ξ∈Ξ

uPC(ξ) > 0

A global optimization problem
Nonlinear
High-dimensional
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UQ Utility in Optimization

Deterministic optimization problems
– Model surrogates constructed using forward UQ

A wide range of UQ methods for efficient surrogate
construction in hi-D
Surrogates can be built over deterministic spaces
employing uniform RVs
Readily available surrogate gradient/hessian information

Optimization under uncertainty
Stochastic optimization
Distributionally Robust optimization
Robust optimization
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Stochastic Optimization

e.g. stochastic objective

minimize
x∈X

EpΘ [u(x, θ)]

subject to c(x) > 0

or penalize variability, and chance constraint

minimize
x∈X

EpΘ [u(x, θ)− γVar(u(x, θ))]

subject to P[c(x, θ) > 0] > 1− α

or minimize conditional value at risk (CVaR)

minimize
x∈X

EpΘ [u(x, θ)|u(x, θ) > u0]

subject to P[u(x, θ) < u0] = 1− α
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Stochastic Optimization – SAA

minimize
x∈X

{ U(x) ≡ EpΘ [u(x, θ)] }

where Θ ∼ pΘ(θ), θ ∈ Rn, X ⊂ RN

Presumes knowledge of pΘ(·)
Typically relies on sample averaged approximation (SAA)

U(x) ≈ Û(x) :=
1
K

K∑
k=1

u(x, θk)

Accurate Monte Carlo estimation requires large K
Û(x) is a noisy estimator of U(x)

Gradients of Û(x) challenging to estimate
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Stochastic Optimization with PCE

θPC(ξ) =
∑

k

αkΨk(ξ), uPC(x, ξ) =
∑

k

uk(x)Ψk(ξ)

Û(x) = Epξ [uPC(x, ξ)] = u0(x)

where
u0(x) =

∫
u pξdξ =

∑
i

wi u(x, θ(ξi))

is estimated using forward UQ methods
– perhaps intrusively, if u(x, θ) is relatively simple
– otherwise non-intrusive, e.g. sparse quadrature

Computational efficiency relative to Monte Carlo depends on
the dimensionality of θ
the θ-smoothness of u(x, θ)
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Gradients over the design space

Estimation of du0
dx requires

A functional representation of u0(x) to be differentiated, or
A hi-resolution estimation of uPC(xi, ξ), i = 1, . . . , Imesh, or
A PCE for du

dx (x, ξ), and hence gradients of the obj. func.

Alternatively, the PCE can be built over (x, ξ) Eldred, IJUQ 2011

uPC(x, ξ) =
∑

k

ukΨk(x, ξ)

Functional representation of uPC(x, ξ) over x is built-in
Easy access to gradients/hessians over x
But a higher dimensional forward UQ problem
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PCE in Power Grid Stochastic Optimization
Scenario Generation – Random Field (RF) Inputs

Power-grid optimization involves uncertainties
in both loads and alternative energy sources
The largest uncertainties are in wind and solar generation
Being uncertain functions of time, these are RFs

The Karhunen-Loeve expansion (KLE) provides an optimal
representation of RFs, capturing both mean & covariance

W(t, ω) = µ(t) +

∞∑
i=1

√
λiηi(ω)φi(t)

µ(t) is the mean of W(t, ω) at t

λi and φi(t) are the eigenvalues and eigenfunctions of the
covariance C(t1, t2) = 〈[W(t1, ω)− µ(t1)][W(t2, ω)− µ(t2)]〉
The ηi are uncorrelated zero-mean unit-variance RVs
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PCE in Power Grid Stochastic Optimization

Consider the Economic Dispatch problem
Given a set of generators online
Find optimal expected power generation schedules over the
next 24 hr
Feasibility and operational constraints

IEEE 118 bus system – 54 generators, 64 loads
3 generators replaced by wind farms
wind data from two sites in Wyoming and one in California
KLE⇒ 16-dimensional forward UQ problem
Minimum cost Q(x,W(t, ω)) ≈ QPC(x, η(ξ)) =

∑
k qk(x)Ψk(ξ)

Estimate PC coefficients using sparse quadrature
Expectation q0(x)
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Scenario Generation – Random Field (RF) Inputs
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Distributionally Robust Optimization (DRO)

Presumes imperfect knowledge of pΘ(·)
Consider pΘ ∈ D,

minimize
x∈X

{ max
pΘ∈D

EpΘ [u(x, θ)] }

Implementation: define ambiguity set D, e.g.
given presumed S ⊃ supp(pΘ) & moments of Θ: (µ0,Σ0)

– Allow uncertainty in moments Delage & Ye, OR 2010

given max KL-divergence between pΘ and a nominal p0
Hu & Hong, 2013

Utility of PC methods
Moment constraints accessible with PCE Eldred, IJUQ 2011

Connections to "Optimal UQ" Owhadi, SIAM Review 2013

Possible role for Maximum Entropy methods?
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Robust optimization

Set-based approach – support of uncertain parameter PDF
Protect against worse case scenario in the set
Learn set based on samples/historical-realizations of the
uncertain-parameters as RVs

Topics:
Role for PDF quantiles?
PCE extrema
Data-analysis/classification for establishing set boundaries
PDF tail behavior – Extreme Value Theory
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The End
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