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The United States ICF program is pursuing three e,
main approaches to ignition

Magnetically-driven
Radiation-driven implosions || Laser-driven implosions implosions
235 Mmners

Ablator, low-density
foam or solid

Solid or
liquid fuel

Gas at vapor
pressure of
solid or
liquid fuel

Laser

Magnetization Heating Compression




We are presently using the Z facility to study the )
Magnetized Liner Inertial Fusion (MagLIF) concept
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1. A10-50 T axial magnetic field (B,) is
applied (~3-ms rise time) to inhibit thermal
conduction losses and to enhance alpha
particle deposition

Liner (Li, Be, or Al)

-+ “ Cold DD or DT gas (fuel)
1 “( 'i
1
| ZBL
preheated

fuel

B, coils
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2. ZBL preheats the fuel to ‘ “
~100-250 eV to reduce the

required compression to
CR=20-30

AP
i

Z fl
(A?EV:;L)OW 3. Z drive current and By field implode the liner

(via z-pinch) at 50-100 km/s, compressing the
fuel and B, field by factors of 1000

With DT fuel, simulations indicate scientific breakeven may be possible on Z
(fusion energy out = energy deposited in fusion fuel)

S. A. Slutz et al., PoP 17, 056303 (2010). S. A. Slutz and R. A. Vesey, PRL 108, 025003 (2012).



MagLIF Timing Overview i) o
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~ 60—100-ns implosion times

~ adiabatic fuel compression (thus preheating the fuel is necessary)
~ 5-keV fuel stagnation temperatures

~ 1-g/cc fuel stagnation densities

~ 5-Gbar fuel stagnation pressures
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We have developed a semi-analytic model of MagLIF (SAMM) (rh) iow

= Developed with the “interested student” in mind
= System of 2N +13 ordinary differential equations that are straight forward to solve
with MATLAB, IDL, Mathematica, etc.

= ~30 seconds/simulation on a laptop
= ~3000 simulations in ~10 minutes using Sandia cluster (good for parameter scans)
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R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015).
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R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015).



(a) cf. Fig. 4 in Ref. 1 (e) cf. Fig. 7 in Ref. 1 (i) cf. Fig. 11 in Ref. 1
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SAMM Verification: 7
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(Rad-MHD contour plots
courtesy of R. A. Vesey)
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“2010 Point Design” Efficiencies: )

2010 Point Design:
DT fuel, 8 kJ preheat, 30 T, 27 MA, and
95-kV Marx Charge (~25 MJ stored)

Modified 2010 Point Design:
Li liner and r,,o=r /4

(a) Be liner, r ho=" (c) Liliner, rph0=rgo/4
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2014 Experiments: 7 i

» Preheat scans for recent MagLIF experiments ["afz,(:gﬂ,ies
10 E L v v L v v ','—'L.'LE-
= 2014 Experiments are those described in T Zz=T - -4
M. R. Gomez et al., Phys. Rev. Lett., 113, 133 (a) Clean = ;
155003 (2014). 10°F E
ke i :
2 1| Similarto A. B.
= DDF - - > 10"? 4
uel, 10 T, 2-kJ laser, 18 MA, and 80-kV ~ 10"} 1 L Sefkow etal.
Marx charge (~18 MJ stored) g _ ] Phys. Plasmas
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i L 5 . ]
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laser entrance channel above the o §
imploding region, ~500 ) could have & 102l /A
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2014 Experiments: i) S
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= DD Fuel, 10T, 2-kJ laser, 18 MA, 2 x 1012 DD neutrons:
= 155 ] of preheat energy, clean

= 396 J of preheat with 10% Be mix (by atom)

;
J

Fono<fg(ton) results in a fuel structure with two regions:

= A hotspot region with fusion-relevant temperatures at stagnation

= A cold dense shelf region that surrounds the hotspot and provides a buffer region between the
hot fuel and the liner, which reduces radiative, thermal conduction, and magnetic flux losses
from the fuel to the liner

(a) Clean simulation of Z 2591 w/ Eph=155J  (b) Simulation profiles for Z 2591 during laser preheating (c) Simulation profiles for Z 2591 at peak burn
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Near-term MagLIF parameter space: )

(a) DD fuel, I=20MA, B, =10T, r, =0.25r_ (c) DD fuel, I=20MA, B, =30T, r  =0.25r (e) DT fuel, 1=20MA, B =30T, 1. =0.25r
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MagLIF Scans for Z300 & Z800: ) s,
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Z2300:

= 320 TW delivered
= 48 M stored
=48 MA

= 120-150 ns rise

LTD-based = 35 m in diameter (size of Z today)
architectures

|
k
|
k

e

2800: —
= 890 TW delivered
= 130 MJ stored

=" 60-65 MA

= 110-120 ns rise

= 52 min diameter

NN

W. A. Stygar et al., manuscript accepted for publication in Phys. Rev. ST Accel. Beams (2015).



MagLIF Scans for Z300 & Z800: )
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(a) DT fuel, I=47MA, Bzo=15T’ rpho=0.16rgo (b) DT fuel, I=47MA, Bzo=30T’ rpho=0.16rgo (c) DT fuel, I=47MA, Bz0=50T’ rpho=0.16rgo
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MagLIF Scans for Z300 & Z800:

Particularly for large drive currents,
setting r,,,=ry, is not optimal due to
increased radiative losses:

P.,(r) = Ay - 27h - Zs / niner/ Ly
0

Poo(r) = (1 —ay)oTi(r) - 2nr - h

z=h
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MagLIF Scans for Z300 & Z800:

Z2300:
= 48 MJ stored
4.3 MJ absorbed by target

2800:
= 130 MJ stored
= 8.2 MJ absorbed by target

38 MJ fusion energy (w/ 9 kJ preheat)
77 M) fusion energy (w/ 20 kJ preheat)

= 218 M fusion energy (w/
30 kJ preheat)
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Summary & Conclusions )
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= The development and use of this semi-analytic model has been a fun,
useful, and insightful exercise
= Led to several physical insights, including the relationship between the preheat radius
and bremsstrahlung loss rates
= This model’s accessible physics and fast run times (~30 seconds/simulation
unoptimized) make it a useful pedagogical tool, especially for students,
experimentalists, or any researcher interested in MagLIF

= For more details on this model and its uses, see manuscripts (and pinups):

= R.D.McBride and S. A. Slutz, “A semi-analytic model of magnetized liner inertial fusion”,
Phys. Plasmas 22, 052708 (2015).

= R.D. McBride et al., “Exploring magnetized liner inertial fusion with a semi-analytic
model”, submitted to Phys. Plasmas (2015).



