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Dielectric / Semiconductor Metamaterials

® First theorized by Lewin in 1947
® Proc. Inst. Elec. Eng. 94 65 (1947)

® Dielectric particles exhibit Mie resonances
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Optical Dielectric Metamaterials

Particle Resonances Perfect / Magnetic Reflectors
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Kuznetsov et. al. Nano Lett (2012), Brener et. al. Optica (2014), Moitra et. al.
Evlyukhin et. al. Nano Lett (2012), ACS Phot. (2015)
Kivsha_r et. al. Nano Lett (2013)
Nonlinear Enhancement Metasurfaces
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Kivshar, Neshev et. al. Nano Lett (2014), Yang et. al. Nano Lett (2014),

ACS Phot. (2015 Brongersma, et. al. Science (2014)
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Spectral Response
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Moitra et. al. ACS Photonics, 2, 692-698 (2015)
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Fano-Resonant Metamaterials

High-Q Requirements - A 4 /
1. Minimize non-radiative damping (yz) N [ A £

2. | Minimize radiative damping (7z) A
Plasmonic Fano-resonant Metamaterials: wl xf i)/
. ‘X)‘
¢ D0m|nated by yNR: Q-faCtorS ~10 ulc ' 140 ' 1s|c ' 1slc ' zclno ' zzlo
Dielectric Fano-resonant Metamaterials: Giessen et al, Nat. Mat., 2010

* Reduced v,y , Q-factors ~100
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Zheludev et al, Opt. Expr., 2013



Dark and Bright Collective Modes

Resonator 2: Resonator 1:
“Dark” Mode “Bright” Mode
Key Points:

1. Reduction of y, increases the Q-factor =—=> minimize y,
2. Inthe limit of y, > 0, d7/dw a x! —  minimize x

Yang, Y. et. al. Nature Communications 5, 5753 (2014)
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Implementation in Silicon
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Implementation in Silicon
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Role of Coupling Coefficient
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Mesoscale Interactions - Experimental

qd 0.8
& i R
E 06 || :
E 0,4_:":5 __.:-'-'- ---------------- ~300x300
Eo.z_f-'f R . e f150a150
R A 100x100

Oy : ~ 50x50

Fi _T_ )
1300 1350 1400 77e0 /2020

Wavelength (nm)

® (Q-factor is strong function of # of

500
resonators 200
® Q-factor remains limited by radiative and £
non-radiative loss -
© 200
Yang, Y. et. al. Nature Communications 5, 5753 (2014) 100
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Third Harmonic Configuration
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Polycrystalline silicon on quartz
xo ~2.79%107*m?V?

r=210nm
g = 60nm
® t=120nm

Theoretical Q-factor: 1498
Experimental Q-factor: 466 0
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Third Harmonic Generation
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® THG Enhancement Factor of 1.5 x 10°

3w, MM
® Pump at 1350 nm, average power: 25mW EF = =
® Peak Intensity: 1.6 GW/cm? P3w,SiFi1m
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Absolute Conversion Efficiency

Peak Pump Intensity (GW cm™)
1 1.5 2 253
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Slope=3.04

THG Power (nW)
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Average Pump Power (mW)
® Peak efficiency = 1.2 x 10° (theory = 10%)
® Limit not yet clear (most likely TPA limited at higher power)

® Discrepancy with theory (1) lower Q-factor, (2) angle of incidence
dispersion

V VANDERBILT UNIVERSITY MRS Fall 2015




Conclusion

¢
*°*Si-Based Fano Metamaterials

* Low-loss, high efficiency

* Offer real advantages over metal

implementations (higher Q, damage
threshold)

° Potential nonlinear applications: all pur—-
optical modulation and self-adjusting PR LI FRS
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Comparison to PC Slabs

® Advantages of MM Approach
* Ability to control Q-factor
* Field localization

® Disadvantages of MM Approach
®* Complex structure = lower Q-factor Leeet.al. PRL 109, 067401 (2012)
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See also: Paddon et. al. PRB (2000), Ochiai et. al. PRB (2001), Fan et. al. PRB (2002)
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Dispersion with Angle of Incidence
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Focusing the Field
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p; = 750nm| Experimental Q-factor: 129
p,=3800nm|Theoretical Q-factor: 374
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Nonlinear Measurements

Lock-in Amplifier
Chopper Controller

Tungsten-Halogen
Lamp

Chameleon Ti-Sapphire Laser Half Waveplate €
+Mira OPO +Polarizer
80MHz, 250fs, 1-1.6pum

PMT

Multiphoton Filter

Sample

Spectrometer

o < Objective Objective o
Chopper  Flip Mirror 5% 0.1 4NA1 60x, 0.95NA Flip Mirror

llumination
diameter: 15um
(225 um?)
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