1The CU 2D-MAX-DOAS instrument - part 2: Raman Scattering Probability Measurements and 2Retrieval of Aerosol Optical Properties

4Ivan Ortega^{1,2}, Sean Coburn^{1,2}, Larry K. Berg³, Kathy Lantz^{2,4}, Joseph Michalsky^{2,4}, Richard A. 5Ferrare⁵, Johnathan W. Hair⁵, Chris A. Hostetler⁵, and Rainer Volkamer^{1,2}

6

7¹Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA

8²Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, CO, USA

9³Pacific Northwest National Laboratory, Richland, WA, USA

10⁴Global Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO, USA

11⁵NASA Langley Research Center, Hampton, VA, USA

12

13*Correspondence to:* Rainer Volkamer (<u>rainer.volkamer@colorado.edu</u>)

14

15 Abstract

16The multiannual global mean of aerosol optical depth at 550 nm (AOD₅₅₀) over land is ~0.19, and that 17over oceans is ~0.13. About 45% of the Earth surface shows AOD₅₅₀ smaller than 0.1. There is a need 18 for measurement techniques that are optimized to measure aerosol optical properties under low AOD 19conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to 20simultaneously measure AOD and the aerosol phase function parameter, q, based on measurements of 21azimuth distributions of the Raman Scattering Probability (RSP), the near-absolute Rotational Raman 22Scattering (RRS) intensity. We employ Radiative Transfer Model simulations to show that solar 23azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is 24insensitive to the vertical distribution of aerosols, and maximally sensitive to changes in AOD and g25under near molecular scattering conditions. The University of Colorado two dimensional Multi-AXis 26Differential Optical Absorption Spectroscopy (CU 2D-MAX-DOAS) instrument was deployed as part 27of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure 28direct sun spectra, and RSP from scattered light spectra at solar relative azimuth angles (SRAA) 29between 5° and 170°. During two case study days with (1) high aerosol load (17 July, $0.3 < AOD_{430} <$ 300.6) and (2) near-molecular scattering conditions (22 July, $AOD_{430} < 0.13$) we compare RSP based 31retrievals of AOD₄₃₀ and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating 32Shadowband Radiometer (MFRSR), and airborne High Spectral Resolution Lidar (HSRL-2). The

33average difference (relative to DOAS) for AOD₄₃₀ is: $\pm 0.012 \pm 0.023$ (CIMEL), $\pm 0.012 \pm 0.012 \pm 0.024$ 34(MFRSR), $\pm 0.011 \pm 0.014$ (HSRL-2), and $\pm 0.023 \pm 0.013$ (CIMEL_{AOD} – MFSRS_{AOD}); and yields the 35following expressions for correlations between different instruments: DOAS_{AOD} = $\pm 0.019 \pm 0.006$ + 36(1.03 ± 0.02)·CIMEL_{AOD} (R² = 0.98), DOAS_{AOD} = $\pm 0.006 \pm 0.005$ + (1.08 ± 0.02)·MFRSR_{AOD} (R² = 370.98), and CIMEL_{AOD} = (0.013 ± 0.004) + (1.05 ± 0.01)·MFRSR_{AOD} (R² = 0.99). The average ± 0.004 g 38measured by DOAS on both days was 0.66 ± 0.03 , with a difference of 0.014 ± 0.05 compared to 39CIMEL. Active steps to minimize the error in the RSP help to reduce the uncertainty in retrievals of 40AOD and ± 0.004 g. As AOD decreases, and SZA increases the RSP signal-to-noise ratio increases. At AOD₄₃₀ 41~ 0.4 and 0.10 the absolute AOD errors are ~0.014 and 0.003 at 70° SZA, and 0.02 and 0.004 at 35° 42SZA. Inherently calibrated, precise AOD and ± 0.004 g measurements are useful to better characterize the 43aerosol direct effect in urban polluted and remote pristine environments.

44

451. Introduction

46Atmospheric aerosol particles play a key role in the energy balance of Earth's atmosphere (IPCC, 472013). The aerosol optical depth (AOD), defined as a vertical integral of the aerosol extinction 48coefficient from the earth surface to the top of the atmosphere, is an important input to assessments of 49how the atmospheric aerosol burden affects the budget of incoming solar radiation in global climate 50models (Hansen et al., 2002; Chung et al., 2005; McComiskey et al., 2008). McComiskey et al. (2008) 51studied the sensitivity of aerosol direct radiative forcing using representative uncertainties in currently 52established methods to measure aerosol optical properties. For a typical AOD uncertainty of 0.01 (best 53case scenario expected for newly calibrated ground based radiometric instrument in the visible spectra 54range; Eck et al., 1999; Holben et al., 1998), the error in the aerosol direct forcing is about 0.6 W·m⁻² 55(top of the atmosphere) and 1.3 W·m⁻² (surface) for a solar zenith angle (SZA) of 45° (McComiskey et 56al., 2008). The multiannual global mean AOD₅₅₀ estimated from satellites find that about 28% and 43% 570f the land surface, and 15% and 46% of the ocean surface have AOD \leq 0.05, and \leq 0.1 (Remer et al., 582008); current ground based networks capture frequent AOD values below 0.15 (Holben et al., 2001; 59Augustine et al., 2008; Michalsky et al., 2010; Mao et al., 2014). Low AOD conditions are projected to 60be more prevalent in the future (Westervelt et al., 2015). Under these conditions measurements of AOD 61with higher accuracy and precision are even more desirable.

62Traditional AOD measurements often employ radiometric calibrated instruments, e.g., CIMEL sun 63photometer (Holben et al., 1998) and multifilter rotating shadowband radiometer (MFRSR) (Harrison et

64al., 1994). In general, the retrieval of AOD is estimated based on the extinction of the direct sun 65irradiance measurements. The quality of such measurements is improved under high AOD and cloud 66free conditions. On the other hand, under molecular scattering conditions, i.e., $AOD_{430} < 0.13$ (= 67Rayleigh scattering extinction under overhead sun conditions), the measurements become subject to 68higher relative uncertainties (Holben et al., 1998). Holben et al. (1998) pointed out that the error in 69AOD by means of solar sky brightness (scattering) in the solar aureole region may be lower than 70traditional direct sun extinction methods. However, to our knowledge, this has not previously been 71exploited in measurements to date.

72Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) can simultaneously retrieve 73trace gases and aerosol optical properties (Hönninger et al., 2004; Wagner et al., 2004; Frieß et al., 742006; Clémer et al., 2010). The MAX-DOAS technique relies on spectrally resolved solar scattered 75light measurements at several elevation angles (EA), defined between the horizon and zenith 76(Hönninger et al., 2004). The retrieval approach does not require radiometric calibration, and the trace 77gases and aerosol optical properties are measured relative to a reference spectrum, typically recorded in 78the zenith. Measurements at low EA have maximum sensitivity in the lowermost part of the 79atmosphere. More recently, two dimensional (2D) MAX-DOAS has been shown to be a promising 80technique to measure the trace gas variability around the measurement site from scattered light spectra 81at different Azimuth Angles (AA), defined relative to North (Wang et al., 2014; Ortega et al., 2015). 82The University of Colorado (CU-) 2D-MAX-DOAS instrument has demonstrated range resolved 83measurements of NO₂ and oxygenated hydrocarbons from azimuth scans at low EA. The spatial scale 84probed by 2D-MAX-DOAS closely resembles the grid-cell size of atmospheric models and satellite 85pixels, and can be used to systematically characterize chemical gradients under inhomogeneous 86conditions (Ortega et al., 2015).

87In this paper we exploit solar azimuth scattered light and direct-sun measurements to assess aerosol 88column properties using solar almucantar measurements. The information content regarding aerosol 89properties using this geometry has been discussed in detail for radiance measurements with single 90wavelength channel detectors elsewhere (Box and Deepak, 1979; Nakajima et al., 1983; Kaufman et al., 911994; Bohren and Huffman, 1998; Dubovik et al., 2000). We use solar almucantar scans in combination 92with hyperspectral measurements, and describe a new retrieval scheme to estimate AOD_{430} and aerosol 93phase functions (simplified by g, Henyey-Greenstein (HG) approximation) based on quantitative 94analysis of the Rotational Raman Scattering (RRS) by atmospheric molecules (Ring effect) (Grainger

95and Ring, 1962; Chance and Spurr, 1997). RRS causes "filling-in" of the solar Fraunhofer lines, and 96has to be taken into account to accurately estimate absorption of trace gases using passive DOAS 97techniques (Platt and Stutz, 2008). Several studies have described the quantitative analysis of RRS and 98its effect in solar scattering UV-Vis observations (Vountas et al., 1998, 2003; de Beek et al., 2001; 99Langford et al., 2007). The quantitative analysis of RRS by DOAS was introduced by Wagner et al. 100(2004, 2009a) with the so-called "Raman Scattering Probability" (RSP) (the probability that a detected 101photon has undergone a rotational Raman scattering event). Under cloud free conditions the AOD has a 102strong effect on the RSP, which further exhibits a high dependency on the solar relative azimuth angle 103(Wagner et al., 2009b; Wagner et al., 2014). To the best of our knowledge, there has been no previous 104measurement of AOD and *q* using almucantar scans of RSP by MAX-DOAS.

1052. Experimental

1062.1 The TCAP field campaign

107The first phase of the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) field 108campaign took place at Cape Cod, MA during the summer of 2012 (Berg et al., 2015). TCAP was 109designed to provide a comprehensive characterization of the aerosol direct and indirect effects under 110urban emission influences near the east coast of North America (over Cape Cod, MA), and to contrast it 111with observations in pristine conditions over the Atlantic Ocean. An extensive set of aerosol 112measurements were conducted aboard two research aircrafts (DOE G-1 and NASA B200) and with the 113DOE Atmospheric Radiation Measurement (ARM) ground Mobile Facility (located over Cape Cod, 114MA, U.S.); for details see Berg et al. (2015). The CU 2D-MAX-DOAS was deployed at the ARM 115ground site from 1 July to 13 August 2012 to test its innovative capabilities to measure aerosol optical 116properties and trace gases simultaneously with a single instrument. Here, we focus primarily on 22 July 1172012 due to its low AOD and cloud free conditions, and the available complementary data (Berg et al., 1182015; Ortega et al., 2016). The retrieval approach is also applied for a high AOD case study on 17 July 1192012. The TCAP data set provides an excellent opportunity to evaluate the robustness of the RSP-based 120retrieval approach and to compare the products with independent instruments. Table 1 and Section 2.6 121present other measurements and products used in this work.

122

1232.2 2D-MAX-DOAS measurements

124The 2D-MAX-DOAS telescope and detection system has been described in detail elsewhere (Ortega et 125al., 2015). The angles defining the geometry of measurements are illustrated in Fig. 1. The CU 2D

126-MAX-DOAS instrument conducts measurements in three different modes: (1) off-axis scan where 127several elevation angles (EA) and zenith are used with a fixed azimuth angle (AA) relative to north; (2) 128almucantar scan, where solar scattered photons are collected using any EA for multiple solar relative 129azimuth angles (SRAA). To further enhance the aerosol information content and estimate uniformity 130(homogeneity) around the measurement site the almucantar scan is carried out on the left and right side 131of the solar disc. Up to now, this particular geometry has not been used with MAX-DOAS, however it 132is widely used by the CIMEL sun photometer using single wavelength channel detectors at solar 133elevation (EA = 90° - SZA) (Holben et al., 1998); and (3) direct sun observations, which inherently 134minimize RSP.

135The 2D-MAX-DOAS instrument deployed during TCAP at the ARM Mobile Facility consisted of three 136synchronized spectrograph/detector units located indoors in a temperature controlled sea container, the 137control measurement laptop, and the 2D telescope located outdoors. The telescope was deployed on top 138of one seatainer (~45 m ASL) providing an unobstructed view close to the horizon in a ~360° azimuth 139view. The only small obstruction in the azimuth scan was an independent sampling inlet pillar located 140in the middle of the seatainer. The light collected with the telescope was focused onto a single 141CeramOptics 25 m x 1.0 mm silica mono fiber coupled to a tri-furcated fiber bundle connected to three 142Ocean Optics (QE65000) spectrometers collecting solar light between 300 and 631 nm with a spectral 143resolution between 0.4 - 0.6 nm (FWHM). The same spectrometer system was used in the remote 144Pacific Tropical Ocean for the detection of glyoxal (Sinreich et al., 2010). The electronic rack 145containing the spectrograph/detectors was temperature controlled (34 °C, 0.005 °C peak to peak 146variation) and CCDs cooled to -30 °C to minimize dark current.

1472.2.1 Configuration of the azimuth scan

148The instrument was configured to conduct measurements of direct sunlight, and scattered sunlight using 149a sequence of EA and AA pairs described in Table 2. The off-axis scan consisted of 7 EAs and zenith, 150and spectra were recorded using an integration time of 1 min at each angle alternating South and North 151AAs (total acquisition time of 16 - 17 min). This specific geometry was used in order to know the 152effect of elevated aerosol layers in the apparent absorption of the oxygen collision complex (O_2 - O_2) as 153seen by the 2D-MAX-DOAS (Ortega et al., 2016). At the end of the EA scan, the almucantar scan was 154implemented with an integration time of 1 s with 70 angles relative to the sun in steps of 5° up to 180° 155on the left and right sides of the solar disk at solar EA. The almucantar scan was repeated for a fixed 156EA of 45° . The total acquisition time of the azimuth scan was 2 - 3 min. In this work, we focus only on

157the almucantar scan at solar EA. The advantages of evaluating azimuth scan at solar EA consist in the 158enhanced sensitivity towards aerosol phase functions and minimizing the effect of aerosol 159inhomogeneity at small SZA. The full measurement cycle between EA and almucantar scans took about 16020 min and was repeated sequentially. The initial solar almucantar alignment procedure to achieve 161pointing accuracy better than the motors internal encoder resolution (0.17°) is described in detail by 162Ortega et al. (2015). Briefly, the initial alignment is carried out in the field by measuring rapid (1 s, 163integration time) solar scattered spectra with several small SRAA (usually -5° < SRAA < 5°, negative 164SRAAs are left and positive values are right side of the sun). The alignment is achieved when 165measurements of intensities (in counts·s⁻¹) on the right and left sides present symmetry and the offset 166estimated with a Gaussian fit of the intensities at the center of the sun's disk is small (< 0.17°) and 167accounted in the software. To avoid saturation of the detector, this alignment procedure was performed 168below and above the sun position (see Fig. 2 in Ortega et al., 2015). The telescope field of view (FOV) 169of this viewing port was determined by introducing light into the fiber retrospectively from the exit 170side, and the divergence of the light after exiting the telescope was evaluated to have a full opening 171angle of 0.6° in agreement with the theoretical FOV based on the experimental field setup.

1722.2.2 Direct sun mode

173During the first phase of TCAP, for cloud-free days, direct sun spectra were recorded periodically with 174a total integration time of 2 - 4 min. In order to reduce the intensity of the direct sun beam and avoid 175saturation of the detector the light is collected via an integrating sphere with a diameter of 2.54 cm. The 176sphere also serves for correcting pointing inaccuracies and atmospheric lens effects (Herman et al., 1772009). To minimize the contribution of solar scattered photons in the direct sun mode a black anodized 178collimator tube with a full opening angle of 2.9° was used. A sketch of the optics housed integrating the 179direct sun and azimuth ports is shown in Fig.1 in Ortega et al. (2015). The custom software developed 180in LabView uses the exact coordinate location and heading (defined as zero corresponding to true 181north) to operate the 2D telescope. This information is used as Euler angles to correct the astronomical 182solar position and locate the sun in the sky. This step is similar to the crude alignment of advanced solar 183trackers, which apply active imaging of the solar disk for precise pointing (Gisi et al., 2011; Baidar et 184al; 2015). We do not aim to track the sun in this work. The purpose of the direct sun mode is to obtain 185spectra that are near-free of RRS, and use these direct sun spectra as reference spectra in the retrieval of 186RSP. To assess pointing accuracy of the direct sun observation we use the solar azimuth scan alignment 187as explained in section 2.2.1.

1882.3 DOAS retrieval of differential RSP and intensities

189The main products retrieved with the solar azimuth scan are the non-calibrated spectral intensities (I_{norm}) 190and the strength of RRS by atmospheric molecules (RSP). The spectra intensities were corrected by 191electronic offset and dark current, and the number of CCD-pixel counts were normalized by the 192integration time (units of counts·s⁻¹) at a certain wavelength (λ). These normalized I_{norm} are used for 193quality assurance of homogeneity and to calculate pointing accuracy only. The differential RSP (dRSP; 194differential with regards to the amount contained in the reference spectrum) was retrieved by its 195specific narrow band signatures (< 1 nm) at UV-Vis wavelengths (Fig. 2), which are separated well 196from broadband molecule and aerosol extinction using the DOAS method (Platt and Stutz, 2008). We 197follow the retrieval strategy introduced in Wagner et al. (2009a) and apply the DOAS settings from 198Wagner et al. (2009b) to retrieve the RSP in the fitting window of 426 – 440 nm. The only atmospheric 199cross section absorber adjusted to the spectrometer resolution that is included in the analysis is NO₂ 200(Bogumil et al., 2003). A third order polynomial is fitted to account for broad band spectral structures. 201A direct sun spectrum recorded at low SZA (28°) on 22 July 2012 is used as reference spectrum to 202evaluate the dRSP in the azimuth scan mode. The Ring cross section is calculated from the respective 203sun-observation spectrum using the DOASIS software (Kraus, 2006), which then is normalized by 204removing the continuum component with a third order polynomial high pass filter (Wagner et al., 2052009a). The spectra were analyzed using the WinDOAS software package (Fayt and Van Roozendael, 2062001).

207Examples of the DOAS fit analysis are shown in Fig. 2 and Fig. S1. Systematic errors in the retrieval of 208dRSP were quantified by means of sensitivity studies. The sensitivity of the DOAS settings were 209explored by changing the wavelength intervals and polynomial orders in a similar way as performed by 210Vogel et al. (2013). These sensitivity tests reveal a remarkable stability towards changing the DOAS 211fitting window using different polynomial orders, for small and high SRAAs, and different SZAs (see 212Fig. S2-S4; difference < 5%; the same analysis in the UV, Fig. S5, yields two times greater DOAS fit 213error and root mean square (RMS) due to the smaller signal to noise ratio achieved with 1 s integration 214time). The typical value of the dRSP fit error is ~0.0018, calculated internally in WinDOAS as the 215standard deviations on the retrieved dRSP; it interestingly does not depend strongly on the SRAA (see 216Figures S1 and S6). We adopted this uncertainty in the final error propagation of the aerosol optical 217properties (see section 3.3.1). Sensitivity towards fitting an intensity offset (to correct for stray light) 218has been carried out. However, the magnitude of the RSP become noisier and extremely high (about 2

219times greater), which are not supported by our radiative transfer simulations (see section 2.4).

220Figure 3 shows typical examples of the measurements of dRSP and I_{norm} obtained with the solar azimuth 221scan (mode 2) for three different SZAs. The SRAA scan is from -180° (left side of the sun) to +180° 222(right side of the sun). The dRSP decreases for small SRAAs due to fewer scattering events by 223molecules and a dominant aerosol forward scattering. On the other hand the I_{norm} increases for small 224SRAAs due to the strong probability of aerosol scattering in the forward direction. The second 225important aspect is the SZA dependency. Previous studies have established the relationship between the 226SRAA, SZA and the effective aerosol scattering angles (Nakajima et al., 1996; Torres et al., 2013). In 227general, the information content of the azimuth scan is maximized by using high SZAs. The maximum 228dRSP values (corresponding to a minimum I_{norm}) are shown at SRAA of 100° (for SZA = 66°), which 229indicates to some degree the high sensitivity to aerosol scattering processes (aerosol phase function). 230The dRSP decreases for low SZA (blue circles).

2312.4 Radiative Transfer Simulations

232We use the full spherical Monte-Carlo atmospheric radiative transfer model (McArtim) (Deutschmann 233et al., 2011) to simulate and interpret the measurements. McArtim has been successfully tested and 234compared with other radiative transfer models (Wagner et al., 2007). McArtim simulates atmospheric 235photon transfer using the optical properties described by several input parameters such as vertical 236profiles of pressure, temperature, and aerosol extinction characterized with aerosol phase functions, 237typically represented by q, and single scattering albedo (SSA). McArtim calculates the absolute RSP 238using the fraction of scattering events that have presented RRS (inelastic scattering). Reflection at the 239surface is characterized with the surface albedo (SA) and is treated as Lambertian. The modeled RSP 240from McArtim has been previously characterized and used in several studies (Wagner et al., 2009b; 241Wagner et al., 2010; Wagner et al., 2014). Several general input parameters are required and kept 242constant in the forward modeling. An altitude grid of 100 m up to 10 km, 200 m up to 50 km, and 5 km 243up to 100 km was used. The FOV was set to 0.6° (similar to the full opening angle of the telescope, see 244section 2.2.1). The wavelength chosen to forward model the RSP is 430 nm representing the middle 245wayelength of the fitting window and characteristic Ca-lines of the Fraunhofer spectrum (Wagner et al., 2462010). In this section we describe the different sensitivity studies that were performed in order to 247understand the effect of aerosol optical properties in the measured RSP using the solar azimuth scan 248geometry. For the sensitivity studies we use the pressure, temperature, and RH profiles taken from the 249U.S Standard Atmosphere. We have adopted the geometry of typical 2D-MAX-DOAS measurement 250taken from TCAP, i.e., similar SRAA angles (-180 to +180°) and SZA ranges.

251

2522.4.1 Sensitivity of RSP to aerosol distribution

253Figure 4A presents the effect of AOD on the simulation of RSP in the azimuth scan for a single SZA 254(70°). Additional input properties are SSA = 0.98, q = 0.70, SA = 0.05, and homogeneous extinction 255height of 1.5 km. As expected (see Fig. 3), the RSP decreases and the radiance increases for angles 256close to the sun (see Fig. 4A). In general, the RSP decreases with increasing AOD due to the decrease 257of molecular scattering and higher probability of aerosol elastic scattering (see section 3.3 for further 258analysis regarding maximal low AOD information). Figure 4A also shows that the maximum RSP is at 259about $90 - 100^{\circ}$, in agreement with our measurements at similar SZA (see Fig. 3A). Figure 4B shows 260the sensitivity of the RSP with respect to the aerosol extinction vertical distribution while keeping the 261AOD constant at 0.2 (additional parameters are the same as before). Several homogeneous extinction 262 vertical profiles from altitudes of 0.5 to 2.0 km are studied as well as a case of aerosol extinction aloft, 263assuming maximum extinction at 2.8 km with a width of 2.8 km. Similar results are obtained also at 264small and high SZAs (see Fig. S7). It is clear that the aerosol extinction vertical distribution does not 265play a significant role in the simulation of RSP in the azimuth scan. Systematic elevated aerosol 266extinction layers were identified during TCAP (Berg et al., 2015; Ortega et al., 2016). Previous studies 267have shown that RSP is primarily sensitive to the AOD (Wagner et al., 2009b), and recognize the value 268of measurements at small SRAA to obtain information about q (Holben et al., 1998; Wagner et al., 2692009b). The sensitivity studies in Figs. 3, 4, and in the supplement (Fig. S7) confirm that the RSP does 270not depend on the aerosol vertical distribution for SZA smaller than 80°. Note that all of the azimuth 271scans here were conducted at solar EA, which for measurements at SZA < 80° corresponds to EAs of 27210° or higher. For measurements at low EAs the RSP becomes slightly dependent on the aerosol 273 vertical distribution (see Fig. S8 panel C). Hence, the RSP is suitable to characterize column properties 274of AOD and the aerosol phase function, *q*. The elevated aerosol layers documented by Berg et al. 275(2015) during TCAP hence are captured, and do not present a limitation for this work. Section 3.2 276describes in more detail the aerosol inhomogeneity on both days.

2772.4.2 Sensitivity to g, SSA, and SA

278The second sensitivity study aimed to understand the effect of g, SSA, and SA. Figure 5 shows the 279results of the RSP and Sun-normalized radiances, R_{norm} (sr⁻¹), defined internally in McArtim as the ratio 280of the radiance (W·m²·sr⁻¹) of the geometry indicated to the solar irradiance (W·m²) using a

281homogeneous aerosol extinction profile with an AOD of 0.2 (box height of 1.5 km), and SZA of 70° . 282The asymmetry parameter, g, has the strongest effect on the RSP, especially for SRAA < 40° . The 283importance to the RSP of the geometry of measurements and its qualitative sensitivity towards aerosol 284phase functions was identified by Wagner et al. (2009b) using three different fixed azimuth directions. 285The RSP does not show a significant variability among different SSA, i.e., aerosol composition, 286however the sun-normalized radiances show some sensitivity among all SRAA, especially with angles 287close to the sun where variability of up to 10% are found. A similar sensitivity study was shown in 288Frieß et al. (2006). The SA does not play a significant role in the simulation of either the RSP or 289radiances. Further discussion of the phase functions is presented in section 3.3.2.

2902.5 Retrieval of AOD and *q*

291As shown before, maximal sensitivity towards AOD and aerosol phase function is achieved using the 292solar azimuth scan. The aim of this study is to develop a simple strategy in order to retrieve AOD and 293aerosol phase function, *g* while constraining SSA and SA. A simple method would be to compare the 294measurements with the RTM simulations and optimize the aerosol input parameters until we minimize 295the differences between measurements and simulations. An iterative approach for a single SRAA scan 296would require several hours to finalize. For a typical single day of measurements during the TCAP we 297collected at least 3500 spectra using only the azimuth scan. In this context, we believe that a flexible 298option is the creation of a look up table (LUT) where the RSP is simulated using geometry related 299inputs and numerous aerosol optical properties.

300

301We created the LUT based on different sets of SZA (20° to 90° in steps of 10°) and adopted the positive 302SRAA as measured by the 2D-MAX-DOAS. The parameters that were fixed are the SSA, 0.98, based 303on findings by Müller et al. (2014) and Kassianov et al. (2015) during TCAP. The SA was set to 0.05 304representative of the land surface (obtained from the atmospheric transmission by the co-located 305MFRSR), and the aerosol extinction height (homogeneous box-height of 1.5 km), though any other 306height would give similar results. We use a typical pressure, temperature, and RH profiles (up to an 307altitude of 28 km) measured from radiosondes during TCAP (Berg et al., 2015). Above 28 km the U.S 308standard atmosphere was used. The range of parameters that are important and were changed are the 309AOD₄₃₀ and g. The range of AOD covered was from 0 up to 2.0 AOD in steps of 0.02. The range of 310covered was from 0.64 to 0.72 with increments of 0.02. In order to compare with the measurements the 311LUT is interpolated to fine grid set points of AOD (in steps of 0.005) and to the average SZA during the

312measurements. The AOD and g are varied to minimize the following expression:

313

314
$$\chi^2 = \sum_{i=1}^{N} \frac{\left[RSP_M - RSP_{LUT}(AOD, g)\right]_i^2}{RSP_g^2} \rightarrow min(1)$$

315

316where RSP_M and RSP_{LUT} are the RSP (arb. units) measured and the simulated in the LUT.

317 RSP_e is the final estimated RSP error in the measurements (see sect 3.3.1) and N represents the 318number of SRAAs. A detailed representation of the sensitivity of RSP towards AOD using the SRAA 319scan and several SZA is shown in the supplemental information (see Fig. S9).

320

3212.6 Additional measurements

322The co-located MFRSR (Harrison et al., 1994) and the CIMEL sun photometer (Holben et al., 1998) 323complement our AOD observations at the TCAP ground site (see details in Table 1). The MFRSR 324measures total and diffuse solar irradiances at several channels to infer the direct solar radiation 325component (time resolution of 1 min) while the Sun Sky photometer instrument measures the direct 326solar beam (time resolution of about 5 min). While both instruments are radiometrically calibrated and 327work under different principles, a common feature is that they both use the direct sun transmission to 328derive AODs (Holben et al., 1998; Harrison et al., 1994). The AOD₄₃₀ was calculated using the 329extinction Angstrom exponent between the standard spectral bands of each instrument (see Table 1). 330The second generation airborne High Spectral Resolution Lidar (HSRL-2), an improved version of the 331HSRL-1 (Hair et al., 2008), was deployed aboard the NASA Langley Research Center B200 King Air 332airplane. HSRL-2 measures particle backscatter coefficients at 355, 532, and 1064 nm, and particle 333extinction coefficients at 355 and 532 nm (Müller et al., 2014). Similar as the sun photometer, the AOD 334at 430 nm was calculated using the extinction Angstrom exponent between the standard wavelengths of 335355 and 532 nm. Atmospheric temperature and pressure profiles were provided by local radiosondes, 336which were launched four times a day at the ground site (~ 00, 05, 17, and 23 UTC). The measurement 337vertical resolution of the sondes was about 10 m reaching a maximum altitude of about 28 km. For this 338study, the closest radiosonde in time (17 UTC or 13:00 local standard time, LST = UTC-4) is used to 339prescribe the temperature, pressure and relative humidity in the RTM.

3433.1 Effect of the reference spectrum

344The direct sun geometry contains a small amount of RRS light, and is hence not free of RSP 345contribution. In order to assess the RSP contribution in the direct sun spectra we use three different 346approaches: (1) a Langley plot type method, where the dRSP obtained with direct sun spectra as 347reference spectrum is plotted as a function of the SZA, (2) by interpolating the dRSP measured with 348small SRAA to the 0° (direct sun view), and (3) from RTM simulations. Fig. 6 shows the linear 349correlation analysis between the direct sun dRSP (binned by SZA) measured on 22 July 2012, low $AMF = 1/\cos(SZA)$. Several direct sun $350AOD_{430}$ case (< 0.13), and the air mass factor (AMF), 351measurements were carried out between SZA of 22° (AMF =1.06) and 47° (AMF < 1.47) and only one 352at 78° (AMF = 4.8). In order to quantitatively estimate the RSP in the reference we use the linear 353correlation analysis applied for SZA smaller than 50° ($R^2 = 0.98$) (see inset plot in Fig. 6). The 354extrapolation to AMF = 0 yields the absolute value of the RSP contained in the reference spectrum 355(RSP value if there were no atmosphere), which is determined as 0.0053 ± 0.0007 by this method. The 356value of dRSP at high SZA (78°) is not considered here, since there is only one data point and the 357magnitude is significantly larger (likely due to atmospheric changes and increasingly distant air 358masses). To estimate the RSP contained in the reference with the second method we have analyzed 359closely the RSP measurements using the solar azimuth scan for SZA < 45° and SRAA close to the sun 360(SRAA < 40°). The RSP decreases linearly for angles close to the sun and an interpolation to 0° SRAA 361 yields an RSP value of 0.0035 \pm 0.0005. The third method consists in the simulation of the effective 362RSP in the direction of the sun following a three step approach: (1) the radiance and the RSP are 363calculated for scattered sun light observations in the direction of the sun. (2) The radiance of the direct 364sun is calculated for the same direction (the RSP for the direct light is assumed as zero). (3) The 365effective RSP is calculated as the average RSP of both contributions (direct and scattered sun light) 366weighted by their respective radiances. The RSP derived following this procedure is 0.0038 assuming 367AOD of 0.1 and *q* of 0.68. Interestingly, the RSP values are rather insensitive to changes in AOD, 368however, a significant sensitivity exists towards a change in q from 0.68 to 0.85 (roughly a factor 2 369lower, see Table S1). We use the average of the three methods (0.0042 \pm 0.0010) and add this offset to 370the measured dRSP to calculate the absolute RSP for comparison with RTM. For assessment of the RSP

371error, we propagate the 2-sigma standard deviation (0.0020) in the final uncertainty of RSP_e and in

3733.1.1 Comparing direct-sun and zenith reference spectrum

374To assess the effect of the reference spectrum in the DOAS analysis of the dRSP we compare the dRSP 375results using the zenith and direct sun spectra as references; both spectra were recorded at SZA of 28°. 376Figure S10 shows the linear correlation of the dRSP analysis using each reference to analyze all spectra 377recorded for azimuth scans for SZA smaller than 70° on 22 July 2012. We find a strong linear 378correlation ($R^2 \ge 0.99$) and a slope close to unity (1.023 \pm 0.001). The negative offset corresponds to 3791.9 % RSP contained in the zenith reference relative to the direct sun. Wagner et al. (2009b) estimated 380an RSP of $5 \pm 1\%$ in the UV (350 nm) in the noon zenith sky reference by means of RTM simulations 381using an AOD of 0.1 measured by a co-located instrument. The strength of the RSP depends on several 382factors such as wavelength, the atmospheric conditions (aerosol and cloud optical properties), and the 383geometry of measurements. The dRSP in Fig. S10 is color coded by SRAA. The strong SRAA 384dependency reflects the sensitivity of RSP to atmospheric scattering processes. The dRSP decreases for 385angles close to the sun and increases for larger SRAA. When using the zenith sky as reference the dRSP 386obtained would be negative for SRAA < 50° and there would be a general negative bias of 1.9 %. Of all 387possible viewing directions accessible with ground based measurements the direct sun observation is 388the least affected by RRS. In addition, direct sun observations measured with the same instrument 389ensure that the spectral resolution and sampling used in the DOAS analysis of all spectra are the same. 390Using a zenith spectrum from the same measurement sequence would make the results dependent on 391the RSP contained in the reference spectrum. The minimization of eq. (1) would require an additional 392simulation of the RSP in the reference for all AODs, i.e., a separate LUT for each sequence scan due to 393the AOD in the reference spectrum would be unknown. In principle this approach should be feasible, 394but it is less direct than the approach chosen in this work. Use of a zenith reference spectrum may help 395the dRSP precision, but it also adds a source for potentially significant offsets that can limit accuracy.

396

3973.1.2 Calculating references from high-resolution spectra

398In principle, high resolution solar spectra (e.g., Chance and Kurucz, 2011) should provide a viable 399alternative to direct-sun measurements as reference spectra to retrieve absolute RSP. Such high 400resolution spectra need to be convoluted with the instrument slit function prior to their use as reference

401spectrum in the DOAS analysis of RSP. We have tested this approach and used high resolution 402literature data as a reference spectrum for the analysis of the azimuth scan spectra (1 s integration time), 403and find large fitting residuals (RMS ~0.01), that have a strong effect on the retrieved RSP values, 404suggesting that this approach is currently of limited value in practice. The causes are likely due to a 405combination of reasons, including imperfect knowledge about the wavelength dependent instrument 406line shapes, numerical artifacts and assumptions made during convolution, non-linearity of detectors, 407and small differences in wavelength calibration. Notably, measuring the direct-sun reference spectrum 408in the same instrument as the scattered light spectra inherently accounts for these factors.

4093.2 Effect of aerosol inhomogeneity

410The RTM simulation of RSP and R_{norm} considers aerosol to be uniformly distributed around the 411measurement site. To assess if the air mass probed is inhomogeneous we compare quantitatively the 412symmetry of the I_{norm} measurements to the left and right side of the sun's disk. The quantitative analysis 413of symmetry is defined by the angular asymmetry factor parameter ($AFP_{I_{norm}}$)

414

415
$$AFP_{I_{norm}} = \frac{\left(I_{norm}^L - I_{norm}^R\right)}{\left(I_{norm}^L + I_{norm}^R\right) \cdot 0.5}(2)$$

416

417where I_{norm}^L and I_{norm}^R are the left and right side measurements of the I_{norm} (counts s⁻¹) obtained 418with the almucantar scan. The $AFP_{I_{norm}}$ on 17 and 22 July 2012 are shown in the form of a polar plot 419in Fig. S11. Over the past few years, CIMEL sun photometers have used a similar approach as a 420consistency check to reject pairs of data that exceed 20 % difference and under uniformity the retrieval 421inversion of aerosol microphysical properties is applied (Holben et al., 1998). Both days show 422 $AFP_{I_{norm}}$ < 10 %, indicating a high degree of symmetry. In general, the random noise in $AFP_{I_{norm}}$ is 423on the order of 0.25%. If the $AFP_{I_{norm}}$ shows consistent positive and/or negative values among 424several SRRAs this may indicate aerosol inhomogeneity. For example, the increase in AOD at ~ 12:00 425LST on 17 July was accompanied by an average $AFP_{I_{norm}}$ of +2.7 % for the corresponding solar

426azimuth scan, and maximum $^{AFP}_{I_{norm}}$ of +10 % at 105° < SRAA < 145°, indicating higher AOD in 427the south westerly direction. Ortega et al. (2016) examined the aerosol extinction inhomogeneity using 428HSRL-2 data from overpasses above the TCAP ground site, and found that the AOD varied by about 42910 % across the site at ~13:00 LST on 17 July 2012. By contrast, on 22 July there were no significant 430differences visible in the HSRL-2 data, and the symmetry remains all day with average $^{AFP}_{I_{norm}}$ of 4310.19 %, and a standard deviation of 3.3 %.

432

4333.3 Uncertainty of RSP retrievals of AOD and g

4343.3.1 RSP retrieval of AOD: maximal sensitivity at low AOD

435Figure 7 shows the simulated RSP in the solar azimuth scan as a function of AOD. In order to 436quantitatively assess the response through different sets of AOD a linear correlation analysis have been 437calculated for several subsets of AODs and the results are shown in the Table S2. The highest response 438in RSP to changes in AOD is observed at low AOD, i.e., under conditions when Rayleigh scattering 439extinction dominates over aerosol extinction. The sensitivity is highest for small SRAA. A change of 4400.01 AOD when molecular scattering dominates ($AOD_{430} < 0.1$) yields a considerable decrease in the 441RSP (Δ RSP = 0.004) for SRAA < 35°. This change is significantly greater than the DOAS fit error of 4420.0018 presented in section 2.3. The sensitivity decreases for SRAA > 35° but still up to a SRAA of 70° 443the same change in AOD yields a significant (measurable) RSP response. On the other hand, the 444sensitivity towards changes in AOD is weaker for AOD greater than 0.3, especially for low SZA, and 445for small SRAAs. This is likely due to the dominance of aerosol scattering and few molecular 446scattering events. While the reduced sensitivity can in principle be circumvented by evaluating larger 447SRAA, such analysis puts more stringent criteria on aerosol homogeneity. The absolute error in the 448AOD for any particular SRAA (AOD_e^i) was calculated as:

449

$$AOD_{e}^{i} = \left(\frac{RSP_{e}}{RSP^{i}}\right) \cdot AOD(3)$$

451

452where RSP^i is the RSP in the i^{th} SRAA and RSP_e is calculated as the error in the RSP 453propagated from the DOAS measured RSP error (~0.0018) and the error in the estimation of the RSP

454in the reference (0.0024). Assuming the errors of the measurement to be additive, the final RSP_e is 455about 0.0028. Equation 3 is applied to all SRAAs and set of AODs from Fig. 7A. Figure 7B shows the 456calculated absolute error in AOD (AOD_e) using all elements from Fig. 7A and weighted as follows: 457

458
$$AOD_e = \frac{\sum \left(\frac{AOD_e^i}{RSP_e}\right)^2}{\sum \left(\frac{1}{RSP_e}\right)^2} (4)$$

459

460The weighted RSP relative error $\left(\frac{RSP_e}{RSP^i}\right)$ following the same approach is also shown in percentage

461in Fig. 7B. Under high AOD conditions (\sim 0.4) the absolute AOD_e is 0.02. The AOD_e decreases 462significantly for AOD \leq 0.1, with uncertainties of about 0.004 at AOD of 0.1, and 0.0025 at AOD of 4630.05. As mentioned before the information content on aerosols using the solar azimuth scan is 464enhanced at large SZA when RSP values are larger. At SZA = 70° (Fig. 7C), the errors decrease further 465for low AOD as is illustrated in Figure 7D. The AOD_e is 0.014, 0.003, and 0.002 for an AOD of 4660.4, 0.1, and 0.05, respectively. The error scales roughly with $^{\cos(SZA)}$, indicating that the highest 467sensitivity of RSP based AOD retrievals is at high SZA and low AOD.

468

4693.3.2 Aerosol phase function

470As shown in Figure 5, the phase function parameter g has the strongest effect on the simulated RSP for 471small SRAA. A decrease of the g parameter, i.e., decrease of aerosol forward scattering probability, 472leads to an increase of the RSP due to a higher contribution of molecular scattering at this direction. 473The radiances also show a significant sensitivity towards g for small SRAA, as previously shown by 474Frieß et al. (2006). For a fixed AOD and a change in g of g 0.04 the RSP difference is about 0.03 for a 475SRAA of 5°, which is two times greater than the RSP error. In general, measurements at small SRAA 476carry most information, and are highly recommended (Holben et al., 1998; Frieß et al., 2006). In 477addition, the quality of the retrieval of g is expected to improve for high SZAs when there is an

478increase in the information content of the scattering angle coverage (Torres et al., 2013; Dubovik et al., 4792000).

480

4813.4 Comparison of measurements and simulations

482We compare simulated and measured RSP for several SRAA ranges in Fig 8. The example shown in 483Fig. 8 is obtained by applying the retrieval approach explained in section 2.5 for the solar azimuth scan 484(SZA = 66.5°) on 22 July 2012. Four sets of SRAAs are used: (A) 5° to 20°, (B) 5° to 60°, (C) 5° to 485120°, and (D) 5° to 170°. Three values for q are used to show the sensitivity towards the phase function. 486The AOD retrieved with each q is shown in the label box. The residuals, defined as the difference 487between measured and simulated RSP (minimizing equation 1) are shown in the bottom panel below 488each comparison. The gray shaded area (behind the residuals) represents the RSP error (± 0.0028) 489defined before. The computed RMS errors (RMSE) are also shown. The comparison of the RSP 490constrained by few SRAAs (< 20°, Fig. 8A) show that all the residuals lie within the error bars 491independently of q. However, the variability of the retrieved AOD is significant for each q and 492maximum ΔAOD of 0.025 is obtained. When using more SRAAs (Figures 8B, 8C, 8D) the spread in 493AOD values is reduced. The maximum \triangle AOD obtained with using either 5° to 60°, 5° to 120° or 5° to 494170° SRAAs is 0.010. Significant residuals (greater than the RSP error) are obtained for *q* larger than 4950.68. The residuals obtained with the q of 0.64 are always within the error bars of the measured RSP 496indicating that this q (for SRAA < 40°) is in excellent agreement with the q of 0.65 reported by the 497CIMEL sun photometer close to this time. This further suggests that SRAA close to the sun are needed 498and essential in order to maximize the sensitivity of the aerosol phase functions.

499

5003.5 **Optimized observing strategy**

501We have optimized a retrieval strategy such that at high SZA (> 50°) we use SRAA in the range of 5° to 50260° , and for smaller SZA we use the full azimuth scan (5° < SRAA < 170°). This was motivated by the 503fact that for 5° < SRRA < 60° the AOD and g are stable, and show the minimal RMSE and maximal 504information content at high SZA for this range. On the other hand less information content is achieved 505at low SZA and more SRAA are needed. This optimization may be important in the presence of broken 506clouds. In this case, as long as there is homogeneity for SRAA < 60° the retrieval strategy presented 507here may yield good results.

508TCAP represented the first deployment of the CU 2D-MAX-DOAS instrument. The geometry of 509measurements was motivated by retrieving simultaneously trace gas and aerosol extinction profiles by 510 means of the EA scan and by testing the solar azimuth scan for the first time (table 2). The acquisition 511time of the solar azimuth scan was 2 min. However the time resolution of the retrieved products is 512about 20 min due to the 85 % duty cycle of the EA scan in the single repetition of both EA and solar 513azimuth scan. The fast mode of measurements in the almucantar limits the retrieval of many typical 514DOAS species such as the oxygen dimer $(O_2-O_2, \text{ or } O_4)$ and other trace gases (such as NO_2 , HCHO, 515CHOCHO, etc). Incrementing the time resolution in the solar azimuth scan would mean that O₄ could 516be measured and have an additional piece of information in the retrieval of aerosol 517optical/microphysical properties. Future deployments may consider a combination of SRAA scans 518with longer integration time to also obtain trace gases, and EA scans for a subset of SRAA to obtain 519trace gas vertical profiles. In addition, future deployments with 2D capabilities might consider the 520solar principal plane sky geometry, which is similar to the almucantar scan but in the principal plane of 521the sun (see Holben et al., 1998). This geometry would be very similar to the typical off-axis scan, i.e., 522high sensitivity towards the lower part of the atmosphere. In addition SRAA would be measured 523giving information about phase functions. Furthermore, a future deployment may dedicate a full day to 524direct sun observations in order to apply the Langley plot to more SZA, ideally during constant diurnal 525AOD conditions such as in Mauna Loa, HI.

526

5273.6 AOD comparison from DOAS with CIMEL sun photometer, MFRSR, and HSRL-2

528Figure 9 compares the diurnal variability of AOD₄₃₀ and g with independent measurements by MFRSR, 529CIMEL sun photometer, and HSRL-2 instruments for (A) 22 July (low AOD case) and (B) 17 July 530(high AOD case) 2012. The molecular scattering optical depth represented with the discontinuous gray 531line is calculated with the method reported by Bodhaine et al. (1999) using the temperature and 532pressure profiles from the local radiosonde (launched at 13:00 LST). Considering a diurnal direct sun 533geometry the molecular scattering optical depth is weighted by the air mass factor $1/\cos(SZA)$. On 53422 July the retrieved aerosol AOD₄₃₀ is below the molecular scattering regime all of the day for 535MFRSR, DOAS and HSRL-2, and most of the time for the CIMEL sun photometer. Under these 536conditions the uncertainties of the AOD retrieved from the solar beam extinction approach, i.e., 537MFRSR and CIMEL sun photometer, might be greater than 0.01 AOD, which is a typical error after 538calibration (Holben et al., 1998; Harrison et al., 1994). We have adopted this ideal error of 0.010 AOD

539for the MFRSR and CIMEL sun photometer in Fig. 9A. The error bars of the 2D-MAX-DOAS are 540those discussed in section 3.3.1. In general, the errors are smaller at high SZA, as discussed in Sect. 5413.3.1, and the largest errors are \sim 0.012 at noon. The comparison of the AOD₄₃₀ retrieved by DOAS 542compares well, and is generally within the combined error bars with the other measurements. The 543comparison is best in the morning, and DOAS agrees better with the MFRSR throughout the day; there 544is only marginal agreement with the CIMEL sun photometer in the afternoon. At noon, there is a small 545increase in AOD₄₃₀ of about 0.05 and the response of this change is greater for the 2D-MAX-DOAS 546than for the MFRSR and Sun photometer likely due to maximum sensitivity to small changes in AOD. 547A power outage inside the seatainer restricted measurements after 17:30 LST.

548

549The average diurnal difference of AOD $_{430}$ (relative to the 2D-MAX-DOAS) on 22 July is +0.0199 \pm 5500.014 (CIMEL), +0.003 \pm 0.019 (MFRSR), and -0.011 \pm 0.014 during the overpass of the HSRL-2. 551The AOD $_{430}$ measured by HSRL-2 during two overpasses is slightly lower than the AOD $_{430}$ measured 552by the CIMEL sun photometer, agrees closely in one instance with the 2D-MAX-DOAS, and the 553closest agreement is observed for MFRSR. Note that the HSRL AOD values correspond to the layer 554between the surface and about 7 km. In general, 90 to 95 % of the aerosol extinction is estimated to be 555below the \sim 7 km. The average diurnal difference in AOD $_{430}$ shows that the CIMEL sun photometer is 5560.017 greater than MFRSR. In general a good agreement is reflected in the linear correlation analysis 557between the 2D-MAX-DOAS and CIMEL sun photometer: DOAS $_{AOD}$ = -(0.013 \pm 0.010) + (0.96 \pm 5580.09)·CIMEL $_{AOD}$ (R 2 = 0.82); between 2D-MAX-DOAS and MFRSR: DOAS $_{AOD}$ = -(0.029 \pm 0.020) + 559(1.32 \pm 0.21)·MFRSR $_{AOD}$ (R 2 = 0.64); and between CIMEL sun photometer and MFRSR: CIMEL $_{AOD}$ = 560-(0.028 \pm 0.009) + (1.45 \pm 0.10)·MFRSR $_{AOD}$ (R 2 = 0.91). Notably, the offset is larger than 0.02 in some 561instances, highlighting the importance of instrument comparisons under low AOD conditions.

562

563On 17 July the AOD₄₃₀ reached values of 0.6 at noon (Fig. 9B). The high AOD and the inhomogeneity 564identified with AFP values larger than 10% from 11:00 to 14:00 LST limited the retrieval of AOD and 565g from the 2D-MAX-DOAS. As shown in Fig. 7 the RSP decreases significantly at high AOD and low 566SZA likely due to dominance of multiple aerosol forward scattering. On this day averaged RSP values 567obtained with the solar azimuth scans from ~11:00 to 14:00 were similar to the RSP error limiting the 568analysis. This could be circumvented in the future by conducting almucantar scans at a lower EA. 569Under conditions when a retrieval is warranted, the comparison of the difference in AOD₄₃₀ (relative to 570the 2D-MAX-DOAS) is -0.027 \pm 0.03 (CIMEL), +0.005 \pm 0.027 (MFRSR). The AOD from CIMEL 571sun photometer is 0.035 \pm 0.015 greater than that from MFRSR. The linear correlation between the

5722D-MAX-DOAS and CIMEL sun photometer is: DOAS_{AOD} = -(0.017 \pm 0.034) + (0.95 \pm 0.08) x 573CIMEL_{AOD} (R² = 0.88); between 2D-MAX-DOAS and MFRSR: DOAS_{AOD} = -(0.025 \pm 0.027) + (1.00 574 \pm 0.07) x MFRSR_{AOD} (R² = 0.91); and between CIMEL sun photometer and MFRSR: CIMEL_{AOD} = 575-(0.020 \pm 0.015) + (1.03 \pm 0.04) x MFRSR_{AOD} (R² = 0.97).

576

577Clearly under high AOD conditions the maximum AOD diurnal difference of ~ 0.027 accounts for less 578than 5 % of the AOD. On the other hand, the diurnal differences between instruments under low AOD 579account (~ 0.02) for about 20 % of the AOD. Overall good agreement is reflected in the linear 580regression analysis of pooled data from both case study days: DOAS_{AOD} = -(0.019 \pm 0.006) + (1.03 \pm 5810.02)·CIMEL_{AOD} ($R^2 = 0.98$), DOAS_{AOD} = -(0.006 \pm 0.005) + (1.08 \pm 0.02)·MFRSR_{AOD} ($R^2 = 0.98$), and 582CIMEL_{AOD} = (0.013 \pm 0.004) + (1.05 \pm 0.01)·MFRSR_{AOD} ($R^2 = 0.99$).

583

5843.7 **Aerosol phase functions**

585The simplification of the aerosol phase function by the HG parameterization may not be realistic of real 586aerosol phase functions. A technical limitation exists in that our RTM only uses the HG simplification 587and more rigorous aerosol phase functions, e.g., Mie phase functions, are not handled. We have 588conducted additional sensitivity studies using RTM in an attempt to bind the effect of Mie phase 589functions. The aerosol phase function was calculated using the HG approximation, $P_{HG}(\Theta)$ (Henyey 590and Greenstein, 1941), and compared with Mie calculations constrained from the co-located sun 591photometer, $P_{Mie}(\Theta)$. The $P_{HG}(\Theta)$ is calculated from the following analytical equation:

592
$$P_{HG}(\Theta) = \frac{1}{4\pi} \frac{1 - g^2}{(1 + g^2 - 2g \cdot \cos(\Theta))^{3/2}} (5)$$

593

594where Θ is the scattering angle and g the asymmetry parameter. Figure 10 compares the area 595normalized phase functions under (A) low and (B) high AOD conditions. The red continuous lines are 596the retrieved $P_{Mie}(\Theta)$ reported in the AERONET web site (version 2.0) measured close in time with 597our RSP based retrievals. The area normalization is carried out using scattering angles of 5° and larger 598(i.e., 5-180°) to roughly resemble our measurements/retrieval conditions. A similar normalization using

599scattering angles between 0-180° is shown in Fig. S12. The deviations between $P_{HG}(\Theta)$ and 600 $P_{Mie}(\Theta)$ are most prominent at small scattering angles (Θ < 5°), and to a lesser extend also at 601large scattering angles (Θ > 150°, only at high AOD). For most scattering angles, and under high 602and low AOD conditions, the comparison is within the 10 % error in g. We thus attribute the fact that a 603simplistic phase function can explain our RSP measurements reasonably well to the fact that we did not 604probe small scattering angles (Θ < 5°). RTM that represent Mie phase functions are desirable. 605However, also Mie phase functions present an approximation of the true phase function, i.e., assume 606particles to be spheres of a certain internal symmetry, etc. RSP measurements at scattering angles 607smaller 5° are potentially very interesting, because they hold potential to evaluate Mie theory in new 608ways.

609

610The determination of the RSP in the reference by method 2 (see Section 3.1) assumes a smooth 611transition of RSP from scattered sunlight to the direct solar beam. Further RTM simulations were 612carried out to test this smoothness of RSP. We have tried to circumvent the RTM limitation by 613approximating the Mie phase function shown in Fig. 10 with a combination of different g; then use 614these values to simulate the RSP for SRAA < 10° and the direct sun component. Figure S13 shows the 615comparison of the area normalized phase function calculated with a combination of several q (616 $P_{HG}^c(\Theta)$) with $P_{Mie}(\Theta)$ for scattering angles < 11°. The g values needed are also shown. Note that 617these q values are not realistic and are used simply to approximate the results of a more realistic Mie 618phase function shape over a limited range of forward scattering angles. Figure S14 shows the simulated 619RSP. The value of scattering angle equals zero corresponds to the effective RSP in the direct sun 620geometry. Interestingly, the transition is smooth only for the approximated Mie phase function (larger 621*q*), while a steep gradient is observed in the HG approximation (small *q*). Based on these results method 6222 is valid to determine the RSP in a direct sun reference spectrum in the atmosphere. Whether models 623can be used to estimate RSP in the direct solar beam depends on the assumptions about the aerosol 624phase function. Future research will need to develop more sophisticated RTM that represent Mie phase 625functions to test RSP predictions at small SRAA, and measurement hardware to provide robust 626capabilities for RSP measurements at small SRAA, in order to establish whether method 2 applies more 627broadly. For HG a smooth transition of the RSP between measurements of scattered and direct sun light 628cannot be expected. However, in the atmosphere the HG may not be good approximation, and the 629pronounced forward scattering of a Mie phase function adds a significant weight to the RSP scattered 630radiance. This has the effect to smoothen the transition of the RSP between measurements of scattered 631and direct sun light.

632

6333.8 Context with literature: advantages and limitations

634According to Holben et al. (1998) the AOD uncertainty of newly calibrated Sun photometers is \pm 0.01 635for typical visible wavelengths, and \pm 0.02 for shorter wavelengths. In particular, the error in AOD 636becomes highly sensitive to the calibration error at low AOD. For example, for AOD₄₄₀ < 0.05 and 5% 637calibration error the AOD uncertainty can reach 44 %. On the other hand, the error in AOD decreases 638dramatically for the same calibration error if solar scattering measurements are used (Holben et al. 6391998). Our innovative retrieval strategy for AOD and *g* is based on solar scattered light, but 640circumvents the calibration uncertainty outlined above, and provides robust measurements under low 641AOD conditions. Our measurements are inherently calibrated, i.e., do not require radiance calibration 642which is subject to drift, and needs frequent sensor attention during field operation. The RSP-based 643retrievals only rely on relative radiance measurements in the SRAA and hyperspectral domain, which 644makes them particularly useful for long-term observations in remote environments.

645The diurnal error in AOD of direct sun transmission measurements is also subject to the optical path 646through the Earth's atmosphere. In general, the nominal error in AOD will change with the air mass 647factor ($\cos(SZA)$) and potentially needs to be scaled accordingly leaving smaller errors at high SZA 648(Sinyuk et al., 2012). One important advantage of RSP-based retrievals is that the aerosol information 649content is enhanced at low AOD. RSP constraints to column aerosol optical properties are 650complementary to O_2 - O_2 measurements that are widely used to infer information about clouds and 651aerosols (Baidar et al., 2013; Gielen et al., 2014; Wagner et al., 2014; Ortega et al., 2016; Volkamer et 652al., 2015). The synergistic use of RSP and O_2 - O_2 holds great potential to better assess profile and 653column properties of aerosols and clouds, and currently remains largely unexplored.

6544. Conclusions and Outlook

655In this work we present a detailed analysis of RRS using direct sun and solar almucantar 656measurements of scattered solar photons by the CU 2D-MAX-DOAS instrument (see part 1, Ortega et 657al., 2015). The rapid solar azimuth scan, i.e., integration time of 1 s and total acquisition time of ~2

658min to measure from -180° to 180° SRAA in steps of 5° relative to the sun, provide robust means to 659simultaneously retrieve AOD and the column integrated aerosol phase function (simplified by the 660asymmetry parameter, g). We conclude the following:

- Measurements of RSP have maximum sensitivity towards retrieving AOD and *g* under molecular scattering conditions. This is demonstrated with RTM simulations of the RSP using diurnal solar azimuth geometry. The highest sensitivity towards both *g* and AOD is achieved if using small SRAA (≤ 5°). RSP measurements at SRAA < 5° hold potential to evaluate Mie theory in new ways.
- The error in the RSP based retrieval of AOD and g is limited by the uncertainty about RSP contained in the reference spectrum. We minimize the error by retrieving near-absolute RSP using a direct sun reference spectrum recorded with the same instrument. The direct sun spectrum is also affected by RRS. We estimate RSP_{DS} = 0.40 \pm 0.20 %, which is ~6 times smaller compared to RSP_{zenith} = 2.34 \pm 0.22 % (SZA = 28°, AOD₄₃₀ = 0.11). Direct sun observations at low SZA systematically minimize RSP, and are most valuable for accurate AOD and g retrievals.
- RSP based retrievals of AOD and g have higher sensitivity at high SZAs, and low AOD. This is complementary to existing techniques that operate on solar transmission. The absolute error are about 0.02, 0.004, 0.0025 and 0.0005 for AOD₄₃₀ of 0.4, 0.1, 0.05 and 0.01, respectively (4-5 % relative error), at SZA = 35°. The errors decrease with increasing SZA, and absolute errors are 0.014, 0.003, 0.002, and 0.0004 for AOD₄₃₀ of 0.4, 0.1, 0.05 and 0.01, respectively (3-4 % relative error), at SZA = 70° .
- The RSP retrieval of AOD and *g* consist is inherently calibrated, since it relies only on relative intensity changes that are measured in the hyperspectral domain, and at various SRAA. Combined with the high sensitivity at low AOD and high SZA makes measurements of RSP particularly useful to conduct long-term time series measurements in remote environments, such as the arctic, or remote ocean environments at tropical latitudes.

684Retrievals based on RSP measurements at a subset of SRAA hold potential to measure AOD under 685broken cloud conditions. Clear sky and broken cloud conditions can be identified using the color 686index, and AOD retrievals under such conditions warrant further study. The retrieval strategies may be

687optimized by conducting azimuth scans with longer integration time, at solar EA and lower EAs, and 688by conducting EA scans for a larger subset of SRAA to simultaneously measure azimuth distributions 689and vertical profiles of trace gases. 2D-MAX-DOAS measurements in the solar principal plane sky 690geometry (similar to the almucantar scan) would further increase the sensitivity towards the lower part 691of the atmosphere.

692Acknowledgements. The instrument was developed with support from the NSF-CAREER award 693ATM-0847793; US Department of Energy (DOE) award DE-SC0006080 supported the TCAP 694deployment (RV). Ivan Ortega is recipient of a NASA Earth Science graduate fellowship. Larry Berg is 695supported by the DOE Atmospheric System Research (ASR) Program. The Pacific Northwest National 696Laboratory is operated by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. The 697CIMEL sun photometer data were collected by the U.S. Department of Energy as part of the 698Atmospheric Radiation Measurement Program Climate Research Facility (ARM) and processed by the 699National Aeronautics and Space Administration's Aerosol Robotic Network (AERONET). Support for 700the HSRL-2 flight operations during TCAP was provided by the DOE ARM program: Interagency 701Agreement DE-SC0006730. We are grateful to Tim Deutschmann for providing support with the 702McArtim RTM. We thank Caroline Fayt and Michel van Roozendael for providing the WinDOAS 703software, and Thomas Wagner for helpful discussions.

704

705References

706

707Augustine, J. A., Hodges, G. B., Dutton, E. G., Michalsky, J. J., and Cornwall, C. R.: An aerosol optical 708depth climatology for NOAA's national surface radiation budget network (SURFRAD), Journal of 709Geophysical Research: Atmospheres, 113, D11204, doi:10.1029/2007JD009504., 2008.

711Baidar, S., H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer. The CU Airborne 712MAX-DOAS Instrument: Vertical Profiling of Aerosol Extinction and Trace Gases., Atmospheric 713Measurement Techniques, 6(3), 719-719-739, 2013. doi: 10.5194/amt-6-719-2013 714

715Baidar, S., Kille, N., Ortega, I., Sinreich, R., Thomson, D., Hannigan, J., and Volkamer, R.: 716Development of a digital mobile solar tracker, Atmos. Meas. Tech. Discuss., 8, 11401-11427, 717doi:10.5194/amtd-8-11401-2015, 2015.

719Berg, L., Fast, J., Barnard, J., Burton, S., Cairns, B., Chand, D., Comstock, J., Dunagan, S., Richard, F., 720Flynn, C., Hair, J., Hostetler, C., Hubbe, J., Jefferson, A., Johnson, R., Kassianov, E., Kluzek, C., 721Kollias, P., Lamer, K., Lantz, K., Mei, F., Miller, M., Michalsky, J., Ortega, I., Pekour, M., Rogers, R., 722Russell, P., Redemann, P., Sedlacek, A., Segal-Rosenheimer, M., Schmid, B., Shilling, J., Shinozuka, Y., 723Springston, S., Tomlinson, J., Tyrrell, M., Wilson, J., Volkamer, R., and Zelenyuk, A.: The Two-Column 724Aerosol Project: Phase I Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth, 725submitted to Journal of Geophysical Research: Atmospheres., 2015.

727Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh Optical Depth 728Calculations, Journal of Atmospheric and Oceanic Technology, 16, 1854-1861, 1999.

730Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O., Vogel, A., Hartmann, M., 731Kromminga, H., Bovensmann, H., Frerick, J., and Burrows, J.: Measurements of molecular absorption 732spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for 733atmospheric remote-sensing in the 2302380 nm region, Journal of Photochemistry and Photobiology A: 734Chemistry, 157, 167 – 184, doi:10.1016/S1010-6030(03)00062-5, 2003.

736Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, Wiley, 1998.

738Box, M. A. and Deepak, A.: Retrieval of aerosol size distributions by inversion of simulated aureole 739data in the presence of multiple scattering, Appl. Opt., 18, 1376–1382, 1979.

741Chance, K. V. and Spurr, R. J. D.: Ring effect studies: Rayleigh scattering, including molecular 742parameters for rotational Raman scattering, and the Fraunhofer spectrum, Appl. Opt., 36, 5224–5230, 743doi: 10.1364/AO.36.005224, 1997.

744

745Chung, C. E., Ramanathan, V., Kim, D., and Podgorny, I. A.: Global anthropogenic aerosol direct 746forcing derived from satellite and ground-based observations, Journal of Geophysical Research: 747Atmospheres, 110, D24207, doi:10.1029/2005JD006356., 2005.

749Clémer, K., Van Roozendael, M., Fayt, C., Hendrick, F., Hermans, C., Pinardi, G., Spurr, R., Wang, P., 750and De Mazière, M.: Multiple wavelength retrieval of tropospheric aerosol optical properties from 751MAXDOAS measurements in Beijing, Atmos. Meas. Tech., 3, 863-878, doi:10.5194/amt-3-863-2010, 7522010.

753

754Deutschmann, T., Beirle, S., Frieß, U., Grzegorski, M., Kern, C., Kritten, L., Platt, U., Prados-Roman, 755C., Puckimacrte, J., Wagner, T., Werner, B., and Pfeilsticker, K.: The Monte Carlo atmospheric radiative 756transfer model McArtim: Introduction and validation of Jacobians and 3D features, J. Quant. Spectrosc. 757Radiat. Transfer, 112, 1119–1137, doi:10.1016/j.jqsrt.2010.12.009, 2011. 758

759Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., and Slutsker, I.: 760Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network 761(AERONET) Sun and sky radiance measurements, Journal of Geophysical Research: Atmospheres, 762105(D8), 9791–9806, doi:10.1029/2000JD900040., 2000.

764de Beek, R., Vountas, M., Rozanov, V. V., Richter, A., and Burrows, J. P.: The Ring effect in the cloudy 765atmosphere, Geophys. Res. Lett., 28, 721–724, 2001.

767Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., Slutsker, I., and Kinne, 768S.: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, 769Journal of Geophysical Research: Atmospheres, 104(D24), 31333–31349, doi:10.1029/1999JD900923., 7701999.

771

772Fayt, C. and Van Roozendael, M.: WinDOAS 2.1, Software User Manual, Belgian Institute for Space 773Aeronomy, Brussels, Belgium, available at:

774http://uv-vis.aeronomie.be/software/WinDOAS/WinDOAS-SUM-210b.pdf (last access: 29 May 2012),

7752001.

776

777Frieß, U., Monks, P. S., Remedios, J. J., Rozanov, A., Sinreich, R., Wagner, T., and Platt, U.: 778MAX-DOAS O₄ measurements: A new technique to derive information on atmospheric aerosols: 2. 779Modeling studies, Journal of Geophysical Research (Atmospheres), 111, D14 203, 780doi:10.1029/2005JD006618, 2006.

781

782Gielen, C., Van Roozendael, M., Hendrick, F., Pinardi, G., Vlemmix, T., De Bock, V., De Backer, H., 783Fayt, C., Hermans, C., Gillotay, D., and Wang, P.: A simple and versatile cloud-screening method for 784MAX-DOAS retrievals, Atmos. Meas. Tech., 7, 3509-3527, doi:10.5194/amt-7-3509-2014, 2014. 785

786Gisi, M., Hase, F., Dohe, S., and Blumenstock, T.: Camtracker: a new camera controlled high precision 787solar tracker system for FTIR-spectrometers, Atmos. Meas. Tech., 4, 47-54, 788doi:10.5194/amt-4-47-2011, 2011.

789

790Grainger, J. and Ring, J.: Anomalous Fraunhofer Line Profiles, Nature, 193, 762, 791doi:10.1038/193762a010.1038/193762a0, 1962.

792

793Hair, J. W., C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. 794Izquierdo, and F. E. Hovis.: Airborne High Spectral Resolution Lidar for profiling aerosol optical 795properties, Appl. Opt., *47*(36), 6734-6752, 2008.

796

797Hansen, J., Sato, M., Nazarenko, L., Ruedy, R., Lacis, A., Koch, D., Tegen, I., Hall, T., Shindell, D., 798Santer, B., Stone, P., Novakov, T., Thomason, L., Wang, R., Wang, Y., Jacob, D., Hollandsworth, S., 799Bishop, L., Logan, J., Thompson, A., Stolarski, R., Lean, J., Willson, R., Levitus, S., Antonov, J., 800Rayner, N., Parker, D., and Christy, J.: Climate forcings in Goddard Institute for Space Studies SI2000 801simulations, Journal of Geophysical Research: Atmospheres, 107(D18), 4347, 802doi:10.1029/2001JD001143, 2002.

803

804Harrison, L., Michalsky, J., and Berndt, J.: Automated multi-filter rotation shadow-band radiation 805measurements, Appl. Opt., 33, 5118, 1994.

807Herman, J., A. Cede, E. Spinei, G. Mount, M. Tzortziou, and N. Abuhassan.: NO₂ column amounts 808from ground-based Pandora and MFDOAS spectrometers using the direct sun DOAS technique: 809Intercomparisons and application to OMI validation, J. Geophys. Res., 114, D13307, 810doi:10.1029/2009JD011848, 2009.

811

812Henyey, L. G. and Greenstein, J. L.: Diffuse radiation in the galaxy, Astrophysical. Journal., 93, 70–83, 813doi:10.1086/144246, 1941.

814Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J., Setzer, A., Vermote, E., Reagan, J., Kaufman, 815Y., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET—A Federated Instrument 816Network and Data Archive for Aerosol Characterization, Remote Sensing of Environment, 66, 1 – 16, 817doi:10.1016/S0034-4257(98)00031-5, 1998.

819Holben, B. N., Tanr´e, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., Newcomb, W. W., 820Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y. J., Castle, J. V., Setzer, A., Markham, B., Clark, 821D., Frouin, R., Halthore, R., Karneli, A., O'Neill, N. T., Pietras, C., Pinker, R. T., Voss, K., and Zibordi, 822G.: An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET, Journal of

```
823Geophysical Research: Atmospheres, 106, 12 067–12 097, doi: 10.1029/2001JD900014, 2001.
```

825Hönninger, G., von Friedeburg, C., and Platt, U.: Multi axis differential optical absorption spectroscopy 826(MAX-DOAS), Atmos. Chem. Phys., 4, 231-254, doi:10.5194/acp-4-231-2004, 2004.

827

828Intergovernmental Panel on Climate Change: Climate Change 2013: The Physical Science Basis, 829Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.

830

831

832Kassianov, E., Berg, L. K.; Pekour, M., Barnard, J., Chand, D., Flynn, C., Ovchinnikov, M., Sedlacek, 833A., Schmid, B., Shilling, J., Tomlinson, J., and Fast, J.: Airborne aerosol in situ measurements during 834TCAP: A closure study of total scattering. Atmosphere, 6, 1069-1101, doi:10.3390/atmos6081069, 8352015.

836

837Kaufman, Y. J., A. Gitelson, A. Karnieli, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, and B. N. 838Holben, Size distribution and scattering phase function of aerosol particles retrieved from sky 839brightness measurements, J. Geophys. Res., 99(D5), 10341–10356, doi:10.1029/94JD00229, 1994. 840

841Langford, A. O., Schofield, R., Daniel, J. S., Portmann, R. W., Melamed, M. L., Miller, H. L., Dutton, 842E. G., and Solomon, S.: On the variability of the Ring effect in the near ultraviolet: understanding the 843role of aerosols and multiple scattering, Atmos. Chem. Phys., 7, 575–586, 2007,

844

845Mao, K., Ma, Y., Xia, L., Chen, W. Y., Shen, X., He, T., and Xu, T.: Global aerosol change in the last 846decade: An analysis based on MODIS data, Atmospheric Environment, 94, 680 – 686, 847doi:10.1016/j.atmosenv.2014.04.053, 2014.

848

849McComiskey, A., Schwartz, S. E., Schmid, B., Guan, H., Lewis, E. R., Ricchiazzi, P., and Ogren, J. A.: 850Direct aerosol forcing: Calculation from observables and sensitivities to inputs, Journal of Geophysical 851Research: Atmospheres, 113, doi:10.1029/2007JD009170, 2008.

852

853Michalsky, J., Denn, F., Flynn, C., Hodges, G., Kiedron, P., Koontz, A., Schlemmer, J., and Schwartz, 854S. E.: Climatology of aerosol optical depth in north-central Oklahoma: 1992–2008, Journal of 855Geophysical Research: Atmospheres, 115, doi:10.1029/2009JD012197, 2010.

857Müller, D., Hostetler, C. A., Ferrare, R. A., Burton, S. P., Chemyakin, E., Kolgotin, A., Hair, J. W., 858Cook, A. L., Harper, D. B., Rogers, R. R., Hare, R. W., Cleckner, C. S., Obland, M. D., Tomlinson, J., 859Berg, L. K., and Schmid, B.: Airborne Multiwavelength High Spectral Resolution Lidar (HSRL-2) 860observations during TCAP 2012: vertical profiles of optical and microphysical properties of a 861smoke/urban haze plume over the northeastern coast of the US, Atmospheric Measurement Techniques, 8627, 3487–3496, doi:10.5194/amt-7-3487-2014, 2014.

863

864Nakajima, T., Tanaka, M., and Yamauchi, T.: Retrieval of the optical properties of aerosols from aureole 865and extinction data, Appl. Opt., 22, 2951–2959, 1983.

866

867Nakajima, T., Tonna, G., Rao, R., Boi, P., Kaufman, Y., and Holben, B.: Use of sky brightness 868measurements from ground for remote sensing of particulate polydispersions, Appl. Opt., 35, 2672, 869doi:10.1364/AO.35.002672, 1996.

```
871Ortega, I., Koenig, T., Sinreich, R., Thomson, D., and Volkamer, R.: The CU 2-D-MAX-DOAS 872instrument – Part 1: Retrieval of 3-D distributions of NO<sub>2</sub> and azimuth-dependent OVOC ratios, 873Atmos. Meas. Tech., 8, 2371-2395, doi:10.5194/amt-8-2371-2015, 2015.
```

875Ortega, I., Berg, L., Ferrare, R., Johnathan, H., Hostetler, C., and Volkamer, R.: Elevated aerosol layers 876modify the O₂-O₂ absorption measured by ground based MAX-DOAS, J. Quant. Spectrosc. Radiat. 877Transfer, 176, 34-49, 2016, doi:10.1016/j.jqsrt.2016.02.021, 2016. 878

879Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy, 597 pp., Springer, Berlin, 880doi:10.1007/978-3-540-75776-4, 2008.

881

882Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D., Mattoo, S., Martins, J. V., 883Ichoku, C., Koren, I., Yu, H., and Holben, B. N.: Global aerosol climatology from the MODIS satellite 884sensors, Journal of Geophysical Research: Atmospheres, 113, doi: 10.1029/2007JD009661, 2008. 885

886Sinreich, R., Coburn, S., Dix, B., and Volkamer, R.: Ship-based detection of glyoxal over the remote 887tropical Pacific Ocean, Atmos. Chem. Phys., 10, 11359-11371, doi:10.5194/acp-10-11359-2010, 2010. 888

889Sinyuk, A., Holben, B. N., Smirnov, A., Eck, T. F., Slutsker, I., Schafer, J. S., Giles, D. M., and 890Sorokin, M.: Assessment of error in aerosol optical depth measured by AERONET due to aerosol 891forward scattering, Geophysical Research Letters, 39, doi: 10.1029/2012GL05389410, 2012.

893Torres, B., Toledano, C., Berjo´n, A., Fuertes, D., Molina, V., Gonzalez, R., Canini, M., Cachorro, V. E., 894Goloub, P., Podvin, T., Blarel, L., Dubovik, O., Bennouna, Y., and de Frutos, A. M.: Measurements on 895pointing error and field of view of Cimel-318 Sun photometers in the scope of AERONET, 896Atmospheric Measurement Techniques, 6, 2207–2220, 2013.

897

898 Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S., Mérienne, M. F., 899 Jenouvrier, A., and Coquart, B.: Measurements of the NO_2 absorption cross section from 42 000 cm⁻¹ to 90010 000 cm⁻¹ (238–1000 nm) at 220 K and 294 K J. Quant. Spectrosc. Radiat. Transfer, 59, 171–184, 901doi:10.1016/S0022-4073(97)00168-4, 1998.

902 903

904Vogel, L., Sihler, H., Lampel, J., Wagner, T., and Platt, U.: Retrieval interval mapping: a tool to 905visualize the impact of the spectral retrieval range on differential optical absorption spectroscopy 906evaluations, Atmospheric Measurement Techniques, 6, 275–299, doi:10.5194/amt-6-275-2013, 2013. 907

908Volkamer, R., Baidar, S., Campos, T. L., Coburn, S., DiGangi, J. P., Dix, B., Eloranta, E. W., Koenig, T. 909K., Morley, B., Ortega, I., Pierce, B. R., Reeves, M., Sinreich, R., Wang, S., Zondlo, M. A., and 910Romashkin, P. A.: Aircraft measurements of BrO, IO, glyoxal, NO₂, H₂O, O₂–O₂ and aerosol extinction 911profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements, Atmos. 912Meas. Tech., 8, 2121-2148, doi:10.5194/amt-8-2121-2015, 2015.

913

914Vountas, M., Rozanov, V. V., and Burrows, J. P.: Ring effect: Impact of rotational Raman scattering on 915radiative transfer in earth's atmosphere, J. Quant. Spectrosc. Radiat. Trans., 60(6), 943–961, 1998. 916

917Vountas, M., Richter, A., Wittrock, F., and Burrows, J. P.: Inelastic scattering in ocean water and its **918**impact on trace gas retrievals from satellite data, Atmos. Chem. Phys., 3, 1365-1375, **919**doi:10.5194/acp-3-1365-2003, 2003.

921Wagner, T., Dix, B., Friedeburg, C. v., Frieß, U., Sanghavi, S., Sinreich, R., and Platt, U.: MAX-DOAS 922O₄ measurements: A new technique to derive information on atmospheric aerosols-Principles and 923information content, Journal of Geophysical Research (Atmospheres), 109, D22 205, 924doi:10.1029/2004JD004904, 2004.

926Wagner, T., Burrows, J. P., Deutschmann, T., Dix, B., von Friedeburg, C., Frieß, U., Hendrick, F., 927Heue, K., Irie, H., Iwabuchi, H., Kanaya, Y., Keller, J., McLinden, C. A., Oetjen, H., Palazzi, E., 928Petritoli, A., Platt, U., Postylyakov, O., Pukite, J., Richter, A., van Roozendael, M., Rozanov, A., 929Rozanov, V., Sinreich, R., Sanghavi, S., andWittrock, F.: Comparison of box-air-mass-factors and 930radiances for Multiple-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) geometries 931calculated from different UV/visible radiative transfer models. Atmospheric Chemistry and Physics. 7.

9321809–1833, 2007.

933

934Wagner, T., Beirle, S., and Deutschmann, T.: Three-dimensional simulation of the Ring effect in 935observations of scattered sun light using Monte Carlo radiative transfer models, Atmos. Meas. Tech., 2, 936113–124, doi:10.5194/amt-2-113-2009, 2009a.

937

938Wagner, T., Deutschmann, T., and Platt, U.: Determination of aerosol properties from MAX-DOAS 939observations of the Ring effect, Atmos. Meas. Tech., 2, 495-512, doi:10.5194/amt-2-495-2009, 2009b. 940

941Wagner, T., Beirle, S., Deutschmann, T., and Penning de Vries, M.: A sensitivity analysis of Ring effect 942to aerosol properties and comparison to satellite observations, Atmos. Meas. Tech., 3, 1723-1751, 943doi:10.5194/amt-3-1723-2010, 2010.

944

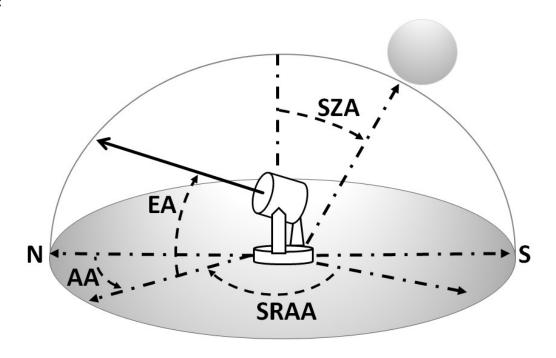
945Wagner, T., Apituley, A., Beirle, S., Dörner, S., Friess, U., Remmers, J., and Shaiganfar, R.: Cloud 946detection and classification based on MAX-DOAS observations, Atmos. Meas. Tech., 7, 1289-1320, 947doi:10.5194/amt-7-1289-2014, 2014.

948

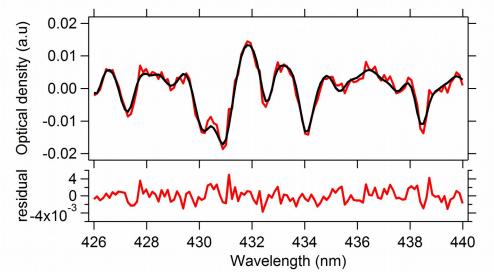
949Wang, Y., Li, A., Xie, P. H., Wagner, T., Chen, H., Liu, W. Q., and Liu, J. G.: A rapid method to derive 950horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical 951absorption spectroscopy, Atmos. Meas. Tech., 7, 1663-1680, doi:10.5194/amt-7-1663-2014, 2014. 952

953Westervelt, D. M., Horowitz, L. W., Naik, V., and Mauzerall, D. L.: Radiative forcing and climate 954response to projected 21st century aerosol decreases, Atmos. Chem. Phys. Discuss., 15, 9293-9353, 955doi:10.5194/acpd-15-9293-2015, 2015.

Table 1. Suite of measurements and products used in this work.

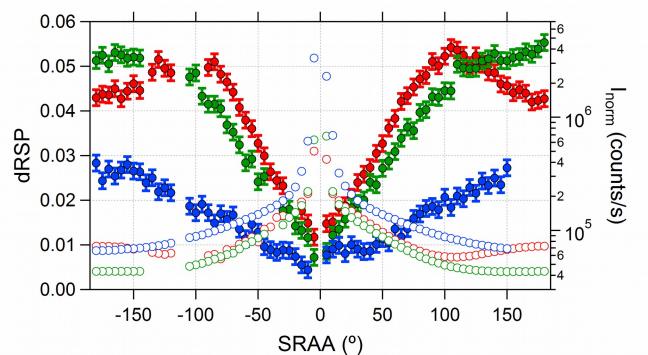

Ground based instruments						
Instrument	Principle of measurement	Absolute radiometric calibration (YES/NO)	Products	Reference		
2D-MAX-DOAS	Solar scattered light	NO	AOD and g (430 nm)	Ortega et al. (2015)		
MFRSR	Total and diffuse solar irradiances	YES	AOD (430 nm) calculated using the Angstrom exponent between the standard wavelengths of 415 and 500 nm.	Harrison et al. (1994)		
CIMEL sun photometer	Direct solar beam and diffused sky radiation	YES	Level 2.0: AOD (430 nm) calculated using the Angstrom exponent between the standard wavelengths of 340 and 440 nm and <i>g</i> (440 nm)	Holben et al. (1998)		
Radiosondes	Weather balloon that measures various atmospheric parameters	N/A	Vertical profiles of temperature, pressure and humidity (4 times/day)	Berg et al. (2015)		
Airborne instruments						
HSRL-2	backscatter and extinction coefficients		AOD (430 nm) - calculated using the Angstrom exponent between the standard wavelengths of 355 and 532 nm.	Muller et al. (2014)		

960Table 2. Geometry of measurements and configuration used during the TCAP field campaign.

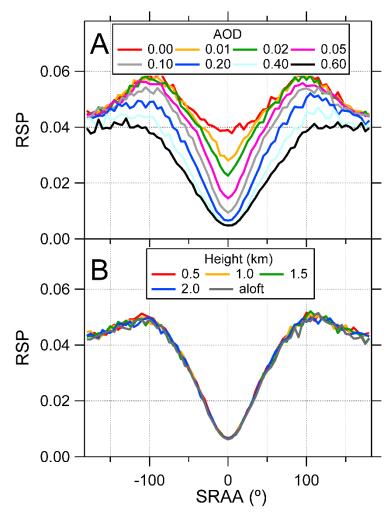

Mode	EA(°)	AA (°)	SRAA (°)	Total acquisition Time (min)
1	1,3,6,8,10,30,45,90	0, 180	variable	16 - 17ª
2	Solar elevation (90 – θ_0) and 45	variable	5, 10, 15 180 (left and right)	2 - 3 ^b
3	Solar elevation	variable	0	2 – 6

961^aIntegration time of 60s at each α. ^bIntegration time of 1s at each SRAA.

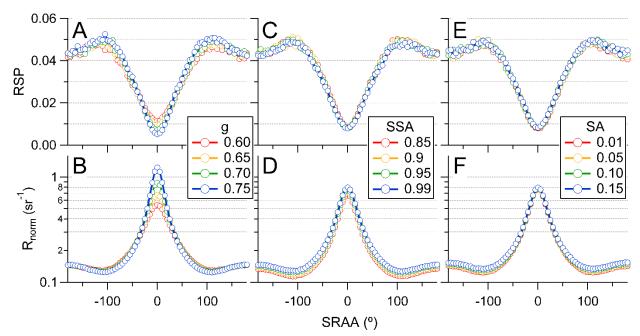
962Figures:

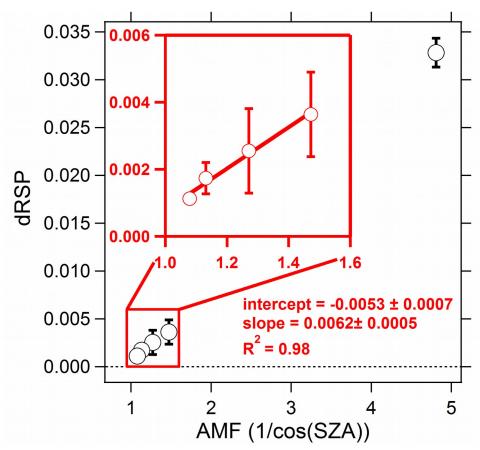


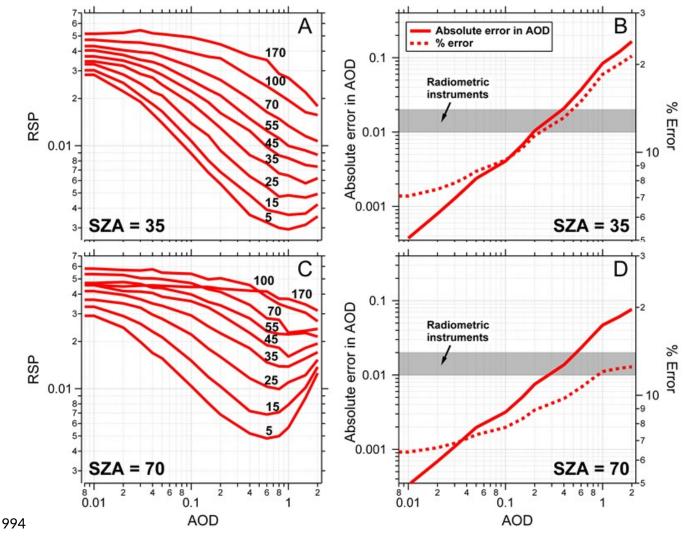
964Fig. 1. Sketch of measurement geometry used with the 2D-MAX-DOAS. The solid line coming out 965from the telescope represents the azimuth angle (AA) with respect to North characterized by the 966elevation angle (EA) and solar relative azimuth angle (SRAA). SZA is the solar zenith angle.

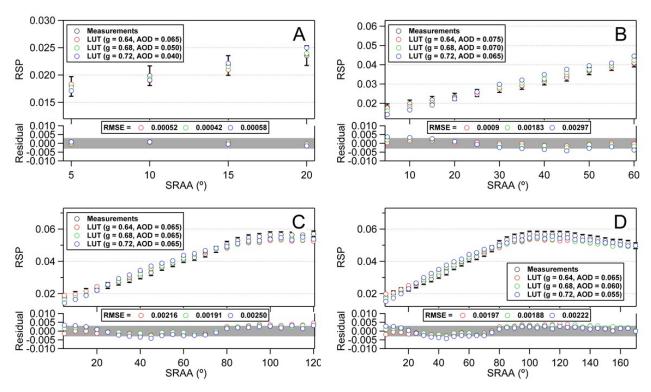


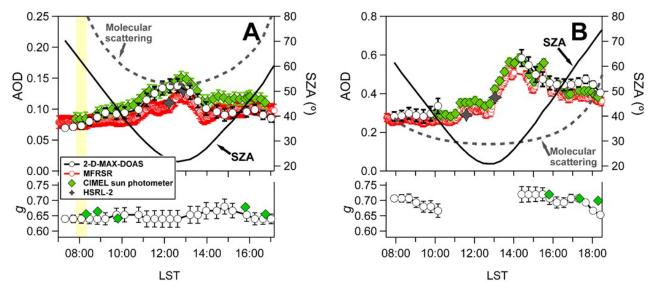
968Fig. 2. Top: example of spectral proof for the detection of dRSP (1 s integration time) using the solar 969azimuth scan on 22 July 2012 at 7:43 LST (SZA = 66.3°, SRAA = 120°, EA = solar EA). The red line 970represents the measured spectra and black line is the fitted normalized Ring cross section. The dRSP is 9710.0502 \pm 0.0011. Bottom: residual from the DOAS fit, RMS_{meas} = 1.58x10⁻³, is in good agreement with 972the shot-noise RMS_{theo} = 1.40x10⁻³ based on photon counting statistics.

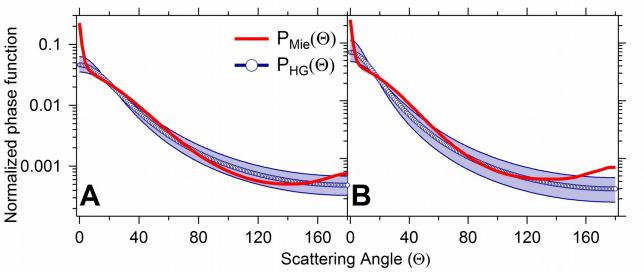

963


973
974Fig 3. Example of the SRAA dependence of dRSP (filled circles) and I_{norm} (open circles) measured at
975the solar elevation near 430 nm for three SZAs: (red) 66.5° (7:42 LST), (green) 49.0° (9:17 LST), and
976(blue) 22.0° (12:40 LST).


979Fig. 4. Sensitivity study showing that simulated RSP (430 nm) is (A) a strong function of AOD, and (B) 980insensitive to the aerosol vertical distribution. (A) AOD is varied, keeping aerosols homogeneously 981distributed (box profile) up to 1.5 km altitude. (B) The aerosol extinction vertical distribution is varied 982for a constant AOD of 0.2. The simulation is for SZA = 70° , SSA = 0.98, g = 0.70, SA = 0.05.


984Fig. 5. Sensitivity study showing simulated RSP (top row) and sun-normalized radiances, R_{norm} (sr⁻¹) 985defined as the ratio of the radiance (W·m²·sr⁻¹) in the geometry indicated to the solar irradiance (W·m²) 986(bottom row) at 430 nm for several input parameters: (A, B) g, (C, D) SSA, and (E, F) SA. The 987simulations were carried out assuming a box extinction profile (1.5 km height) with an AOD of 0.2, and 988SZA = 70° .


990Fig. 6. Direct sun dRSP as a function of the air mass factor, AMF = $1/\cos(SZA)$. All direct sun spectra 991measured on 22 July 2012 were evaluated (SZA binned) relative to a direct sun reference spectrum 992measured at SZA = 28° . The insert shows the zoom-in of the linear correlation plot used to 993quantitatively determine the offset at AMF = 0 (see text for details).


995Fig 7. Simulated RSP as a function of AOD for 5° < SRAA < 100° at (A) SZA = 35° , and (C) SZA = 99670° . Additional parameters are g = 0.72, SA = 0.05, SSA= 0.98. (B and D) Absolute error in AOD and 997percentage error calculated with equation 3 (see text for details). An AOD error range of 0.01 - 0.02 is 998indicated with the gray shadow area. A value of 0.01 is typical of newly radiometrically calibrated 999instruments.

1001Fig 8. Comparison of measured RSP (black open circles) and simulated RSP (open circles) with the 1002LUT using three different g (red: g = 0.64, green: g = 0.68, and blue: g = 0.72). The examples shown 1003here represent the best fit that minimizes equation 1 for different ranges of SRAA: (A) 5 to 20°, (B) 5 1004to 60°, (C) 5 to 120°, and (D) 5 to 170° SRAA. The retrieved AOD in each case is indicated in the 1005labels.

1009Fig 9. Time series of AOD comparing the 2D-MAX-DOAS with MFRSR, CIMEL sun photometer and 1010HSRL-2 under (A) low AOD case on 22 July and (B) under high AOD on 17 July. The dashed gray line 1011represents the molecular optical depth. The retrieved *g* from 2D-MAX-DOAS (430nm) and CIMEL 1012(440 nm) are shown in the bottom plot. The yellow shading in A represents the time period used in the 1013example of Fig. 8.

1016Fig 10. Comparison of area normalized phase functions under (A) low AOD (22 July 2012 at 8:50

1017LST) and (B) high AOD (17 July 2012 AT 15:50 LST). The blue shaded represent a typical error in g 1018of 10%.