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The Z machine is an impressive MJ class, pulse-power        
driver that is being used to study a megneto-ICF concept 
known as Magnetized Liner Interial Fusion (MagLIF)1.
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1S.A. Slutz et. al., PoP 2010
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The Magnetized Liner Inertial Fusion (MagLIF) platform1

has motivated the development of high-sensitivity, x-ray 
diagnostics for measurements of morphology, Te, and ne

of the  stagnation plasma.
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High-sensitivity x-ray imaging and spectroscopy is made  
possible through the use of spherical crystals that collect 
and focus incident x-rays.

Diagnostic Layout
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The crystal imager images the continuum emission 
generated by the compressed deuterium fuel at stagnation.  

 These time-integrated images are 
primarily a superposition of 6.2 
and 9.4 keV x-rays imaged by n=2 
and n=3 Bragg reflections.

 The emission column is narrow 
and extends over many mm in 
the vertical direction. The 
emission undergoes large 
variations in intensity.

z2839
YDD = 3.2e12

z2707
YDD = 2.8e11
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The average emission diameter appears to increase for 
shots with higher DD neutron yields.* Variations in the    
axial emission intensity still require an explanation.
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Emission Diameter vs. Shot Number
z2839

YDD = 3.2e12
z2707

YDD = 2.8e11

*Diameter was defined using a contour that encloses 85% of the signal from the CoM position.

Ray tracing indicates that this small 
increase in diameter is detectable even 
though the radial resolution is 60 μm.
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Simple SPECT3D* simulations that included the 
imager response function, indicate that the emission 
variations are affected by the liner opacity.
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Radial emission profiles from SPECT3D
that include the imager response function.

SPECT3D setup

D emission

Be

Deuterium core
100 μm dia. 
Te=Ti= 2.5 keV
0.4 g/cc

Be
0.5 mm thick
Te=Ti= 0.01 keV
18.5 g/cc

The 6.2 and 9.4 keV contributions are affected 
by the Be opacity, so bright spots are not 
necessarily the hottest part of the plasma.*SPECT3D is a collisional-radiative spectral analysis code 

produced by Prism Computational Sciences, Inc. 
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To attempt to explain the intensity variations, a spherical 
crystal spectrometer was designed to capture Fe spectra in 
order to infer axial variations of Te and ne.

 The Be stock material 
contains 100 ppm (0.01% 
atomic) of Fe that originate 
from the manufacturing 
process.

 The Fe appears as micron-
sized impurities that are 
uniformly distributed on the 
visible surfaces.  We are 
assuming it is uniform in the 
bulk.
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The emission from the He-like Fe charge state (hν = 6.7 
keV) was observed.  Bright Fe emission appears near 
the same axial positions as the bright portions of the 
crystal imager.
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z2839: Fe/Ni Spectra from the Spherical Crystal 
Spectrometer
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The high-resolution Fe spectra enable a measurement          
of Te and ne by fitting simulated spectra to the measured  
satellite (j,k), intercombination (y) and resonance (w) lines.

10

Inferred values

Te = 1.5 keV
ne = 1.2e23 cm-3

Te = 1.6 keV
ne = 1.7e23 cm-3

Te = 1.4 keV
ne = 2.0e23 cm-3

Experimental spectra fitted with PrismSPECT
simulations using E/ΔE = 3000.
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Here the regions of bright Fe emission are lower density suggesting the increased 
brightness may be related to an elevated fraction of Fe mix.   
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The sensitivity and energy range were increased on 
subsequent shots, which revealed He-like Ni emission        
and the Fe He-β spectral line. 
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Fitting reveals similar Te and ne values, but now the            
dimmer regions are less dense. 
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Inferred values

Te = 1.6 keV *

ne = 2.9e22 cm-3

*Fitting accuracy maybe 
compromised by source 
broadening.

Te = 1.5 keV
ne = 1.7e23 cm-3

Te = 1.3 keV
ne = 2.9e22 cm-3

Experimental spectra fitted with PrismSPECT
simulations using E/ΔE = 3000.
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The large variation in ne for two adjacent regions suggest that the 
compression uniformity may need improvement.
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Summary:  The spherical crystal imager and 
spectrometer are providing valuable insight into the 
morphology and conditions of the stagnation plasma. 

 The crystal imager provides the size       
of the stagnation plasma.

 The spectrometer provides a 
measurement of Te and ne.

 Future work includes:
 Absolute calibration of the Fe spectra to measure mix.   Also 

possible to use continuum emission (see S.B. Hansen HEDSA talk).

 SPECT3D simulations with Te and ne gradients.

 Increase the imager resolution by 2x to 30 μm to better define the 
width of the column.
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Backups
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Snapshot of the processed data.
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The integrated line intensity ratio of the Fe resonance (w) 
to intercombination (y) line show sensitivity to fuel density.  
Fit density first, then temperature.
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The integrated line intensity ratio of the Fe resonance (w) 
to satellite line j (or k) show sensitivity to fuel Te.
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Increasing density 
from 0.1 to 1 g/cc

In
te

n
s
it
y 

R
a

ti
o

 o
f 
w

 a
n

d
 j 

lin
e

s

Temperature (eV)

w

j
k

y

10% uncertainty in line ratio 
measurement yields 2.5 keV +/- 0.3 keV
(12% uncertainty) w/density uncertainty 
included.



E.C. Harding DPP 2015

The width of the Fe He-beta line shows some sensitivity 
to fuel density. With increases ~ 0.3 eV per 0.1 g/cc.  Doppler 
broadening will also increase the width.
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