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Abstract

This report contains a series of tables summarizing the thermodynamic properties of aqueous carbonate
complexes and solid carbonate phases of the following elements: arsenic (As), barium (Ba), cadmium
(Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg),
nickel (Ni) thallium (TI), uranium (U) and zinc (Zn). Most of these elements are potentially hazardous as
defined by extant primary drinking water standards of the United States Environmental Protection
Agency (U.S. EPA). The remainder are not considered hazardous, but are either listed by U.S. EPA under
secondary standards, or because they can adversely affect drinking water quality. Additional tables are
included giving the thermodynamic properties for carbonates of the alkali metal and alkali earth elements,
sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), and strontium (Sr), because of their value in
developing correlative models to estimate the thermodynamic properties of carbonate minerals for which
no such data currently exist.

The purpose in creating the tables in this report is to provide future investigators with a convenient source
for selecting and tracing the sources of thermodynamic data of the above listed elements for use in
modeling their geochemical behavior in “underground sources of drinking water” (USDW). The incentive
for doing so lies with a heightened concern over the potential consequences of the proposed capture and
storage of carbon dioxide (CO,) generated by fossil fuel fired power plants in deep subsurface reservoirs.
If CO, were to leak from such reservoirs, it could migrate upward and contaminate USDWSs with
undesirable, but undetermined, consequences to water quality.

The U.S. EPA, Office of Research and Development, through an Interagency Agreement with the United
States Department of Energy (U.S. DOE) at the Lawrence Berkeley National Laboratory (LBNL), funded
the preparation of this report.
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Introduction

This report consists of a series of tables pertaining to the thermodynamic properties of agueous carbonate
complexes and solid carbonate phases of a selected group of elements. Most of these elements are
considered potentially hazardous as defined by extant primary drinking water standards promulgated by
the United States Environmental Protection Agency (U.S. EPA) Title 40, Code of Federal Regulations (40
CFR), Section 141, under Subpart B-Maximum Contaminant Levels (§141.11). Other elements, some of
which are normally encountered in the environment in only trace concentrations, and which are not
considered hazardous, some of which are listed by the U.S. EPA under secondary standards, are also
included, because they are sometimes of environmental concern. Summary tables giving the
thermodynamic properties for carbonates of the elements, sodium, potassium, magnesium, calcium, and
strontium are also included, because of their value in developing models to estimate the thermodynamic
properties of carbonate minerals for which no such data currently exist.

The reason for creating the tables in this report lies with a heightened concern over the consequences of
the capture and deep subsurface disposal of anthropogenically generated carbon dioxide (CO,) generated
from stationary fossil fuel (especially coal) fired power plants and other stationary industrial sources. It is
hoped that this anthropogenic CO, would be isolated indefinitely from the atmosphere through deep
subsurface storage, or at least until such time when its accumulation in the atmosphere would be
controlled, and no longer have the potential to modify the earth’s climate. Both the integrity of deep
subsurface reservoirs, and the enormous quantities of CO, that must be captured and stored to have a
measurable effect (a single 1000 MWe coal-fired plant generates about 18,000 metric tons of CO, daily
(Li et al., 2006)) raises serious concerns that leaking CO, could migrate upward into shallower aquifers
containing so called “underground sources of drinking water” (USDW), defined in Title 40, Code of
Federal Regulations (40 CFR), Section 144.3 as an aquifer or part of an aquifer, which “supplies any
public water system, or contains a sufficient quantity of ground water to supply a public water system and
currently supplies drinking water for human consumption or contains fewer than 10,000 milligrams/liter
of Total Dissolved Solids (TDS)...” Waters approaching such concentrations of TDS are implausible
sources of drinking water, despite the designation. However, abundant supplies of potable drinking water
containing 1,000 ppm TDS or less, are major sources of drinking water in the United Sates and could be
threatened by CO, leakage from storage reservoirs.

The consequences of CO, leakage into potable water aquifers are difficult to predict, because the resulting
chemical reactions, the kinetics of such reactions, and the concentrations and fate of hazardous elements
in the aquifer host rocks that might be mobilized as a result of CO, intrusion are poorly understood. Some
of these issues have been articulated and discussed, and attempts made to better define their nature and
scope, in an earlier report to the U.S. EPA (Birkholzer et al., 2008).

Enhanced CO, partial pressures in ground waters can impact in several ways the aqueous solubility of
hazardous elements:

1. CO;, reacts with the aqueous phase to produce a weak acid.

2. Inthe absence of acid-neutralizing minerals, the increased acidity lowers the chemical potentials
of metal oxide components in solution, which enhances the solubilization of minerals containing
those oxide components.



3. The distribution of aqueous hydroxyl-complexes of some metals is modified by increased acidity.

4. Dissolved aqueous carbonate species can complex with metal ions in solution, further lowering
the chemical potentials of oxide, sulfide, and other components of dissolved metals.

5. Increased concentrations of dissolved carbonate and bicarbonate species would tend to displace
anionic and oxy-anionic species of hazardous elements from anionic adsorption sites and
exchange sites on anionic clays and oxides with high zero point of charge.

6. An increased CO, fugacity increases the stability of solid metal carbonate phases.

A partial understanding of the thermodynamic response of changing CO, partial pressures on the behavior
of hazardous metals can be achieved through modeling of the geochemical properties of rock-water
systems containing major and trace chemical components. During the last forty years, with the expanding
use of digital computers, many software packages have been developed that facilitate the modeling of the
geochemistry of such systems, especially under conditions simulating ambient temperatures at or near the
earth’s surface. Most use algorithms to calculate homogeneous equilibrium within the aqueous phase,
assuming the presence of discrete chemical species, i.e., cations, anions and molecules, which may be
simple or complex, and which possess discrete temperature and pressure dependent thermodynamic
properties. The equilibrium distribution of the aqueous species is determined through solution of a non-
linear series of equations either by a routine that calculates the minimum free energy of the system, based
on a knowledge of the Gibbs free energies of the individual species and the excess free energies
associated with their activity coefficients in solution (the Gibbs free energy minimization form), or
aroutine that calculates mass action and mass balance optionally constrained by the requirement of
electrical neutrality and choice of electrolyte model to describe species activity coefficients (the mass
action equation form). Both methods are thermodynamically equivalent, and should lead to identical
species distributions for a given problem (Van Zegeren and Storey, 1970). The former approach is
generally more elegant and flexible, but the latter is more intuitive, and possesses the advantage of using
thermodynamic dissociation constants of aqueous complexes derived directly from experimental
measurement. The former approach is more commonly used in Russia and Eastern Europe, whereas the
latter is used most extensively in Western Europe and North America.

The same software packages, used to define homogeneous equilibrium in the aqueous phase, are also used
in the calculation of heterogeneous equilibrium between the aqueous phase and solid phases, or minerals.
Again, the requirements for the two approaches described above, are respectively, the Gibbs free energy
of the solid phase, or alternatively, the solubility product of the solid phase, defined in terms of so-called
“basis” or “primary” species. More sophisticated software packages also allow calculation of the
distribution of species on adsorption sites, ion exchange sites on clays and zeolites, and homogeneous
solid solutions within minerals. Such packages, accounting for homogeneous equilibria in multi-
component multi-phase heterogeneous systems are at present incompletely developed, because either the
needed thermodynamic data are incomplete, or because not all relevant models have been incorporated. A
complicating factor is the availability of competing models where their standard or reference states are
inconsistent, or have not received universal acceptance.

The U.S. EPA recognizes that a review of extant thermodynamic data relating to aqueous carbonate
complexation with hazardous elements, and the solubility products of carbonate minerals of hazardous
elements is necessary for modeling the impact of CO, intrusion into potable water aquifers. An essential
first step is a compilation of dissociation constants of carbonate complexes and solubility products of
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hazardous carbonates reported in the published literature. The U.S. EPA also wished to examine the status
of thermodynamic databases used in current software packages to establish how complete they might be
in terms of the U.S. EPA’s expected needs. The U.S. EPA therefore contracted with the Lawrence
Berkeley National Laboratory (LBNL) under an inter-agency agreement to compile a series of databases
of reported hazardous metal association constants of carbonate complexes and carbonate mineral
solubility products of elements of interest. The tables were also to include, where available, the enthalpy

- 0
of reaction, AHLPJ’,

the data, the references to be appended to each set of tables for each element. The purpose of including
the enthalpy of reaction data is to allow limited log-linear temperature extrapolation both above and
below 25°C to permit thermodynamic calculations at temperatures between 0 and 100°C, as implemented
in the MINTEQ series of codes (Allison et al., 1991; Herndon, 1998), which have received substantial
support from the U.S. EPA during the past 30 years. These databases were to be supplemented with
databases summarizing the corresponding dissociation constants and solubility products used in several
popular distribution-of-species codes used in the United States and in Europe.

for both dissociation constants and solubility products and the source references for

Scope of the Compilation

Elements Considered for Review

The original list of hazardous elements proposed by the U.S. EPA for inclusion in the review consists of
the following: antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu),
lead (Pb), mercury (Hg), thallium (TI), selenium (Se) and uranium (U). Most of these elements are found
in nature occurring in more than one oxidation state, of which some are more hazardous than others.
Some, e.g., antimony, arsenic, chromium and selenium occur as hazardous oxy-anionic species, under
mildly reducing sub-oxic to oxidizing conditions. These species do not complex significantly with
carbonate in solution. Elevated concentrations of bicarbonate or carbonate in solution affect these species
primarily through anionic replacement on adsorption or ion exchange sites, or through trace element co-
precipitation in carbonate structures. Thermodynamic data relating to such adsorption, ion exchange and
solid solution substitutions fall outside the scope of the evaluation and are not considered. The absence of
useful data in the literature led to an agreement to drop antimony and selenium from the list of elements
under consideration, but to retain arsenic.

The list of elements considered for study was expanded to include the remaining transition metals,
manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni) and zinc (Zn). These elements are not considered
hazardous by the U.S. EPA, although the concentrations of manganese and iron, especially, might lead to
an undesirable taste and possible coloration if present at elevated concentration in drinking water. One
reason for expanding the scope was to provide data on these elements that could be used subsequently in
correlative studies of the thermodynamic properties of both solid carbonates and agueous carbonate
complexes of all elements of interest, thereby enhancing the ability to detect errors and inconsistencies in
experimental data. Secondly, such evaluations could facilitate the interpretation of analytical data
obtained from field experiments to measure the response of an aquifer to CO, intrusion, where extremely
sensitive analytical methods such as ICP-MS now permit the quantitative determination of concentrations
of most, if not all trace elements present in ground waters. The interpretation of such data depends, of
course, on the availability of models permitting estimates to be made of the distribution of trace elements
on adsorption and/or ion exchange sites.



A complete list of elements surveyed in this study is given in Table 1, together with applicable U.S. EPA
drinking water standards.

Table 1. Hazardous Metals: U.S. EPA Drinking Water Standards (after U.S. EPA (2012))

Element Maximum Contaminant | Maximum Contaminant National Secondary Notes
Level Goal (MCLG) Level (MCL) Drinking Water
mg/L. mg/L. Regulations (Secondary
Standards)
mg/L
Arsenic zero 0.010 as of 01/23/06
Barium 2 2
Cadmium 0.005 0.005
Chromium (total) 0.1 0.1
Cobalt
Copper 1.3 1.0
Iron 0.3
Lead zero
Manganese 0.05
Mercury (inorganic) 0.002 0.002
Nickel
Thallium 0.0005 0.002
Uranium zero 0.030 Radionuclide, as of
12/08/03
Zinc 5.0
Definitions and Conventions
Definitions for symbols used in the report are as follows:
T Temperature, expressed in K (not to be confused with K, the equilibrium constant below),
unless otherwise noted, when it is expressed in °C
P Pressure, expressed in atmospheres (atm), (1 atm = 1.01325 bar), bar, or Pascals (Pa), (10°
Pa =1 bar)
CO
L The standard heat capacity of a pure substance, j, at constant pressure, expressed in terms of
Jigfw.K
0 - -
AGf,Tr . Standard Gibbs free energy of formation (f) of a substance at the reference temperature (T)
and pressure (P;), expressed in terms of kJ/gfw (gfw = gram formula weight).
0 .
AH sr.p  Standard enthalpy of formation (f) a substance at the reference temperature (T,) and pressure

(P:), expressed in terms of kJ/gfw (gfw = gram formula weight).




i

zr.e.  Standard enthalpy of association, or dissolution reaction (R), respectively for the association

of an aguous complex, or the dissolution of a pure substance a pure substance at the
reference temperature (T,) and pressure (P;), expressed respectively in terms of kg/mol, or
kJ/gfw (gfw = gram formula weight).

I The ionic strength of an aqueous solution, expressed as mol/kg H,0.

K The equilibrium constant, expressed as the product of the activities of the products raised to
the power of the corresponding stoichiometric coefficients, divided by the product of the
activities of the reactants raised to the power of the corresponding stoichiometric
coefficients. K is usually expressed as a logarithm to base 10., i.e., log K. In this report, K
refers either to the association constant of an aqueous complex, or to the dissolution
(solubility) constant, e.g., Ksp 0f a solid in the aqueous phase.

K Isothermal compressibility of a phase expressed as /atm, /bar or /Pa x 10°

Sﬁ,f, Entropy a pure substance at the reference temperature (T,) and pressure (P;), expressed in
terms of J/gfw.K

Ve Standard specific volume of a substance, expressed in terms of cm3/gfw (gfw = gram
formula weight).

a,bc Unit cell parameters of a crystalline solid phase, expressed in terms of Angstroms (1A = 10°
10 m)

o B,y Inter-axial angles of a crystalline solid phase, expressed in degrees (°).

z The number of formula units/unit cell of a crystalline solid.

The following conventions generally apply:

Dissociation constants of carbonate complexes are for the most part at the standard state of a hypothetical
unit molal solution at infinite dilution, i.e., at zero ionic strength (I = 0), all at 25°C and one atmosphere
pressure. However, not all data sources have followed this convention. For example, corrections for ionic
strength may not have been made, reference temperatures may be non-standard, and more recent literature
has adopted a standard pressure of one bar, or 10° Pascals (Pa). Non-standard state conditions for
recorded data are noted in the tables.

Carbonate mineral solubility products of elements of interest are likewise defined in relation to the
standard state of a hypothetical unit molal solution at infinite dilution, i.e., at zero ionic strength, all at
25°C and one atmosphere pressure. As with corresponding dissociation constants for complexes,
corrections to standard state conditions may not have been implemented. Non-standard state conditions
for recorded data are similarly noted in the tables.

In general, the correction of thermodynamic parameters for changing the standard state pressure from one
atmosphere to one bar has not been made in most thermodynamic data compilations, because the
correction is usually small in relation to the uncertainty of the measurement. Wolery and Jové-Colén
(2015) note, however, that such corrections should be applied for precise work.
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Where available, the standard enthalpy of association of a complex, or the standard enthalpy of
dissolution of a solid phase carbonate, AHSM , is included, where available, and is defined in kiloJoules

(kJ) with respect to one gram formula weight, gfw, of the given solid phase, i.e., kJ/gfw. Usage of the
term “gram formula weight” has declined in recent years in favor of the term “mole,” which when applied
to solid phases, can mean almost anything depending on the whim of the user. In this report, the former
term is reinstated in deference to its superior rigor.

Contents of the Main Tables

Each element is represented by a set of tables, as follows:

1. Association Constants for Aqueous Carbonate Complexes
2. Solubility Constants of Carbonate Minerals and Synthetic Solid Phases

3a. Association Constants of Aqueous Carbonate Complexes extracted from Databases of
Distribution-of-Species Codes

3b. Solubility Constants of Solid Carbonates extracted from Databases of Distribution-of-Species
Codes

3c. Distribution-of-Species Codes: Database References

4a. Thermodynamic Properties of Carbonate Minerals and Synthetic Solid Phases: Gibbs Free
Energies of Formation

4b. Thermodynamic Properties of Carbonate Minerals and Synthetic Solid Phases: Enthalpies of
Formation

4c. Thermodynamic Properties of Carbonate Minerals and Synthetic Solid Phases: Entropies
5. Crystallographic Properties of Carbonate Minerals and Synthetic Solid Phases
6. Carbonate Minerals containing greater than 10 wt.% of the element

Not all elements are represented by the complete set of tables, due either to the chemical properties
peculiar to that element, or the absence of data due to a lack of scientific interest. In the case of uranium,
an additional table is included to account for the thermodynamic properties of uranium carbonates
containing multiple components.

The primary source citations are given in chronological order in the last column of Tables 1, 2 and 4a,b
and c. The respective penultimate columns list secondary sources, which are also listed chronologically
with respect to each primary source. On occasion, the “primary” source is itself a secondary source to a
yet earlier source, which can be searched for in preceding call outs. In this way, it is possible to trace the
original source from subsequent literature compilations. It should be noted that data cited by secondary
sources in reference to earlier work do not always correspond exactly to those reported in the source
reference. Sometimes, the authors of the secondary source have re-worked the earlier data using state-of-
the-art methods at that time. Explicit attention to such re-workings is not given, although both source and
re-worked values are sometimes given in juxtaposition in the tables.

Tables 1 and 2 consist of compilations of the respective association constants of aqueous carbonate
species and solubility constants of carbonate minerals and synthetic phases. The intention in compiling
these tables is to present the data in a uniform format to allow for direct comparison between individual
investigations. Some nominal changes were therefore made in reporting the extracted values to ensure
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conformity. On occasion, other procedures were also adopted to facilitate comparison. The general rules
adopted in the compilations in Tables 1 and 2 are as follows:

1.
2.
3.

All association or dissolution constants data are given in terms of their logarithms.

All data are presented either as association or as dissolution reactions.

Both association and dissolution reactions are primarily written in terms of “basis species”
involving CO3*, H* and the ionic species of the hazardous element, i.e., M*, M**, M*" ..., or
occasionally, its oxy-anion. If the association or dissolution reactions were defined in terms of
HCO; and/or OH" at 25°C, these were sometimes re-written in terms of CO;* and/or H*, and the
respective association or dissolution constants modified using reaction constants in
supplementary Table S-1. Some reactions reported in the literature were not given in terms of
normally accepted basis species. They are reported as given in the source reference, as arbitrary
transformations could be inconsistent with the original investigator’s assumptions and derivation.
Where available, data corrected for zero ionic strength (I = 0) were entered, i.e., “true”
equilibrium constants at infinite dilution, independent of composition. Otherwise data are usually
recorded at the ionic strength employed, and should be corrected for infinite dilution (using an
appropriate activity coefficient model) prior to use with typical geochemical modeling software.
In some earlier work, reference temperatures differed from the now standard 25°C. In these cases,
the actual temperature is noted. Sometimes, measurements were undertaken only at “room
temperature.”

Some experiments were conducted over a range of temperatures and dissociation constants or
solubility constants were recorded at discrete temperatures differing from the standard 25°C.

AH:,P,T derived in the source reference is included where available. Such data sets are

sometimes amenable to more rigorous analysis, and a record of the data is provided in the
eventuality that a future investigator should choose to conduct such an analysis.

Occasionally, citations are given of references containing data that could be of interest to future
investigators, without reporting any data, as the data are in a form not suitable for presentation in
the tables. In particular, papers reporting phase equilibria, would be amenable to the retrieval of
pertinent thermodynamic data involving the participating phases. Such data retrieval is beyond
the scope of the current compilation.

Uncertainties, where reported, are those given by the investigator(s), and may represent one or
two standard deviations, or the 95% confidence level, which is normally about 2 standard
deviations. Readers requiring clarification should consult the source reference. It should be noted
that many secondary compilations omit uncertainties recorded in the source reference, or that the
source reference does not report an uncertainty, even though the reported raw data would have
permitted its determination.

In the measurement of solubility constants, the earlier literature commonly does not provide
information characterizing the crystal structure, or degree of crystallinity, of the phase under
investigation. Therefore different polymorphs might be confounded. The reported solubility
products could be finely crystalline, amorphous, possess a disordered structure, have a non-
equilibrium crystal habit, be a polymorph different from that assumed, or contain undesired or
unrecorded contaminants, especially where control of the oxidation state is critical. Occasional
comments are added to alert the reader to such issues.



In Table 2 and Tables 4a,b and ¢, minerals are listed in alphabetical order. The listing of minerals is
followed by a listing of synthetic phases, broadly ordered in terms of increasing complexity.

Tables 3a and b give the logarithms (base 10) of the association constants and solubility constants utilized
in the thermodynamic databases of several software programs commonly used to calculate aqueous
species distributions and solubility quotients. The software and associated databases are listed Table 3c.

Tables 4a,b and c represent compilations retrieved from the literature, respectively of the thermodynamic

0 0
parameters AG, ., AH ;.

common practice for AGf0 pr.and AH;’,,P'T

investigators reported these parameters in terms of the phase’s formation from the oxides. The latter
definition is duly noted when such data are incorporated in the tables. All data are recorded in S.I. units,
i.e., in terms of Joules. Where the source reference uses calories (cal) as the basis unit, the reported values
were converted into Joules (J), where 1 cal = 4.184 J.

and S;;’T for both natural and synthetic solid carbonate phases. It is

to be reported in terms of formation from the elements. Some

AGfo,PrT,’ AIT f',PrTr
unwieldy organization. The published thermodynamic properties of solid phases are commonly derived
using several experimental procedures, the most common being calorimetry, phase equilibria (as a
function of temperature and pressure) and aqueous solubility measurements (usually measured over a
limited range of temperature). In principle, these independent methods should yield similar, if not
identical results. However, numerous experimental artifacts limit the accuracy of all three procedures,
making close agreement likely only for a limited number of well-characterized solid phases. Consistency

of results between all methods would signal greater confidence in those values.

and SﬁrT for each solid phase are compiled in separate tables to avoid an otherwise

Data pertaining to the heat capacities of carbonate solid phases have not been tabulated. Heat capacity
data reported in the literature are given in a variety of forms, usually as functions of absolute temperature
(K). A standard form for presenting such data has not been implemented, which makes it difficult
topresent in a consistent manner. The authors therefore decided to omit their inclusion in this report.

Table 5 is a listing of the crystallographic parameters of the solid carbonates, including the crystal class,
the space group, cell constants (a, b, ¢, (A); a, B, v, (°) and Z, the number of formula units in a unit cell.
The compiled information was freely drawn from mineralogical tables published in the Mineralogy
Database (webmineral.com), and from Gaines et al. (1997), both of which were also used to assist in
identifying the primary scientific sources for the reported data. The primary sources are independently
referenced, and were consulted to verify the crystallographic parameters given in the two cited secondary

sources. The primary purpose of this compilation is the calculation of the molar volume, ¥°, (cm*/gfw),
which is necessary for the calculation of mineral solubilities and phase relations at elevated pressures, as
discussed further below. The molar volume for each solid crystalline carbonate was calculated using the
respective published cell constants, crystal class, Z, and the chemical formula. The gram formula weight,
(gfw), cell volume and density were also calculated. The latter was compared with the published
calculated density and measure specific gravity, where available, in oder to validate the computation of
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the molar volume. Minor inconsistencies were commonly found, due mainly to idealizations of the
stoichiometry. However, major discrepancies required further review and correction of errors.*

Table 6 summarizes information on naturally occurring mineral carbonates containing > 10 wt.% of the
metal of interest as an essential component, i.e., a component that is intrinsic to the mineral’s identity, in
contrast to accessory or trace components, which are not essential to the mineral’s identity. This
information was for the most part drawn from mineralogical tables published in the Mineralogy Database
(webmineral.com).

Contents of the Supplementary Tables

The supplementary tables are:

S-1. Translation equations and reaction constants used for conversion of equations using HCOs" as a basis
species to CO5>. This table gives information regarding reactions and corresponding reaction constants
needed to standardize experimental measurements of dissociation constants and solubility constants given
in Tables 1 and 2, as described above.

S-2. Solubility constants and thermodynamic parameters AG}’,P'L , AH?,PJ;

synthetic solid carbonate phases in the system Na,0-K,0-MgO-Ca0O-SrO-CO,-H,0. Most carbonate
minerals containing sodium, potassium, magnesium, calcium and strontium as essential components are
included, but the table is not exhaustive. With the possible exception of strontium, none of these elements
are considered to be hazardous. However, in broad correlations of the thermodynamic properties of all
carbonate phases, including those containing essential components of hazardous elements, their properties
are very important, particularly when it is recognized that some of the former are the best characterized
thermodynamically of all solid carbonate phases, and thereby provide a reliable and accurate base for
correlating thermodynamic data.

and Sﬁ,r, for both natural and

Caveats regarding the Tabulated Data

Although every effort was made to identify all relevant sources of thermodynamic data, some have
assuredly been missed®. Repeated literature searches using the Chemical Abstracts’ search engine,

! An example of the kind of problem that can arise is demonstrated by transcriptions of cell constant data of carrboydite
(Nig50CU0.40Al1.80(SO4)2.30(CO3)0.48(OH)21.69°3.67(H-0). The type description is given by Nickel and Clarke (1975), who give the unit cell
constants, identify the mineral as hexagonal, and give the calculated density as 2.692 and specific gravity as 2.51, but do not report Z. A check
proved that the calculated density was consistent with Z = 1. Gaines et al. (1997) transcribed the findings in Nickel and Clarke (loc cit.), but
generalized the chemical composition, and doubled the formula unit from one originally containing 36 oxygens to one containing 72 oxygens,
thus: (Ni,Cu)14Als(SO4,CO3)s(OH)4s#7(H20), while reporting the original cell constants, density and specific gravity. In addition, they incorrectly
reported Z = 4, instead of %. The Mineralogical Database, also gave the chemical formula based on 72 oxygens, doubled the size of the cell
constants, and correctly reported Z = 4 to account for the changed cell constants and chemical formula. They also reported the original calculated
density and measured specific gravity. However, their chemical formula: NijgCusAlg(SO4)s(CO3)2(OH)43¢7(H20) is inconsistent with that reported
by Nickel and Clarke and would have yielded a different calculated density of 2.714. In the respective Tables 5 for copper and nickel, the
reported Z values are corrected, and the stoichiometry of the mineral composition given by Gaines et al. was refined to more accurately reflect the
composition reported for the type material. As a final note, it should be pointed out that the senior author, E. H. Nickel, subsequently revised the
chemical formula for carrboydite to reflect its association with the pyroaurite group of minerals: [(Ni,Al,Cu)g(OH)1s]**[1.65(S04,CO3)*
+8.5(H,0,NiS0,)]** (Nickel and Wildman, 1981).

2 If the reader finds additional source material, or identifies transcription errors, the authors would be grateful if such information could be
brought to their attention at jaapps@Ibl.gov and corrections made to the on-line manuscript. Due acknowledgement will be given.



“Scifinder,” supplemented by searches using Google “Scholar,” and direct retrieval of references cited in
reviews and reports of original work, in which earlier work was cited, do not necessarily result in the
retrieval of all data sources. It is quite likely that significant studies still wait to be unearthed. The Russian
literature, in particular, is incompletely searched. Partly, this is due to difficulties in retrieving source
material from libraries in the west.

Evolving trends in the publication of experimental studies also affect the usefulness of retrieved data.
Scientific investigations published prior to the 2™ World War were commonly conducted with meticulous
attention to precise measurements, but interpretation of the data was undertaken using models considered
obsolete or incorrect by modern standards. Such studies can be re-evaluated using more recent techniques,
which can lead to results that are comparable with more recent studies. As noted above, earlier studies
commonly do not provide sufficient information to permit an adequate characterization of the materials
under study. Such work must be scrutinized carefully for clues to help in characterizing solid phases. In
contrast, more recent publications take more effort to characterize the material used. But, especially in
second tier or application-oriented journals, critical experimental data may be omitted, thereby making it
impossible to check the results and conclusions presented or re-analyze the data using improved methods.
Although it would be prudent to ignore the findings of such papers, the data presented are sometimes
available from no other source.

By reviewing different compilations, it is sometimes found that apparently independent determinations
can be traced back to a common original source. An illustration of the problems that arise with repeated
reworking of source material over time is given by Stipp et al. (1993) regarding the mineral otavite
(CdCOg). The structure of the thermodynamic tables is designed to help the reader track down original
source material. However, tracing of original material is not entirely complete, and the diligent
investigator may need in some instances to follow the given leads to their ultimate sources.

Finally, the reader should recognize that with a data compilation of this size, transcription errors are
inevitable. The duplication of the same data by different compilers serves as a check on the accuracy of
the transcription, and reference to the original source material assists with its verification. Furthermore, as
noted above, not all compilations necessarily report the original data. Occasionally, these are noted.
Finally, source references commonly contain additional information of value that, for reasons of space or
formatting, could not be conveniently incorporated in the tables of this report. Therefore, it is incumbent
on the user to use this report as a guide to original sources of information, and not to extract data without
first checking the original source.

The issues of data selection for incorporation in databases of current geochemical codes, comprehensive
re-evaluations of source data, and the estimation of carbonate mineral solubility constants are discussed
further in the following sections.

Application of Tabulated Data to Geochemical Modeling

A comparison of the data presently incorporated in the thermodynamic databases of current geochemical
modeling codes, tabulated in Tables 3a and b under each element, shows the limited extent to which
available information on aqueous carbonate complexing and carbonate mineral solubility constants has
been incorporated in these databases. Furthermore, much of the incorporated data are obsolescent, or have
not been rigorously evaluated for some time. This deficiency can be rectified partially by consulting more
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recent literature reviews, whose data are summarized in Tables 1 and 2. Systematic reviews of relevant
literature have been conducted at irregular intervals with the goal of choosing recommended values for
thermodynamic parameters for use in modeling studies. Some of these reviews are authoritative,
particularly those undertaken during the last two decades by IUPAC, e.g., Hala, J. and Navratil, J.D.
(2001) for actinide carbon compounds, Powell et al. (2005) for mercury, Powell et al. (2007) for copper,
Powell et al. (2009) for lead, and Gamsjager et al. (2011) for cadmium, or by OECD, e.g., Grenthe et al.
(1992), Lemire (2001) and Guillaumont et al. (2003) for radioelement compounds. They give detailed
evaluations justifying the selection of recommended values and provide parameter uncertainties.
Furthermore, papers reporting recent comprehensive experimental work to better define the
thermodynamic properties of the compounds of various metals, usually the products of thesis
dissertations, commonly include comprehensive reviews of the earlier literature, although they do not
necessarily re-evaluate earlier raw data. For those investigators wishing to modify, augment, or update the
database of their chosen geochemical modeling software, without devoting time to a comprehensive
analysis of past experimental work, such reviews might be the preferred route. It goes without saying,
however, that any changes must be internally consistent with the rest of the data in the database,
especially those data pertaining to hydroxyl complexation with the corresponding element. For this
reason, the authors of this report are not in a position to select and recommend “best values” from the
listed data without first making their own independent evaluation.

The preferred approach would be for the future investigator to conduct his own thorough review and
analysis of the extant literature, using raw data from original sources, a labor-intensive and time-
consuming task. He might well coordinate such an evaluation with recent similar recent studies to ensure
consistency of reference states and basis thermodynamic parameters.

Another deficiency is evident by inspection of Table 6 under each element. Usually, research has focused
almost exclusively on the most commonly occurring carbonate mineral with the simplest stoichiometry.
Inspection of Tables 2 and 4a,b and c also shows that the accumulated information on that particular
mineral is in some cases almost overwhelming. Other carbonate minerals for a given element, have been
almost entirely neglected, which is hardly surprising, given that most are obscure. However, this does not
obviate the need to consider them in geochemical modeling studies, as without accounting for their
presence, there is no way of establishing whether they might or might not control hazardous element
concentrations under a given set of geochemical conditions. It is therefore preferable to incorporate
minerals whose thermodynamic properties have been estimated, rather than omit them and run a
simulation that has the potential of having little or no basis in reality. Unfortunately, the incentive to
characterize experimentally the thermodynamic properties of lesser-known carbonates is minimal, and
future activity is this area is unlikely. Their properties must therefore be estimated using procedures for
correlating thermodynamic data using as a reference the properties of those well-characterized carbonates
given in the accompanying tables. This issue is discussed further below.

Thermodynamic Relations

Applications of geochemical modeling to problems involving the ingress of high pressure CO, into
potable water aquifers generally involve pressures and temperatures close to ambient earth surface
conditions. As such, the computation of the logarithms of carbonate mineral solubility constants, log K ,,
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can be approximated using AG7 ... AH} .,

together with the referenced thermodynamic properties of the basis agueous species. Such is the approach
adopted with the MINTEQ software (Allison et al., 1991; Herndon, 1998), where it is assumed that
AH;‘l,p,r :AHR?M. If, however, simulations of deep aquifers at pressures above 10 MPa and temperatures
> 100°C are to be conducted, then for precise work, corrections should be made for AC(})’,R and AV;?,p,rin

and §;, summarized in Tables 4a,b and ¢ under each element,

calculating log K - Such calculations can be facilitated using SUPCRT92 (Johnson et al., 1992). The
governing thermodynamic relations are as follows:
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Corresponding equations describing the changes in standard molar enthalpy and entropy of a solid phase
are:
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where SSF,Tr , Cg,,i ,and th’ are the standard molar entropy, heat capacity and volume of the solid phase,
and AH? is the standard molar enthalpy of the phase transition, all terms subscripted with i referring to

any phase transition in the solid. ¢Tand ¢Pstand for the number of phase transitions over the respective
speciied ranges of temperature and pressure.

CF?,,i is a function of temperature, and is represented in SUPCRT92 by the Maier-Kelley equation (Maier

and Kelley, 1932) describing the heat capacity as a function of temperature:
Co=a,+bT+cI” 4)

where a;, b; and ¢; are empirical coefficients. Other heat capacity functions have come into general use
more recently, including that by Berman and Brown (1985):

Co=ky+k T+ T+ T (5)
This function is more accurate in extrapolations to higher temperatures.

For geochemical modeling under crustal conditions, th’ is assumed to be independent of pressure and

temperature, i.e.

ine = itp (6)



This assumption introduces a maximum error of about 3% in the thermodynamic properties of solid
phases, if the modeled pressure and temperature are less than 5 kbar and 600°C. For studies involving

ground water chemistry changes in shallow aquifers, the volumetric pressure correction to GP Tand

HP 7 can be ignored for all but extremely precise work. In the latter case, an approximate correction to

log K values for pressure can be computed as:
log K, =log K, ; +2.303(~ AV(P —P,)=0.54xP?)/ RT @)

where Ax and A}/ are the average changes in the isothermal compressibility (for solids only) and
volume changes for the reaction over the pressure range considered, e.g., Millero (1982) and Tanger and
Helgeson (1988).

A common occurrence in compilations of thermodynamic data of solid phases is the omission of one or

.. 0
more of the defining parameters, AGf T AH? P 0" S0 . Because
AG;‘)',PJL g, TAS )

fP'T or AH}’PT are available, and model

studies are conducted where temperatures fall within the range from 0-100°C, empirical methods of

only two of the three parameters need be specified. If only AG

estimating Sﬁrr (Helgeson et al., 1978, Holland, 1989) provide useful values without introducing

substantial errors. Similarly, empirical heat capacity summation methods can be used to estimate the
Maier-Kelley equation for a given solid phase to estimate the temperature dependence of AC“P
(Helgeson et al., 1978).

SUPCRT92 also incorporates the so-called HKF “equation of state” (Shock and Helgeson, 1988), which
has proven to be a useful tool for calculating aqueous phase equilibria at the hypothetical 1 M reference
state at infinite dilution, and aqueous species thermodynamic properties at elevated temperatures.

Estimation of the Thermodynamic Properties of Carbonate Minerals

As noted above, Table 7 under each element lists naturally-occurring carbonate minerals. The purpose in
identifying these minerals is primarily to provide guidance for the selection of minerals for inclusion in
thermodynamic databases of simulators used in geochemical modeling. Because the thermodynamic
properties of most of these minerals have not been determined experimentally, they must be estimated.
The correlation techniques described below provide a means for making such estimates. The uncertainties
associated with such estimates provide a measure of the degree of confidence that can be assigned to the
modeling results.

During the past forty years, numerous empirical methods have been proposed to facilitate such inter-
comparisons, and also to assist in estimating the thermodynamic properties of phases where some or all of

the needed thermodynamic parameters are missing. In particular, where A(yf" pr.Or AHJ? »E values must be

determined, several methods have been proposed, e.g., the method of polyhedral components, e.g., Hazen
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(1985, 1988), Chermak and Rimstidt (1990) and La Iglesia and Félix (1994). The accuracy of such
methods is commonly of the order of 1 - 3 %, which is of marginal value for precise geochemical
modeling, and has no value in estimating the relative stabilities of structural polymorphs. Nevertheless,
such inter-comparison studies do help identify discrepancies, which signal either model inconsistencies or
errors in experimental data.

On a more comprehensive level, an inter-comparison of the thermodynamic properties between
isostructural phases of a series of metals might be considered. Such an approach requires comparison of
those properties with some fundamental property of the metal cation, M;, such as its electronegativity
(EN). In principle, some thermodynamic properties, such as the Gibbs free energies, or the solubility
constants of an isomorphic series of phases may be correlated with EN of the substituting M;. EN cannot
be measured directly, but must be calculated from other atomic or molecular properties. Although
commonly assumed to be an invariant property of the atom of an element, Li and Xue (2006) point out
that the ability of an atom to attract electrons from atoms bonded to it, changes with the chemical
environment, and thus the EN. These workers, expanding on earlier work by Zhang (1982), have
developed an EN scale that takes into account the valence, coordination number and spin state of the
cation, and can be employed in evaluating isomorphic series of phases with identical stoichiometries.

Although his approach has not been attempted in this study, correlations between AGf0 pT and the

solubility constant of bi-valent metal hydroxides with EN using the procedure adopted by Li and Xue
were examined by Apps (2013) and agreement was found to be very good. A similar approach has been
used by Trolard and Bourrié (2012) in their analysis of the thermodynamic properties of layered double
hydoxides, based on work by Jolivet (1994) who used the Allred and Rochow electronegativity scale
(Allred and Rochow, 1958).

Issues and Limitations Concerning the Modeling of Potable Ground Waters under the Influence of
Elevated CO, Partial Pressures

Our incomplete understanding of operative processes in shallow groundwaters complicates the modeling
of chemical changes induced by the intrusion of CO,, especially as it affects the behavior of trace
elements. This deficiency can be subdivided into several categories: (1) uncertainties relating to the redox
state of the groundwater and the extent to which redox reactions may not have achieved homogeneous
equilibrium, (2) seasonal chemical changes introduced by dynamic recharge and drainage, especially in
unconfined aquifers, (3) the extent to which heterogeneous thermodynamic equilibrium has been achieved
in reactive phases that could be impacted by changing CO, activity, (4) the mass distribution of trace
elements in reactive phases, (5) changes in the stability of secondary carbonate phases due to increased
partial pressure of CO,, (6) variations in mineral compositions, especially solid solutions, and (7)
mineralogical changes of the receiving aquifer.

Birkholzer et al. (2008) and Apps et al. (2010) recognized the importance of the ambient oxidation state
of the groundwater in defining the response of the aquifer to the mobilization of hazardous metals upon
CO, intrusion. Birkholzer et al. concluded that the majority of sampled and analyzed potable ground
waters from aquifers in the United States that they evaluated were reducing, and that the concentrations of
many of the hazardous metals are controlled in part by saturation with respect to highly insoluble sulfides,
selenides or antimonides. As pointed out in Apps et al. (2010), however, the evidence that most potable
ground waters are reducing may be caused by sampling bias. Deep aquifers, isolated from the atmosphere
14



for a substantial length of time, and whose recharge areas are characterized by organic-rich soils, are most
likely to be reducing, whereas aquifers underlying arid regions of the Southwest, or unconfined aquifers
in moister temperate regions that are subject to widely fluctuating recharge rates, are more likely to be
oxidizing. The sampling density is strongly biased towards those regions of greater precipitation, where
population densities are also higher, and therefore sampling is biased towards those areas where surficial
organic matter is likely to deplete oxygen in the underlying aquifer.

Increasing CO, partial pressures may have only a minor impact on the solubilization and liberation of
hazardous elements from insoluble sulfides, selenides or antimonides. However, the extent to which the
aquifer host rock mineral assemblage has achieved complete thermodynamic equilibrium, especially with
respect to hazardous trace elements, has not been examined in any detail, and is generally unknown. For
example, we do not know whether a hazardous metal sulfide has equilibrated with adsorption sites on
mineral surfaces, ion exchange positions in clays, or solid solutions in more readily soluble carbonates.
Recent experimental studies examining the potential impact of elevated CO, partial pressures in
solubilizing hazardous elements, suggest that the dissolution of carbonates containing trace concentrations
of these elements in solid solution may be the primary source, e.g., Wunsh et al. (2014). Other recent
studies also suggest that ion exchange may dominate short-term metal release upon carbonation of ground
waters, e.g., Zheng et al. (2012; 2015).

Seasonal variations in the recharge of unconfined aquifers can lead to corresponding seasonal variations
in redox state, as observed during the monitoring of an unconfined aquifer in Idaho (Kharaka et al., 2010).
Such conditions are favorable to the formation of metastable layered double hydroxides (LDHSs). This
suite of minerals belongs to a class of solid phases referred to as anionic clays. Structurally, they consist
of stacked tri-octahedral sheets containing M(I1) cations, similar to that found in brucite, but where
limited substitution of the M(11) cations with M(I11) cations, usually Al(111) or Fe(l11), but occasionally
Cr(111) or Mn(I11) has occurred. As a result, the brucite layers are no longer electrically neutral, but carry
a net positive charge. This charge is compensated for by the presence of anions in interstitial sites
between the octahedral sheets. In most shallow subsurface environments where the ground waters possess
relatively low TDS concentrations, the charge balancing anion is predominantly carbonate, CO5*. About
ten percent of all identified carbonate minerals belong to the LDH suite. Yet almost nothing is known
regarding their thermodynamic properties.

A particular soil type referred to as a gleysol is noteworthy, as it is believed to host a Fe(Il) — Fe(l11)
hydroxyl-carbonate LDH, known as fougerite, [Fe'"1., Fe"\(OH),]*“[x/nA"]mH,0, where the interlayer
anion, A is CO5%, but might be substituted by OH" or CI" under some circumstances (Trolard et al., 2007;
Trolard and Bourrié, 2012). This mineral is not well characterized, however, and its validity has been
challenged (Christiansen et al., 2011). Fougerite is believed to form under reducing water-saturated
conditions in soils during the winter months, imparting a blue-gray color, but subsequently decomposes
during the following summer to amorphous rusty yellow-brown ferrihydrite as a result of de-saturation
under oxic atmospheric conditions. Over time, aqueous silica species, H,Si0,%, can substitute for CO5*
(Depeges et al., 1996; Peltier et al., 2006) and polymerize, thereby leading to its transformation into a
chlorite.

The extent to which hazardous elements might substitute for essential components of the LDH structure is
unknown. Most, if not all, of the divalent transition elements are expected to substitute for Mg(ll) or
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Fe(Il) in the brucite layer, whereas Cr(l11), or Mn(l11) could substitute for Al(I11) or Fe(ll1), depending on
oxidation state. Oxy-anions of hazardous elements, such as AsO;>, AsOs>, SeO5”, Se0,* and CrO,*
could also substitute for CO3% in the anionic inter-layer site. It should be noted, however, that fougerite,
in particular, is a reducing agent, capable of reducing most of the listed hazardous anionic species to
lower, less soluble oxidation states, while concurrently oxidizing Fe(ll) to Fe(l11). Other, generally non-
hazardous oxy-anionic species, such as NO; and NO, are also subject to reduction when occupying the
interlayer site. See Génin et al. (2001), Ruby et al. (2006), Jonsson et al. (2008) and Génin et al. (2009).
LDHs therefore constitute an important class of minerals, whose environmental significance is little
understood, but which could be particularly relevant in controlling trace-element concentrations in
shallow potable water aquifers, especially those subject to fluctuating, or transient elevated partial
pressures of CO,.

Finally, it should be noted in passing that Fe and Al oxy(hydroxides) with zpc higher than prevailing pH
are potentially important phases for competitive sorption of oxyanions with CO; - surface complexes.
e.g., Appelo et al. (2002).
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Table 1. Association Constants of Aqueous Carbonate Complexes in the System As,05/As,05-CO,-H,0

As(OH),CO5 + H,0

Association Constant Reaction Log KW AH? Comments Secondary Reference Primary Reference
RP,.T,
kJ
As(lll
As* + COs” = AsCOs 7.0 Estimate based on extrapolation from Kim et al. (2000) Stumm and Morgan (1996)
corresponding lanthanide complexes. and David (1999-2000)
As" + CO* = As"COy 3.79£0.05 As" corresponds to all species of free arsenite Kim et al. (2006)
without distinguishing their protonation status.
As® + 2C05” = As(COs)," 12.5 Estimate based on extrapolation from Kim et al. (2000) Stumm and Morgan (1996)
corresponding lanthanide complexes. and David (1999-2000)
As" + 2C0O5% = As"(COa), 4.08 +0.05 As" corresponds to all species of free arsenite Kim et al. (2006)
without distinguishing their protonation status.
As(OH)s(aqg) + HCO;3 = -0.658 + 0.08 Neuberger and Helz (2005)

Direct evidence for existence of complex

Han et al. (2007)

As(OH)s(aq) + 2CO; + 2H" =
As(OH)3(HCO3),*

Direct evidence for existence of complex

Han et al. (2007)

As(V)

No evidence for existence of As(V) complexes

Han et al. (2007)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Arsenic
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Table 2. Solubility Constants of Solid Carbonates in the System As,03/As,05-CO,-H,0

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P,.T,
kJ
Minerals

Synthetic Phases

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System As,05/As,0s5-

CO,-H,0 extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction Log K® AHg - Database Source
kJ
As(ll)
No data No data
As(V)
No data No data

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Table 3b. Solubility Constants of Solid Carbonates in the System As,05/As,05-CO,-H,0 extracted

from Databases of Distribution-of-Species Codes

Solubility Constant Reaction Log K® AH? Database Source
RP.T,
kJ
As(lll)
No data No data
As(V)
No data No data

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Arsenic
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.V8.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MinteqA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQA2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16—19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Wateq4f

Ball, J. W., & Nordstrom, D. K. (1991). User's manual for WATEQA4F, with revised thermodynamic data
base and test cases for calculating speciation of major, trace, and redox elements in natural waters.

U.S. GEOLOGICAL SURVEY, Open-File Report 91-183, Revised and reprinted - April, 2001. p. 81-94

Wateq4f (2005)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/WATEQ4F.DAT

Arsenic

25




rreeees |'1

BERKELEY LAB

Table 4a. Thermodynamic properties of Arsenic Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

Mineral AGO Secondary Reference Primary Reference
f,p,.T,
Name Formula 1
kJ/gfw
As(ll1)
Armangite MnzsAs"15050(OH)4(CO3)
As(V)
Sailaufite CaMn"30,(As04)2(CO3)*3(H.0)
Tyrolite CaCus(AsO4)2(CO3)(OH)4+6(H-0)
Table 4b. Thermodynamic properties of Arsenic Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation
Mineral AH? Secondary Reference Primary Reference
f,p,.T,
Name Formula o
kJ/gfw
As(ll1)
Armangite aneAS”IlgOso(oH)4(CO3)
As(V)
Sailaufite Ca,Mn"30,(As04)2(CO3)*3(H.0)
Tyrolite CaCus(AsO4)2(CO3)(OH)4+6(H-0)

Arsenic
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Table 4c. Thermodynamic properties of Arsenic Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral SO Secondary Reference Primary Reference
Pr 'TI'
Name Formula 4 .1
J K™ gfw
As(lll)
Armangite aneAS”IlgOso(oH)4(CO3)
As(V)
Sailaufite CaMn"30,(As04)2(CO3)*3(H.0)
Tyrolite CaCus(AsO4)2(CO3)(OH)4+6(H-0)
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Table 5. Crystallographic Properties of Arsenic Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference

As(ll)

Armangite MnzsAs" 16050(OH)4(CO3) Gaines et al. (1997), Moore and Araki (1979)

Armangite MnzsAs" 16050(OH)4(CO3) Gaines et al. (1997)

As(V)
3 |Sailaufite CaMn"30,(As04)2(CO3)*3(H20) Gaines et al. (1997)
4 |Sailaufite CaMn"30,(As04)2(CO3)*3(H.0) Wildner et al. (2003)
5 |Tyrolite CaCus(AsO4)2(CO3)(OH)4+6(H-0) Gaines et al. (1997)
6 |Tyrolite CaCus(AsO4)2(COs3)(OH)4+6(H-0) Mineralogy Database (http://webmineral.com/)
7 |Clinotyrolite CaCug(ASO4)3.8(S04)0.3(CO3)(OH)g.9010.3(H,0) Gaines et al. (1997)
8 |Tyrolite-1M CayCug(AsO4)4(CO3)(OH)s*11H,0(H20)05 Krivovchev et al. (2006)
9 |Tyrolite-2M CayCug(AsO4)4(CO3)(OH)s*11H,0(H20)05 Krivovchev et al. (2006)

Name Cell Constants Space Group vo*
a0, A bo, A Co A a° B, ° el z cm® gfw*

As(lll)

Armangite 13.491(2) 8.855(1) 1 P-3 840.54

Armangite 13.491 8.855 1 P-3 840.54

As(V)
3 |Sailaufite 11.253 19.628 8.932 100.05 6 Cm 194.26
4 |Sailaufite 11.253 19.628 8.932 100.05 6 Cm 194.26
5 |[Tyrolite 10.50 54.71 5.59 8 Pmma 241.73
6 |Tyrolite 10.212 55.51 5.602 8 Pmma 239.05
7 |Clinotyrolite 27.61 5.56 10.513 94.0 2 P2/a 484.76
8 |Tyrolite-1M 27.562(3) 5.5682(7)| 10.4662(15) 98.074(11) 2 P2/c 478.86
9 [Tyrolite-2M 54.520(6) 5.5638(6)| 10.4647(18) 96.432(9) 4 C2/c 474.90

#Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than 10 wt.% Arsenic*

Name Formula Arsenic, gfw Thermodynamic
wt.% Data

As(lly

Armangite Mn26As" 15050(0OH)4(CO5) 36.40 3704.99 no no
Sailaufite CaMn"30,(As04)2(CO3)*3(H.0) 24.19 650.52 no no
As(V)

Gartrellite Pb(Cu,Fe"),(As"04,504)2(CO3,H20)0.7 18.11 620.46 no no
Tyrolite CaCus(As04)2(CO3)(OH)4+6(H20) 17.19 871.78 no no

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System BaO-CO,-H,0
Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP,.T,
kJ
Ba™ + COs” = BaCOs(aq) 3.78 1=0.01 Benes and Selecka (1973)
3.78 Palmer and Van Eldik Benes and Selecka (1973)
(1983)
2.78 1=0 Palmer and Van Eldik Smith and Martell (1976)
(1983)
3.20 - Millero and Hawke (1992) Millero and Schreiber
(1982)
2.71 14.84 | Sol. Busenberg and Plummer
(1986)
2.71 14.85 Nordstrom et al. (1990) Busenberg and Plummer
(1986)
Ba’ + CO3” + H' = BaHCO;" 11.85 + 0.03* - | EMF Nakayama and Rasnick
(1969)
11.31* 8.36* | Cond. Busenberg and Plummer
(1986)
11.31* 8.36* Nordstrom et al. (1990) Busenberg and Plummer
(1986)
Ba®" + HCO; = BaHCOs" 0.982 23.26 | Cond. Busenberg and Plummer

(1986)

@) At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

* Equation recast using bicarbonate dissociation equation from PHREEQC.
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Table 2. Solubility Constants of Solid Carbonates in the System BaO-CO,-H,0

Solubility Constant Reaction Log K® AHS o Comments Secondary Reference Primary Reference
kJ
Minerals
Alstonite
BaCaCOs),(cr) = Ba*" + Ca®" + -17.37 From Fig. 3 of ref. Sol./pH Garrels et al. (1960)
2C045°
-18.00 Estimated Yoder and Rowand (2006)
Barytocalcte
BaCa(COs)x(cr) = Ba*" + Ca® -17.25 From Fig. 3 of ref. Sol./pH Garrels et al. (1960)
+2C03
Norsethite
BaMg(COs)(cr) = Ba® + Mg** -19.56 + 0.08 Konigsberger et al. (1998)
+2C05°
Witherite
BaCOs(cr) = Ba® + COs” -8.565 In pure water. T not specified. Recalc. by Néasénen (1946b) Bineau (1857)
Naséanen (1946b)
-8.71 16°C Weissenberger (1914) Schloesing (1872a,b)
-8.15 16°C Johnston (1915) Schloesing (1872a,b)
-8.647 16°C. In pure water. Recalc. by Nasanen Nasanen (1946b) Schloesing (1872a,b)
(1946b)
-8.379 16°C, | = 0. H,CO3 soln. Recalc. by Nasanen Nasanen (1946b) Schloesing (1872a,b)
(1946b)
8.8 and 24.2°C. Solubility Holleman (1893)
-8.052 Bodlénder (1900)
Solubility in NH,CI solution Kernot et al. (1908)
-8.09 McCoy and Smith (1911)
-8.31 Latimer (1952) McCoy and Smith (1911)
-8.28 25°C, | = 0. Higher P(CO,). Recalc. by Nasanen | Nasénen (1946b) McCoy and Smith (1911)
(1946b)
-8.31 Naumov et al. (1974) McCoy and Smith (1911)
-8.805 13°C, in pure water. Recalc. by Nasanen Nasénen (1946b) Weissenberger (1914)

(1946b)
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Table 2. Solubility Constants of Solid Carbonates in the System BaO-CO,-H,0 (continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P. T,
kJ
-8.706 18°C, in pure water. Recalc. by Nasanen Néasénen (1946b) Weissenberger (1914)
(1946b)
-8.675 22°C, in pure water. Recalc. by Nasénen Nasanen (1946b) Weissenberger (1914)
(1946b)
-8.583 27°C, in pure water. Recalc. by Nasénen Néasénen (1946b) Weissenberger (1914)
(1946b)
-8.485 33°C, in pure water. Recalc. by Nasénen Nasanen (1946b) Weissenberger (1914)
(1946b)
-8.419 37°C, in pure water. Recalc. by Nasénen Nasanen (1946b) Weissenberger (1914)
(1946b)
Solubility = 0.27% and 0.59% at P(CO,) = 1 and Haehnel (1924)
25 atm., respectively
-7.70 - Hahn and Brunngésser
(1926)
-8.307 - | Review. No correction for activity coefficients Kelley and Anderson (1935)
-9.265 - | Calc. from solubility Townley et al. (1937)
-8.681 In pure water. 25°C. Recalc. by Nasénen Néasénen (1946b) Townley et al. (1937)
(1946b)
-8.02, -7.95, -7.84 25°C, | = 0. Titration of 0.2 N BaCl, with Na,COs Nésanen (1946a)
soln
-8.286 25°C, 1 = 0. In NaCl solution. Nasanen (1946b)
-8.286 25°C, 1 = 0. In KClI solution. Naséanen (1946b)
-8.31 - Zhuk (1954) Goskhimizdat (1952)
-8.80 calculated Latimer (1952)
-8.78 - Millero et al. (1984) Rossini et al. (1952)
Soly of witherite in H,O at 100-225°C and Malinin (1963)
P(CO,) <100 kg./cm?
-8.68 - | From Fig. 3 of ref. Sol./pH Garrels et al. (1960)
-8.57 - Millero et al. (1984) Garrels et al. (1960)
-8.29 Naumov et al. (1974) Sillen and Martell (1964)
Activity product at elevated temperatures Malinin (1970)
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Table 2. Solubility Constants of Solid Carbonates in the System BaO-CO,-H,0O (continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP,T,
kJ
-8.30 £ 0.01 - Palmer and Van Eldik Smith and Martell (1976)
(1983)
-8.30 - Millero et al. (1984) Smith and Martell (1976)
-8.56 + 0.05 - Millero et al. (1984)
-8.562 2.94 | Sol. Busenberg and Plummer
(1986)
-8.562 2.941 Nordstrom et al. (1990) Busenberg and Plummer
(1986)
-8.46 + 0.05 - Konigsberger et al. (1998)
3.16 £ Parker (1995)
0.7
-8.10 Estimated Yoder et al. (2010)
BaCOs(cr) = BaCOs(aq) -5.48 + 0.04 1=0.01 Benes and Selecka (1973)
-5.48 - | 1=0.01 Palmer and Van Eldik Benes and Selecka (1973)
(1983)
Synthetic Phases
NagBa!CO3!2
Na,Ba(COs), = Ba> + 2Na* + -7.22 Estimated Yoder and Rowand (2006)
2C07*
KgBa!CO3!2
KzBagCO3)2 =Ba® +2K" + -0.30 Estimated Yoder and Rowand (2006)
2CO3
Ba,CO;(0OH),
Ba,CO3(OH), + 2H" = 2Ba* + 19.90 Estimated Yoder et al. (2010)
CO4’ + 2H,0
Ba3003!OH)4
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Table 2. Solubility Constants of Solid Carbonates in the System BaO-CO,-H,O (continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP,T,

kJ

BasCOs(OH), + 4H" = 3Ba® + 47.90 Estimated Yoder et al. (2010)
COz2 + 4H,0

Ba4003(OH )5

Ba,CO3(OH)s + 6H" = 4Ba® + 75.85 Estimated Yoder et al. (2010)
CO5” + 6H,0

Ba5C03(OH )s

BasCOs(OH)s + 8H" = 5Ba® + 103.85 Estimated Yoder et al. (2010)
CO;” + 82H,0

Ba3(C0O3),(OH)»

Bas(CO3),(OH), + 2H" = 3Ba* 11.85 Estimated Yoder et al. (2010)
+2C03” + 2H,0

Bas(C0O3),(OH)s

Bas(CO3),(OH)s + 6" = 5Ba + 67.78 Estimated Yoder et al. (2010)
2CO4 + 6H,0

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System BaO-CO,-H,0
extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction Log K® AH? Database Source
RP,.T,
kJ
Ba®" + COs* = BaCOs(aq) 2.71 MintegA2
2.60 Wateq4f
2.65 Data0.com.V8.R6+
- - | Minteq (2009)
2.71 16. | Minteq (2006) NIST46.4
2.71 14.85 | Phreeqc (2009)
271 14.85 | Wateqg4f (2005)
271 14.841 | ThermoChimie v.7.b #86BUS/PLU
2.713 14.842 | NAGRA/PSI (2001)
2.6454 - | Data0.YMP.R5 Sverjensky et al. (1997)
2.6600 - | Thermoddem (2009) Sverjensky et al. (1997)
Ba®" + 2C0s> = Ba(COs),> MintegA2
Wateq4f

Data0.com.V8.R6+

R - | Minteq (2009)

R - | Minteq (2006)

- - | Phreeqc (2009)

R - | Wateq4f (2005)

- - | ThermoChimie v.7.b
- - | NAGRA/PSI (2001)

- - | Data0.YMP.R5 Stipp et al. (1993)
Thermoddem (2009)
Ba® + COs* + H" = BaHCO;" 11.31 MinteqA2
11.27 Wateq4f

- Data0.com.V8.R6+
- - | Minteq (2009)

11.309 10.4 | Minteq (2006) NIST46.4
11.311 8.364 | Phreeqc (2009)
11.311 8.364 | Wateq4f (2005)
11.31 8.56 | ThermoChimie v.7.b #86BUS/PLU
11.311 8.362 | NAGRA/PSI (2001)
11.3462 - | Data0.YMP.R5 Shock and Koretsky
(1995)
11.3608 - | Thermoddem (2009) Shock and Koretsky
(1995)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3b. Solubility Constants of Solid Carbonates in the System BaO-CO,-H,0O extracted from
Databases of Distribution-of-Species Codes

Solubility Constant Reaction Log K& AH? Database Source
R.P,.T,
kJ
Alstonite
BaCa(COs),(s) = Ba® + Ca + -18.0733 Data0.YMP.R5 Wagman et al. (1982)
(ole
Barytocalcite
BaCa(COs)x(s) = Ba*" + Ca® + -17.9156 Data0.YMP.R5 Wagman et al. (1982)
(ole
Witherite
BaCOs(s) = Ba*" + COs> -8.57 MinteqA2
-8.61 Wateq4f
From Johnson and Oelkers 1992 -13.33 Data0.com.V8.R6+
- - | Minteq (2009)
-8.57 4. | Minteq (2006)
-8.562 2.941 | Phreeqc (2009)
-8.562 2.941 | Wateqaf (2005)
-8.56 2.941 | ThermoChimie v.7.b #86BUS/PLU
-8.562 2.940 | NAGRA/PSI (2001)
-8.5649 - | Data0.YMP.R5 Barin and Platzki (1995);
Binnewies and Milke
(1999)
- - | Thermoddem (2009)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.V8.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MintegA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQA2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16—19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Wateq4f

Ball, J. W., & Nordstrom, D. K. (1991). User's manual for WATEQA4F, with revised thermodynamic data
base and test cases for calculating speciation of major, trace, and redox elements in natural waters.

U.S. GEOLOGICAL SURVEY, Open-File Report 91-183, Revised and reprinted - April, 2001. p. 81-94

Wateq4f (2005)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/WATEQ4F.DAT
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Table 4a. Thermodynamic properties of Barium Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

Mineral AG?,P, . Secondary Reference Primary Reference
Name Formula 1
kJ/gfw
Minerals
Alstonite BaCa(COs), -2272.2 Garrels et al. (1960)
-2272.16 | Karpov et al. (1968) Garrels et al. (1960)
-2271.9 | Lalglesia and Felix (1994) Garrels et al. (1960)
-2272.75 Parker et al. (1971)
Predicted -2285.3+3.2 La Iglesia and Felix (1994)
Barytocalcite BaCa(COg), -2271.54 Garrels et al. (1960)
-2271.54 | Karpov et al. (1968) Garrels et al. (1960)
-2271.5 | Lalglesia and Felix (1994) Garrels et al. (1960)
-2271.91 Parker et al. (1971)
Predicted -2283.3+3.2 La Iglesia and Felix (1994)
Kampfite Bay(Si1Als)O031(COs)sCls
Norsethite BaMg(COs),
Witherite BaCOs; -1112.23 Kelley and Anderson (1935)
-1138.88 | Latimer (1952) Rossini et al. (1952)?
-1138.88 | Zhuk (1954) Rossini et al. (1952), Karapet'yants
(1953)
-1138.86 + 6.28 | Robie (1962, 1966) Rossini et al. (1952)
-1138.9 | Woods and Garrels (1987) Rossini et al. (1952)
calculated -1136.17 Zhuk (1954)
-1136.17 | Karpov et al. (1968) Zhuk (1954)
-1136.17 | Karapet'yants and Karapet'yants Zhuk (1954)
(1970)
-1138.0 Garrels et al. (1960)
-1138.22 Garrels et al. (1960)
-1138.22 | Karpov et al. (1968) Garrels et al. (1960)
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Table 4a. Thermodynamic properties of Barium Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of
Formation (Continued)

Mineral AG?,P, . Secondary Reference Primary Reference
Name Formula kJ/gfw'l
-1123.0 £ 1.3 | Naumov et al. (1974) McCoy and Smith (1911), Sillen and
Martell (1964)
-1132.2 Adami and Conway (1966)
-1132.210 + 2.240 | Robie et al. (1979) Adami and Conway (1966)
-1132.2 £ 2.2 | Robie and Hemingway (1995) Adami and Conway (1966)
-1138.88 | Karpov et al. (1968) Ermolaev (1966)
-1137.63 Parker et al. (1971)
-1123.0 | Woods and Garrels (1987) Naumov et al. (1974)
-1138.4 | Dobrydiev et al. (2005) Ryabin et al. (1977)
-1132.2 | Woods and Garrels (1987) Robie et al. (1978)
-1164.8 | Woods and Garrels (1987) Helgeson et al. (1978)
-1337.6 | Woods and Garrels (1987) Wagman et al. (1982)
-1132.21 Busenberg and Plummer (1986)
-1249.72 | Stern (2000) Barin (1993)
-1134.37 Parker (1995)
-1132.2 Robie and Hemingway (1995)
Synthetic
Phases
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Table 4b. Thermodynamic properties of Barium Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

Mineral AH ?,Pr . Secondary Reference Primary Reference
Name Formula Kalghw™
Minerals
Alstonite BaCa(COg),
Barytocalcite BaCa(COg),
Kampfite Bai2(Si11Als)031(CO3)sCls
Norsethite BaMg(COs),
Witherite BaCOs; -1192.19 Kelley and Anderson (1935)
-1218.80 | Latimer (1952) Rossini et al. (1952)?
-1218.80 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
1218.80 + 4.60 | Robie (1962, 1966) Rossini et al. (1952)
-1218.80 | Karpov et al. (1968) Rossini et al. (1952)
-1218.8 | Woods and Garrels (1987) Rossini et al. (1952)
-1190.56 + 1.26* | Naumov et al. (1974) Kapustinskii and Staxanova (1954)
-1201.06 + 2.09 | Naumov et al. (1974) McCoy and Smith (1911), Sillen and
Martell (1964)
-1210.9+ 2.2 Adami and Conway (1966)
-1210.850 + 2.230 | Robie et al. (1978) Adami and Conway (1966)
-1210.9 £ 2.2 | Robie and Hemingway (1995) Adami and Conway (1966)
-1234.28 | Karapet'yants and Karapet'yants (1970) Maksimova (1962)
-1216.29 Parker et al. (1971)
-1201.0 | Woods and Garrels (1987) Naumov et al. (1974)
-1217.1 | Dobrydiev et al. (2005) Ryabin et al. (1977)
-1210.8 | Woods and Garrels (1987) Robie et al. (1978)
-1244.7 | Woods and Garrels (1987) Helgeson et al. (1978)
-1216.3 | Woods and Garrels (1987) Wagman et al. (1982)
-1210.85 Busenberg and Plummer (1986)
-1216.29 | Stern (2000) Barin (1993)
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Table 4b. Thermodynamic properties of Barium Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation
(Continued)

Mineral AH ?,P, . Secondary Reference Primary Reference
Name Formula n
kJ/gfw
-1213.03 + 2.0 Parker (1995)
-1210.9 Robie and Hemingway (1995)
Synthetic Phases
Ba(HCOs3), Ba(HCOs), -1974.85 | Karapet'yants and Karapet'yants (1970) Yatsimirskii (1956)
-1970.66 + 62.76 | Estimated value of fictive compound Wilcox and Bromley (1963)
-1970.66 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)

*Not recommended by Naumov et al. (1974)
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Table 4c. Thermodynamic properties of Barium Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral S gr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
Minerals
Alstonite BaCa(COs);
Barytocalcite BaCa(COs);
Kampfite Bai2(Si11Als)O031(CO3)sCls
Norsethite BaMg(COs3),
Witherite BaCO; 111.92 £ 2.09 Anderson (1934)
111.92 +2.09 | Kelley and King (1961) Anderson (1934)
112.13 + 2.1 | Naumov et al. (1974) Anderson (1934)
112.13 | Latimer (1952) Rossini et al. (1952)
112.13 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
112.13 | Karpov et al. (1968) Rossini et al. (1952)
112.1 | Woods and Garrels (1987) Rossini et al. (1952)
calculated 102.93 Zhuk (1954)
102.93 | Karpov et al. (1968) Zhuk (1954)
102.93 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
109.20 | Karpov et al. (1968) Yatsimirskii and Krestov (1960)
112.13 + 2.09 | Robie (1962; 1966) Kelley and King (1961)
112.13 +2.09 | Karpov et al. (1968) Kelley and King (1961)
112.13 | Karapet'yants and Karapet'yants (1970) Kelley and King (1961)
112.13 + 2.09 | Robie et al. (1979) Kelley and King (1961)
109.20 | Karapet'yants and Karapet'yants (1970) Yatsimirskii and Krestov (1960)
112.13 Parker et al. (1971)
112.1 | Woods and Garrels (1987) Naumov et al. (1974)
112.1 | Woods and Garrels (1987) Robie et al. (1978)
112.1 | Woods and Garrels (1987) Helgeson et al. (1978)
112.1 | Woods and Garrels (1987) Wagman et al. (1982)
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Table 4c. Thermodynamic properties of Barium Carbonate Minerals and Synthetic Solid Carbonates: Entropies (Continued)

Mineral Sgr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw

112.1+2.1 Busenberg and Plummer (1986)

112.1 £ 2.1 | Robie and Hemingway (1995) Busenberg and Plummer (1986)
112.13 | Stern (2000) Barin (1993)

112.10 £ 2.0 | Parker (1995) Gurvich et al. (1981)
112.13 Robie and Hemingway (1995)
Synthetic Phases
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Table 5. Crystallographic Properties of Barium Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference
Minerals
1 |Alstonite BaCa(COg), Gaines et al. (1997)
2 |Alstonite BaCa(COg), Sartori (1975)
3 |Alstonite BaCa(CO3), Roberts (1976)
4 |Barytocalcite BaCa(COs); Alm (1960)
5 |Barytocalcite BaCa(COs); Gaines et al. (1997)
6 |Barytocalcite BaCa(COs); Dickens and Bowen (1971)
7 |Paralstonite CaBa(COs;), Gaines et al. (1997), Effenberger (1980)
8 |Benstonite CasBas(CO3)13 Gaines et al. (1997), Lippmann (1962)
9 |Dresserite BaAly(CO3),(OH)4¢(H20) Gaines et al. (1997), Jambor et al. (1969)
10 |[Hydrodresserite BaAly(CO3),(OH)43(H20) Szymanski (1982)
11 |Fencooperite BagFe";Sig023(CO3)-Clss(H.0) Gaines et al. (1997)
12 |Fencooperite BasFe"3Sig023(CO3)-Clae(H20) Grice (2001)
Name Cell Constants Space Group vo*
a0, A b, A Cor A e B, ° "e z cm? gfw*
Minerals
1 |Alstonite 17.38 14.40 6.123 90.35 90.12 120.08 12 Pl or P-1 66.546*
2 |Alstonite 30.14 17.40 6.12 90. 90. 90. 24 ClorC-1 80.535
3 |Alstonite 17.38 14.40 6.123 90. 90. 120. 12 Pl or P-1 66.602*
4 |Barytocalcite 8.15 5.22 6.58 106.13 2 P2, 80.972
5 |Barytocalcite 8.134 5.229 6.547 73.867 2 P2, 80.544
6 |Barytocalcite 8.092 5.2344 6.544 106.05 2 P2:/m 80.209
7 |Paralstonite 8.692 6.148 3 P3,1 80.748
8 |Benstonite 8.28(1) 8.67(2) 3 R_30orR3 103.33
9 |Dresserite 9.27 16.83 5.63 4 Pbmm 132.24
10 |Hydrodresserite 9.7545 10.4069 5.6322 95.695 92.273 115.643 2 P-1 153.78
11 |Fencooperite 10.727 7.085 1 P3m1 425.19
12 |Fencooperite 10.7409 7.0955 1 P3m1 426.92
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Name Formula Reference
13 |Kampfite Bai2(Si11Als)031(CO3)sCls Basciano and Groat (2007)
14 |Norsethite BaMg(COs), Lippmann (1967)
15 |Norsethite BaMg(COs), Effenberger and Zemann (1985)
16 |Norsethite BaMg(COs), Gaines et al. (1997)
17 |Podlesnoite BaCa,(COs),F, Zubkova et al. (2007)
18 |Witherite BaCOs; Antao and Hassan (2009), syn neutron
19 |Witherite BaCOs; Antao and Hassan (2009),
syn HRPXRD
20 |Witherite BaCOs; Gaines et al. (1997), De Villiers (1971)
21 |Witherite BaCOs; Mineralogy Database (http://webmineral.com/)
Synthetic Phases
22
Name Cell Constants Space Group Vo
a0, A bo, A Cor A a° B,° e z cm? gfw™*
Minerals
13 |Kampfite 31.2329 5.2398 9.0966 106.933 1 Cc 857.66
14 |Norsethite 5.017 16.77 3 R32 73.381
15 |Norsethite 5.022 16.770 3 R-3m 73.527
16 |Norsethite 5.02 16.75 3 R32 73.381
17 |Podlesnoite 12.501 5.846 9.443 4 Cmcm 103.90
18 |Witherite 5.31640(8) 8.9056(1) 6.43383(7) 4 Pmcn 45.861
19 |Witherite 5.31459(1)|  8.90428(2) 6.43409(2) 4 Pmcn 45.840
syn HRPXRD
20 |Witherite 5.3126 8.8958 6.4286 4 Pmcn 45.740
21 |Witherite 5.313 8.904 6.43 4 Pmcn 45.796
Synthetic Phases
22

*Reported cell constants appear to be erroneous.

#Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than 10 wt.% Barium*

Name Formula Barium, gfw Thermodynamic
wt.% Data
Est. Meas.
Alstonite BaCa(COg), 46.17 297.42 no yes
Barytocalcite BaCa(COs); 46.17 297.42 no yes
Benstonite (Ba,Sr)s(Ca,Mn)sMg(COs3)13 34.02 1816.58 no no
Bussenite Na,(Ba,Sr).(Fe,Mn)TiSi,0;(CO3)(OH)sF 26.13 657.06 no no
Cebaite-(Ce) BasCe,(CO3)5F; 39.76 1030.25 no no
Cebaite-(Nd) Bas(Nd,Ce),(COgz)sF» 39.75 1036.44 no no
Cordylite-(Ce) Ba(Ce,La),(CO3)sF> 21.63 634.98 no no
Dresserite BaAly(CO3),(OH)4¢(H20) 34.56 397.35 no no
Ewaldite (Ba,Sr)(Ca,Na,Y,Ce)(C0s), 34.94 294.76 no no
Fencooperite BasFe(ll1)3SigO23(CO3),Cls*(H,0) 44.99 1800.97 no no
Huanghoite-(Ce) BaCe(COg),F 32.97 416.46 no no
Hydrodresserite BaAl,(CO3),(OH)43(H.0) 31.69 433.38 no no
IMA2009-010 [Bag(PO4)2(COs)][Fe(Il)7(OH)4Fe(l11)202(SiOs)g] 36.06 2285.23 no no
Kampfite Bai2(Si11Als)031(CO3)sCls 50.96 3266.13 no no
Khanneshite (NaCa)s(Ba,Sr,Ce,Ca)3(COg3)s 22.40 613.02 no no
Krasnovite Ba(Al,Mg)(PO4,CO3)(OH),*+(H.0) 45.49 301.90 no no
Kukharenkoite-(Ce) Ba,Ce(COs)sF 44.75 613.80 no no
Mackelveyite-(Y) NaBas;CaY (CO3)3(OH)s*3(H20) 45.77 900.07 no no
Mckelveyite-(Nd) (Ba,Sr)(Ca,Na,Nd,REE)(CO3),*3-10(H;0) 22.54 456.93 no no
Mckelveyite-(Y) NaCa(Ba,Sr)s(Y,REE)(COs)s*3(H20) 39.43 971.59 no no
Niksergievite [Ba,Ca),(Al,Si)70,0(CO3)(OH)s*n(H,0) 24.13 722.73 no no
Norsethite BaMg(COs3), 48.76 281.65 no yes
Paralstonite BaCa(COg), 46.17 297.42 no no
Podlesnoite BaCa,(COs),F, 36.95 379.11 no no
Qagarssukite-(Ce) Ba(Ce,REE)(CO3),F 24.60 379.62 no no
Stenonite (Sr,Ba,Na),Al(COs)Fs 22.02 374.12 no no
Tuliokite BaNasTh(CO3)s*6(H20) 14.08 975.45 no no
Witherite BaCOs; 69.59 197.34 no yes
Zhonghuacerite-(Ce) Ba,Ce(COs)sF 44.74 613.84 no no

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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CADMIUM
Table 1. Association Constants for Aqueous Carbonate Complexes in the System CdO-CO,-H,0
Association Constant Reaction Log K® AHg . Comments Secondary Reference Primary Reference
Ko
Cd** + CO5* = CdCOs(aq) 5.4 - | Estimate Zirino and Yamamoto
(1972)
5.1 -l 1=0 Bilinski et al. (1976) Zirino and Yamamoto
(1972)
5.4 -1 1=0 Palmer and Van Eldik Zirino and Yamamoto
(1983) (1972)
4.02 £0.04 - | 20°C, ISE, 0.001 M KNOs, Gardiner (1974)
4.02 - | DPP, 0.001 M KNO; Bilinski et al. (1976) Gardiner (1974)
4.1 - Long and Angino (1977) Gardner (1974)
3.1 - | Equilibration of at 25 + 1°C, with various Santillan-Medrano and
concentrations of complexing ligand, L™. Jurinak (1975)
=35 - | DPP, 0.1 M KNO3 Bilinski et al. (1976)
3.48 - | | = seawater, estimate Sipos et al. (1980)
4.35 - Millero and Hawke (1992) Turner et al. (1981)
4.35 0.54 | Estimate Fouillac and Criaud (1984)
3.55+0.05 - | 20°C, ISE, graphic, 0.05 M NaClO,4 Stella et al. (1984)
3.49 £ 0.04 - | 20°C, ISE, computer, 0.05 M NaClO4 Stella et al. (1984)
3.86 £ 0.04 - | 20°C, ASV, 0.05 M NaClO,4 Stella et al. (1984)
4.02 - | 3 mol/kg NaClO," (?) Kdnigsberger et al. (1991)
4.71 Rai et al. (1991a)
3.0+04 Stipp et al. (1993)
Cd* + 2C04* = Cd(CO3),> 6.25 - | 1= seawater, estimate Sipos et al. (1980)
6.28 +0.10 - | 20°C, ISE, graphic, 0.05 M NaClO, Stella et al. (1984)
6.37 £ 0.10 - | 20°C, ISE, computer, 0.05 M NaClO, Stella et al. (1984)
6.50+ 0.09 - | 20°C, ASV, 0.05 M NaClO4 Stella et al. (1984)
6.49 - Rai et al. (1991a)
6.4+0.1 - | Estimatet Stipp et al. (1993)

Cadium

54




rreeees |'1

BERKELEY LAB

Table 1. Association Constants for Aqueous Carbonate Complexes in the System CdO-CO,-H,0 (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP.T,
kJ
Cd* + 3C0O5* = Cd(COs)s" -6.24 - | Pol. 7 N (K,CO3-KOH) Lake and Goodings (1958)
6.24 - | Sol. Krishnamurty et al. (1970) Lake and Goodings (1958)
Cd** + COs” + H' = CdHCO5" 12.4 Estimate Zirino and Yamamoto
(1972)
12.4 - | Estimate Zirino and Yamamoto
(1972)
12.33* -10.69* | Estimate Fouillac and Criaud (1984)
12.26 +0.01 - | 20°C, ISE, graphic, 0.05 M CIO, Stella et al. (1984)
12.35+0.01 - | 20°C, ISE, computer, 0.05 M CIO4 Stella et al. (1984)
11.70* - Millero and Hawke (1992)
11.46 £ 0.1* - | EMF, 1=0 Neher-Neuman (1992)
11.83 Estimate + Stipp et al. (1993)
Cd** + H,0 + CO,(g) = CAHCO;" + -7.11+0.1 - | EMF, 3 M NaClO, Neher-Neuman (1992)
H+
Cd* + HCO5 = CdHCO;" 2.1 - Long and Angino (1977) Zirino and Yamamoto
(1972)
2.1 - 1=3 Palmer and Van Eldik Sillen and Martell (1967)
(1983)
0.26 - | | = seawater, estimate Sipos et al. (1980)
Cd*" + 2HCO; = Cd(HCOs3)2(aq) 1.54 - | | = seawater, estimate Sipos et al. (1980)

@) At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
T Based on a review of data in Stella et al. (1984)

* Corrected using bicarbonate dissociation equation from PHREEQC
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Table 2. Solubility Constants of Solid Carbonates in the System CdO-CO»-H,O

Solubility Constant Reaction Log K® AHg . Comments Secondary Reference Primary Reference
kJ
Minerals
Otavite
CdCO4(s) = Cd*" + CO5* -13.740 Review. No correction for activity coefficients Kelley and Anderson (1935)
-13.740 25°C, thermodynamic calculations Clever et al. (1992) Kelley and Anderson (1935)
-11.60 Based on electrochemical cell measurements Saegusa (1950)
-11.602 25°C, thermodynamic calculations Clever et al. (1992) Saegusa (1950)
-13.60 Zhuk (1954) Goskhimizdat (1952)
-11.28 25°C, thermodynamic calculations Latimer (1952) Rossini et al. (1952)?
-11.284 25°C, thermodynamic calculations Clever et al. (1992) Latimer (1952)
-11.209 25°C, thermodynamic calculations Clever et al. (1992) Wagman et al. (1982)
-11.292 25°C, thermodynamic calculations Clever et al. (1992) Egorov and Titova (1962)
-12.00 £ 0.15 Gamsjager et al. (1965)
-12.00 £ 0.15 Naumov et al. (1974) Gamsjager et al. (1965)
-12.000 25°C, thermodynamic calculations Clever et al. (1992) Gamsjager et al. (1965)
-11.180 25°C, 1 = 3.0 (NaClO,) Clever et al. (1992) Gamsjager et al. (1965)
-11.2 Santillan-Medrano and Wagman et al. (1968)
Jurinak (1975)
-11.215 16°C, 1 = 0.1 (KCIOy) Clever et al. (1992) Kaunaukov et al. (1973)
-11.6 Santillan-Medrano and
Jurinak (1975)
-13.74 1=0 Palmer and Van Eldik Smith and Martell (1976)
(1983)
-12.060 25°C, thermodynamic calculations Clever et al. (1992) Krestov et al. (1977)
-12.14 Miller et al. (1984)
-12.14 Miller et al. (1984)
-12.24 25°C,1=0 Davis et al. (1987)
-11.31+0.03 Rai et al. (1991a)
-12.1+0.1 Stipp et al. (1993)
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Table 2. Solubility Constants of Solid Carbonates in the System CdO-C0O,-H,0 (Continued)
Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P. T,
kJ
-12.398 5°C, 1 =0.1 (KCIOy) Clever et al. (1992) Stipp et al. (1993)
-12.102 25°C, 1 = 0.1 (KCIO,) Clever et al. (1992) Stipp et al. (1993)
-12.201 50°C, | = 0.1 (KCIO4) Clever et al. (1992) Stipp et al. (1993)
-12.00 £ 0.10 Gamsjager et al. (1999)
-12.1+0.2 Review Grauer (1999)
-12.03 £ 0.13 Gamsjager et al. (2011)
CdCO4(s) + 2H+ = Cd*" + CO, + 6.47 +0.15 3 M NaClO, Gamsjager et al. (1965)
H.O
6.41 +0.02 3 mol/kg NaClO, Konigsberger et al. (1991)
6.11 £0.10 25°C,1=0 Gamsjager et al. (2011)
CdCOgs(cr) = CdCOs(aq) -7.59 £ 0.30 25°C,1=0 Gamsjéager et al. (2011)
CdCOs(cr) + COsZ = Cd(COs)%- -5.50 + 0.10 25°C, 1=0 Gamsjager et al. (2011)

Synthetic Phases

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System CdO-CO,-H,0O
extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction Log K® AHg o Reference Comments
kJ
Cd** + COs% = CdCOs(aq) 4.37 MinteqA2
2.90 Wateq4f
3.00 V8.R6+
- - | Minteq (2009)
4.3578 0. | Minteq (2006) NIST46.4, MTQ3.11
2.9 - | Phreeqc (2009)
2.9 - | Wateqaf (2005)
4.7 4.299 | ThermoChimie v.7.b #91RAI/FEL
NAGRA/PSI (2001)
3.0000 - | Data0.YMP.R5 Stipp et al. (1993)
4.6998 - | Thermoddem (2009) Rai et al. (1991b)
Cd* + 2C04* = Cd(CO3),> 7.23 MinteqA2
6.40 Wateq4f
6.40 V8.R6+
- - | Minteq (2009)
7.2278 0. | Minteq (2006) NIST46.4, MTQ3.11
6.4 - | Phreeqc (2009)
6.4 - | Wateqaf (2005)
6.5 - | ThermoChimie v.7.b #91RAI/FEL
- - | NAGRA/PSI (2001)
6.4000 - | Data0.YMP.R5 Stipp et al. (1993)
6.4996 - | Thermoddem (2009) Rai et al. (1991b)
Cd* + COs% + H' = CdHCO3" 11.83 MinteqA2
11.96 Wateq4f
11.83 V8.R6+
- - | Minteq (2009)
10.6868 0. | Minteq (2006) NIST46.4, MTQ3.11
11.829 - | Phreeqc (2009)
11.829 - | Wateqaf (2005)
11.83 - | ThermoChimie v.7.b Stipp et al. (1993)
- - | NAGRA/PSI (2001)
11.8288 - | Data0.YMP.R5 Stipp et al. (1993)
11.8298 - | Thermoddem (2009) 92sti/par

@) At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Cadium

58




rreeees |1

BERKELEY LAB

Table 3b. Solubility Constants of Solid Carbonates in the System CdO-CO,-H,0 extracted from
Databases of Distribution-of-Species Codes

Solubility Constant Reaction Log K® AHg - Reference Comments
kJ
Otavite
CdCO4(s) = Cd*" + CO5* -12.06 MintegA2
-12.10 Wateqg4f
-12.10 V8.R6+
- - | Minteq (2009)
-12. -0.55 | Minteq (2006)
-12.1 -0.079 | Phreeqc (2009)
-12.1 -0.079 | Wateq4f (2005)
-12.1 1.482 | ThermoChimie v.7.b #91RAI/FEL
- - | NAGRA/PSI (2001)
-12.1000 - | Data0.YMP.R5 Stipp et al. (1993)
-12.0998 - | Thermoddem (2009) 9lrailfel

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.VR.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MintegA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQA2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16—19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Wateq4f

Ball, J. W., & Nordstrom, D. K. (1991). User's manual for WATEQA4F, with revised thermodynamic data
base and test cases for calculating speciation of major, trace, and redox elements in natural waters.

U.S. GEOLOGICAL SURVEY, Open-File Report 91-183, Revised and reprinted - April, 2001. p. 81-94

Wateq4f (2005)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/WATEQ4F.DAT
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Table 4a. Thermodynamic Properties

of Cadmium Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of

Formation
Mineral AGO Secondary Reference Primary Reference
Name Formula f'Pr'Tlr
kd/gfw
Minerals
Otavite CdCO; -683.75 Kelley and Anderson (1935)
-683.67 | Latimer (1952) Kelley and Anderson (1935)
-669.13 Saegusa (1950)
-669.13 | Karpov et al. (1968) Saegusa (1950)
-669.126 | Karapet'yants and Karapet'yants (1970) Saegusa (1950a)
-672.79 | Karapet'yants and Karapet'yants (1970) Latimer (1952)
-624.36 + 4.18 | Robie (1962, 1966) Rossini et al. (1952)
-670.28 | Latimer (1952) Rossini et al. (1952)?
-670.28 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
-670.3 | Woods and Garrels (1987) Rossini et al. (1952)
-670.3 | Gamsjager et al. (1965) Rossini et al. (1952)
-670.28 | Karpov et al. (1968) Rossini et al. (1952)
-670.3 | La Iglesia and Felix (1994) Rossini et al. (1952)
calculated -683.46 Zhuk (1954)
-683.46 | Karpov et al. (1968) Zhuk (1954)
-683.46 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
-666.51 | Karapet'yants and Karapet'yants (1970) Karapet'yants (1955)
-672.79 | Karpov et al. (1968) Karapet'yants (1957)
-595.07 £ 4.18 | Karpov et al. (1968) Robie (1962)
-51.04 | Karpov et al. (1968) Kireev (1964)
-674.34 £ 0.84 Gamsjager et al. (1965)
-674.34 | Karapet'yants and Karapet'yants (1970) Gamsjager et al. (1965)
-674.25 | Naumov et al. (1974) Gamsjager et al. (1965)
-669.440 + 2.636 | Robie et al. (1979) Wagman et al. (1968)
-669.44 + 2.64 | Radha and Navrotsky (2013) Wagman et al. (1968), Robie et al. (1978)
-674.2 | Woods and Garrels (1987) Naumov et al. (1974)
Cadium 61




=

BERKELEY LAB

Table 4a. Thermodynamic Properties

of Cadmium Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of

Formation (Continued)
Mineral AGO Secondary Reference Primary Reference
Name Formula f'Pr'Tlr
kJ/gfw
-674.2 | La lglesia and Felix (1994) Naumov et al. (1974)
-779.43 | Stern (2000) Barin et al. (1977)
-669.4 | Woods and Garrels (1987) Robie et al. (1978)
-669.4 | Woods and Garrels (1987) Wagman et al. (1982)
-669.4 + 2.6 | Robie and Hemingway (1995) Wagman et al. (1982), Chang and Ahmad
(1982)
-669.4 | La Iglesia and Felix (1994) Wagman et al. (1982), Robie et al. (1979),
Sangameshwar and Barnes (1983)
-669.4 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
-662.7 Sverjensky (1984)
-670.3+2.1 La Iglesia and Felix (1994)
-674.2 £ 0.6 Gamsjager et al. (1999)
-674.3 £ 0.6 Gamsjager et al. (2011)
Synthetic Phases
Cdzn(CO0Os), Cdzn(CO0Os), -1406.7 £ 1.1 Tareen et al. (1995)
disordered
CdMg(CO3), CdMg(CO3), -1701.5+2.4 Tareen et al. (1995)
disordered
CdMn(CO3), CdMn(COs), -1490.0 £ 3.0 Tareen et al. (1995)
disordered
@ Formation from the oxides
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Table 4b. Thermodynamic Properties of Cadmium Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

Mineral AH (f),P,,T, Secondary Reference Primary Reference
Name Formula 1
kJ/gfw
Minerals
Otavite CdCO; -761.03 Kelley and Anderson (1935)
-749.05 Saegusa (1950)
-749.05 | Karpov et al. (1968) Saegusa (1950)
-749.049 | Karapet'yants and Karapet'yants (1970) Saegusa (1950a)
-747.68 | Latimer (1952) Rossini et al. (1952)?
amorphous -142.66 | Latimer (1952) Rossini et al. (1952)?
-749.10 + 2.49 | Robie (1962, 1966) Rossini et al. (1952)
-747.68 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
-747.68 | Karpov et al. (1968) Rossini et al. (1952)
-747.7 | Woods and Garrels (1987) Rossini et al. (1952)
-747.7 | Lalglesia and Felix (1994) Rossini et al. (1952)
-748.94 £ 8.37 | Karpov et al. (1968) Kubachewski and Evans (1956)
-749.10 £ 2.51 | Karpov et al. (1968) Robie (1962)
-99.58 | Karpov et al. (1968) Kireev (1964)
-754.04 | Naumov et al. (1974) Gamsijéger et al. (1965)
-747.85 | Karpov et al. (1968) Gerasimov (1966)
-750.610 + 2.510 | Robie et al. (1979) Wagman et al. (1968)
-750.61 + 2.51 | Radha and Navrotsky (2013) Wagman et al. (1968), Robie et al. (1979)
-754.0 | Woods and Garrels (1987) Naumov et al. (1974)
-751.87 | Stern (2000) Barin et al. (1977)
-754.7 | Lalglesia and Felix (1994) Helgeson et al. (1978)
-750.6 | Woods and Garrels (1987) Robie et al. (1978)
-750.6 | Woods and Garrels (1987) Wagman et al. (1982)
-750.6 = 2.5 | Robie and Hemingway (1995) Wagman et al. (1982), Chang and Ahmad
(1982)
-150.6 | La Iglesia and Felix (1994) Wagman et al. (1982), Robie et al. (1979),
Sangameshwar and Barnes (1983)
-750.6 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
predicted -750.6 £ 2.6 La Iglesia and Felix (1994)
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Table 4b. Thermodynamic Properties of Cadmium Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

(Continued)

Mineral AH? Secondary Reference Primary Reference
f.P. T,
Name Formula 1
kJ/gfw
-746.63 Archer (1996)
-752.1+ 0.6 Gamsjager et al. (1999)
-752.2+0.8 Gamsjager et al. (2011)
amorphous -742.66 | Karpov et al. (1968) Rossini et al. (1952)
Synthetic Phases
Cd(HCO3), Cd(HCO3), -1497.87 + 62.76 | Estimated value of fictive compound Wilcox and Bromley (1963)
-1497.87 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)
CdZn(COs),, Cdzn(CO0Os), -1566.3 £ 1.1 Tareen et al. (1995)
disordered
CdMg(COs), CdMg(COs), -1863.5+ 2.4 Tareen et al. (1995)
disordered
CdMn(CO3), CdMn(CO3), -1641.5+ 3.0 Tareen et al. (1995)
disordered

@ Formation from the oxides
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Table 4c. Thermodynamic Properties of Cadmium Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral Sg' . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
Minerals
Otavite CdCO; 105.44 Kelley and Anderson (1935)
96.65 Saegusa (1950)
96.65 | Karpov et al. (1968) Saegusa (1950)
96.65 | Karapet'yants and Karapet'yants (1970) Saegusa (1950a)
105.44 | Latimer (1952) Rossini et al. (1952)?
105.44 | Zhuk (1954) Rossini et al. (1952), Karapet'yants
(1953)
105.44 | Karpov et al. (1968) Rossini et al. (1952)
105.4 | Woods and Garrels (1987) Rossini et al. (1952)
calculated 149.37 Zhuk (1954)
100.42 | Karpov et al. (1968) Kubachewski and Evans (1958)
100.42 | Karapet'yants and Karapet'yants (1970) Kubaschewski and Evans (1958)
estimate 97.49+ 251 Kelley and King (1961)

97.49 £ 2.51 | Robie (1962, 1966)

Kelley and King (1961)

97.49 + 2.51 | Karpov et al. (1968)

Kelley and King (1961)

97.49 | Karapet'yants and Karapet'yants (1970)

Kelley and King (1961)

97.49 £ 2.51 | Naumov et al. (1974)

Kelley and King (1961)

92.47 +2.51 | Robie et al. (1979)

Kelley and King (1961)

97.5 | Woods and Garrels (1987)

Naumov et al. (1974)

92.47 | Stern (2000)

Barin et al. (1977)

92.5 | Woods and Garrels (1987)

Robie et al. (1978)

92.5+5.5 | Robie and Hemingway (1995)

Chang and Ahmad (1982)

92.5 | Woods and Gatrrels (1987)

Wagman et al. (1982)

Woods and Garrels (1987)

Sangameshwar and Barnes (1983)

106.3 Sverjensky (1984)
103.88 Archer (1996)
103.9+0.2 Gamsjager et al. (1999)
103.9+0.2 Gamsjager et al. (2011)
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Table 4c

Thermodynamic Properties of Cadmium Carbonate Minerals and Synthetic Solid Carbonates: Entropies (Continued)

Mineral g0 Secondary Reference Primary Reference
Pr ’Tv‘

Name Formula 14 .o
JK” gfw

Synthetic Phases
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Table 5. Crystallographic Properties of Cadmium Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference

Minerals
1 Otavite CdCO; Gaines et al. (1997)
2 Otavite CdCOs Mineralogy Database (http://webmineral.com/)
3 Otavite* CdCOs3 Bromily et al. (2007)
4 Otavite CdCOs Graf (1961)
5 Otavite CdCOs3 Graf (1961)
6 Otavite CdCOs Graf (1961)

Synthetic Phases
7 CdMg(COs), CdMg(COs), Graf (1961)

ordered
8 CdMg(COs), CdMg(COs) Graf (1961)

disordered

Name Cell Constants Space Vo
a0, A bo, A Cor A a° B, ° e z | G | cm’giw?

Minerals
1 | Otavite 4.923 16.287 6 R3c 34.311
2 | Otavite 4,912 16.199 6 R3c 33.973
3 | Otavite* 4.9207 16.2968 6 R3c 34.299
4 | Otavite 4.936 16.29 6 34.372
5 | Otavite 4.9207 16.295 6 34.296
6 | Otavite 4.9204 16.298 6 34.298

Synthetic Phases

CdMg(CO:s); ordered 4.7770(9) 15.641(3) 3 62.049

CdMg(COs),

disordered 4.7746(9) 15.678(3) 3 62.133

* Synthesized at 600°C, 1GPa, 3 hr.

*Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than 10 wt.% Cadmium*

Name Formula Cadmium, gfw Thermodynamic
Wt.% Data
Est. Meas.
Otavite CdCO; 65.20 172.42 no yes

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System CrO/Cr,03/CrO,-CO,-H,0
Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P.T,
kJ
cr(ll)
2Cr* + yCOs” = Cry(COg),*™" - - | Evidence for binuclear complex Cannon and Tsay (1967)
2Cr*" + 4C05” + H,0 = [Cry(CO3)a(H20)z1" - - Ouahes and Suquet (1968)
Cr(lly
Cr(OH)s(am) + COx(g) = Cr(OH)(CO3),” + 2H" | -19.07 + 0.41 - | 22 2°C Rai et al. (2007)
Cr(OH)s(am) + OH- + CO5> = Cr(OH),CO5> -4.19 +0.19 - | 22 2°C
cr(Iv)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Table 2. Solubility Constants of Solid Carbonates in the System CrO/Cr,03/CrO,-CO,-H,0

Solubility Constant Reaction Log K® AHg - Comments Secondary Reference Primary Reference
kJ
Minerals
cr(ln
CrCOgs(cr)

CrCOs(cr) = Cr** + CO5>

cr(iy

Synthetic Phases

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System CrO/Cr,05/CrO,-
CO,-H,0 extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction Log K® AHg - Database Source
kJ
cr(l
No entries No data No data
cr(in)
No entries
No data No data

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Table 3b. Solubility Constants of Solid Carbonates in the System CrO/Cr,03/CrO3;-CO,-H,0O

extracted from Databases of Distribution-of-Species Codes

Solubility Constant Reaction Log K& AH? Database Source
RPT,
kJ
cr(in
No data No data
cr(in)
No data No data

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.VR.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MintegA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQA2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16—19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
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Table 4a. Thermodynamic Properties of Chromium Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of

Formation
Mineral AGO Secondary Reference Primary Reference
f,PT,
Name Formula 1
kJ/gfw
Minerals
Cr(ll
Cr(lll
Barbertonite MgsCr"5(CO3)(OH)16+4(H,0) No data
Stichtite MgsCr"5(CO3)(OH)16+4(H,0) No data
Petterdite PbCr"',(CO3)2(OH)4+(H-0) No data
Putnisite, SrCa,Cr¥'s(C03)sS04(OH)162 No data
5(H20)
Cr(IV)
Synthetic Phases
Cr(ll
Crco;! CrCO; No data Erhardt et al. (1980)
Li,Cr(CO3),#x(H,0) Li,Cr(CO3),#x(H,0) No data Quahes et al. (1970a,b)
Na,Cr(C0O3),*10(H.0) Na,Cr(C0Os3),*10(H.0) No data | Cannon and Tsay (1967) Bauge (1900)
Na,Cr(COs),*(H.0) Na,Cr(COs),*(H.0) No data | Cannon and Tsay (1967) Bauge (1900)
NaCr(CO3),+0.5(H,0) Na,Cr(CO3),+0.5(H,0) No data Suquet and Malard (1968), Ouahes
and Suquet (1968), Ouahes et al.
(1970a,b)
K2Cr(CO3),¢1.5(H,0) K2Cr(CO3),¢1.5(H,0) No data | Cannon and Tsay (1967) Bauge (1900)
K2Cr(CO3)222(H20) K2Cr(CO3)2+2(H20) No data Suquet and Malard (1968), Ouahes
and Suquet (1968), Ouahes et al.
(1970a,b)
(NH4)2Cr(CO3)2*(H.0) (NH4)2Cr(CO3)2*(H0) No data | Cannon and Tsay (1967) Bauge (1900)
(NHg4)2Cr(CO3),*2(H.0) (NHg4)2Cr(CO3)2*2(H.0) No data Suquet and Malard (1968), Ouahes
and Suquet (1968), Ouahes et al.
(1970a,b)
Cs,Cr(C03),02(H,0) Cs,Cr(C03),#2(H,0) No data Suquet and Malard (1968), Ouahes
and Suquet (1968), Ouahes et al.
(1970a,b)
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Table 4a. Thermodynamic Properties of Chromium Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of

Formation (Continued)

Mineral AGO Secondary Reference Primary Reference
f.P.T,
Name Formula 1
kJ/gfw
Rb,Cr(C0O3),#2(H,0) Rb,Cr(CO3),2(H20) No data Suquet and Malard (1968), Ouahes
and Suquet (1968), Ouahes et al.
(1970a,b)
MgCr(COz3).*x(H.0) MgCr(COz3).*x(H.0) No data Ouahes et al. (1970a,b)
Cr(ln
NH,Cr(CO3)(OH), NH,Cr(COgz)(OH), No data Ali et al. (2005)
(NH4)2[Cr2(OH)4(003)2]-(HZO) (NH4)2[Cr2(OH)4(003)2]-(HZO) No data Sengupta et al. (2004)
K7[C|'4(OH)9(CO3)5]'6(H20) K7[C|'4(OH)9(CO3)5]'6(H20) No data Sengupta et al. (2004)
Nas[Cr(OH)s(COs),]*4(H,0) Nas[Cr(OH)s(COs),]*4(H,0) No data Sengupta et al. (2004)
NH4[Co(NH3)e] NH4[Co(NH3)s] No data Sengupta et al. (2004)
[Cr3(OH)7(CO3)3]'4(H20) [Cr3(OH)7(CO3)3]'4(H20)
KG[CO(NH3)6]2[Cr2(OH)4(C03)3] KG[CO(NH3)6]2[Cr2(OH)4(C03)3] No data Sengupta et al. (2004)
3 3
Mg, ZNs. M, ZNeCr"2(OH)16(CO3) No data Frost et al. (2003)
«Cr'"2(OH)15(CO3)+4(H,0) *4(H,0)
NixCOG.xCrz(OH)le(CO3) NixCOG.xCrz(OH)le(CO3) No data Frost et al. (2003)
*4(H20) *4(H;0)
Ni1-«Cri(OH)2(CO3)x2*n(H20) Ni1«Cri(OH)2(CO3)x2*n(H20) No data Jobbagy et al. (2007)
(x = 0.32-0.36)° (x = 0.32-0.36)
Cr(1v)
Synthetic* CrV010(COs)2 (?) No data Ali et al. (2005)

Notes 1. Synthesis from Cr(CO)s at 280°C and 3,000 bar P(CO,); 2. Dawsonite structure synthesized from a gel at pH = 11 and 100°C; 3. Homogeneous nucleation involving
decomposition of urea at 180°C; 4. Decomposition product of NH,Cr(COsz)(OH), at 153-350°C,
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Table 4b. Thermodynamic Properties of Chromium Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

Mineral AH? Secondary Reference Primary Reference
f.P.T,
Name Formula "
kJd/gfw
Minerals
Cr(ll
No data
Cr(ll
No data
Cr(IlV)
No data
Synthetic Phases
No data
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Table 4c. Thermodynamic Properties of Chromium Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral SO Secondary Reference Primary Reference
Pr vTr
Name Formula 1 1
J K™ gfw

Minerals
Cr(ll

No data
Cr(ll

No data
Cr(IlV)

No data
Synthetic Phases

No data
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Table 5. Crystallographic Properties of Chromium Carbonate -Minerals and -Synthetic Solid Carbonates

Name Formula Reference
Minerals
Cr(ll
1
Cr(ll
2 |Barbertonite MgsCr"5(CO3)(OH)16+4(H,0) Frondel (1941)
3 |Barbertonite MgsCr"5(CO3)(OH)16+4(H,0) Gaines et al. (1997)
4 |Barbertonite MgsCr"'2(CO3)(OH)15+4(H0) Mineralogy Database (http://webmineral.com/)
5 | Mountkeithite M021.52Ni2.24CU0 04Cr2 21F €2 85Al1 42 Hudson and Bussell (1981)
(OH)s52.14(C0O3)2.42(SO4)5.04220.40(H,0))
6 |Mountkeithite Ni1.12CU0.02F€%"1 42Cr1.1Al0 72(SO4)2.52 Gaines et al. (1997)
(003)1.21MglO.76(OH)26.07°10-2(H20)
Petterdite PbSrg1Cr1.5Al0.4(C0O3)2.1(OH)360(H20) Gaines et al. (1997)
Petterdite PbCr"',(CO3)2(OH)4*(H0) Birch et al. (2000)
Name Cell Constants Space vo*
ao, A bo, A o, A o, ° B, ° i 7 Group cm? gfw’l
Minerals
Cr(ll
1
Cr(ll
2 |Barbertonite 6.17 15.52 1 P63/mm 308.14
c
3 |Barbertonite 6.20 15.6 1 P63/mm 312.74
c
4 |Barbertonite 6.17 15.52 1 P63/mm 308.14
c
5 |Mountkeithite 10.698 22.545 1 hex 1345.7
6 |Mountkeithite 10.698 22.545 2 hex 672.83
7 |Petterdite 9.079 16.321 5.786 4 Pbnm 129.08
8 |Petterdite 9.079(3) 16.321(9) 5.786(7) 4 Pbnm 129.08
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Name Formula Reference
9 |Putnisite SrCa,Cr¥*s(C03)sS04(OH)16°25(H,0) Elliot et al. (2014)
10 |Stichtite MgsCr"'2(CO3)(OH)1504(H0) Gaines et al. (1997)
11 |Stichtite MgsCr"'2(CO3)(OH)15+4(H0) Mineralogy Database (http://webmineral.com/)
12 |Stichtite MgsCr"'2(CO3)(OH)16+4(H.0) (3R1) Mills et al. (2011)
13 |Stichtite® MgsCr"'2(CO3)(OH)164(H.0) (2H1) Mills et al. (2011)
14 |Stichtite’ MgsCr"'2(CO3)(OH)164(H.0) (2H1) Mills et al. (2011)
15 |Stichtite® MgsCr"'2(CO3)(OH)1s04(H0) RRUFF ID: R050328.1
Mineralogy Database (http://webmineral.com/)
16 |Stichtite® MgsCr"'2(CO3)(OH)1504(H0) RRUFF ID: R050475.1
Mineralogy Database (http://webmineral.com/)
Cr(lv)
17
Name Cell Constants Space Vo
20, A bo A Cor A @ ° B, i z | Group | em’gfw?
9 |Putnisite 15.351(3) 20.421(4) 18.270(4) 4 Pnma 862.27
10 |Stichtite 6.19 46.47 3 R-3m 309.54
11 |Stichtite 6.18 46.38 3 R-3m 307.94
12 |Stichtite 3.09575(3) 23.5069(6) 3/8 R-3m 313.31
13 |Stichtite® 3.09689(6) 15.6193(8) 1/4 P6- 312.50
3/mmc
14 |Stichtite® 3.09646(6) 15.627(1) 1/4 P6- 312.57
3/mmc
15 |Stichtite® 3.0868(4) 23.517(6 3/8 hex 311.64
16 |Stichtite’ 3.146(2) 24.53(9) 3/8 hex 337.65
Cr(IV)
17
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Chromium

Name Formula Reference

Synthetic Phases

Cr(ll
18 |Crcost CrCOg; Erhardt et al. (1980)
19 |LixCr(COg3)2*x(H20) Li,Cr(CO3),#x(H.0) Ouahes et al. (1970a,b)
20 |[NayCr(CO3);#10(H.0) Na,Cr(CO3)2#10(H.0) Bauge (1900)
21 |[NayCr(C0Os)2*(H,0) Na,Cr(COs),*(H.0) Bauge (1900)
22 [Na,Cr(C0s3),#0.5(H,0) Na,Cr(C0O3),*0.5(H.0) Ouahes et al. (1970a,b)
23 |K,Cr(COs)p#1.5(H.0) K2Cr(COs)z#1.5(H.0) Bauge (1900)
24 |K,Cr(COs)2#2(H.0) K2Cr(COs)2#2(H20) Ouahes et al. (1970a,b)
25 | (NH4).Cr(COs)2+(H-0) (NH4)2Cr(CO3).+(H.0) Bauge (1900)
26 |(NH4)2Cr(COs)2*2(H20) (NH4)2Cr(CO3),*2(H20) Ouahes et al. (1970a,b)
27 |Cs,Cr(C0O3)2*2(H,0) Cs,Cr(C03),02(H,0) Quahes et al. (1970a,b)
28 | Rb,Cr(CO3),#2(H.0) Rb,Cr(CO3)2#2(H.0) Ouahes et al. (1970a,b)
29 [ MgCr(COs3)2*x(H20) MgCr(COz3),*x(H.0) Ouahes et al. (1970a,b)

Name Cell Constants Space Vo
a, A bo, A Cor A o ° B, i Z Group | cm® gfw™

Synthetic Phases

Cr(ll
18 |Crcos!
19 |Li,Cr(COgz)z*x(H.0) 6.83 7.04 9.77 85.15 117.23 108.83 ? tricl ?
20 [NaxCr(COs3),#10(H;0)
21 |NaxCr(COs),e (H:0)
22 |NaxCr(C0O;),.0.5(H0) 13.94 9.843 8.886 orthorh
23 |KoCr(COj3)2+1.5(H.0)
24 |K,Cr(C0s),.2(H.0) 6.913 15.57 7.590 108.08 47? P2/c 116.92
25 | (NH4)2Cr(COgz),#(H-0) P2/c
26 | (NH4):Cr(COsz),#2(H.0) 6.918 16.18 7.800 108.92 P2/c 124.35
27 |Cs,Cr(COs3)2#2(H.0) - - - - P2/c
28 |Rb,Cr(C0O3),+2(H.0) - - - - P2/c
29 |MgCr(COs)z*x(H-0) 6.83 7.04 9.77 85.15 117.23 108.83 ? tricl ?
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Name Formula Reference
Synthetic Phases, cont.
Cr(ll
30  [(NH.4)2[Cr2(OH)4(COg3).]*(H.0) (NH4)2[Cr2(OH)4(COs3)2]*(H20) Sengupta et al. (2004)
31 [K7[Crs(OH)e(CO3)s]*6(H-0) K7[Cr4(OH)o(CO3)s]*6(H20) Sengupta et al. (2004)
32 | Nag[Cry(OH)s(CO3),]*4(H-0) Nas[Cr2(OH)s(CO3).]*4(H20) Sengupta et al. (2004)
33 | NH4CO(NHs)s] [Crs(OH)A(CO3s)s] | NHL[CO(NHs)g] [Cra(OH)7(COs)s]e4(H.0) Sengupta et al. (2004)
*4(H:0)
34 | Ke[Co(NHz3)s]o[Cr2(OH)4(CO3)s]s Ke[CO(NH3)s]2[Cr2(OH)4(CO3)s)s Sengupta et al. (2004)
35  |Mg,ZnexCr''2(OH)16(CO3)*4(H20) | MgyxZnexCr''2(OH)16(COs)*4(H,0) Frost et al. (2003)
36 |TICr"(CO3). TICr"(CO3). Ehrhardt et al. (1981)
Cr(lv)
37 | CrVO(CO3): (?) CrV010(COs)2 (?) Ali et al. (2005)
Name Cell Constants Space Vo
a,, A bo, A Co, A a, ° B, ° 7,° 7 Group | cm?® gfw™

Synthetic Phases, cont.
Cr(ll

30 [(NH4)2[Crz(OH)4(COs3),]*(H20)
31 [K7[Crs(OH)o(CO3)s]*6(H-0)
32 |Nag[Cr(OH)s(COs)2]*4(H20)

33 | NH4[Co(NHa)s] [Cr3(OH)7(COs)s]
*4(H:0)

34 KG[CO(NH3)e]2[Cr2(OH)4(CO3)3]3
35 | MgyZnexCr''2(OH)16(COs)*4(H,0)
36 |TIC"(COs), 19.917(7) 8.605(3) 19.138(5) 104.79(3) 24 P2,/c 79.576

Cr(1v)
37 |CrVOw(COs): (?)

Note. 1. Stichtite (2H1) = Barbertonite. See Mills et al. (2011)

*Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than 10 wt.% Chromium*

Name Formula Chromium, gfw Thermodynamic
wt.% Data
Est. Meas.

Cr(I)
cr(ln)
Barbertonite MgsCr"'2(CO3)(OH)16+4(H20) 15.90 654.01 no no
Mountkeithite (Mg,Ni)11(Fe",Cr'")s(S04,COs)s.5(0H)24011(H,0) 4.01 1426.01 no no
Petterdite PbCr'"',(CO3)2(OH)4+(H-0) 15.29 510.01 no no
Stichtite MgsCr"'2(CO3)(OH)16+4(H20) 15.90 654.01 no no
Cr(Iv)

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System CoO/C0,03-CO,-H,0
Association Constant Reaction Log K® AH? Comments Secondary Reference Primary reference
RP,.T,
kJ
Co(ll)
Co* + CO3” = CoCOs(aq) 3.17 - | Estimated. 1 = 0.7 Cosovic et al. (1982) Zhorov et al. (1976)
3.15+0.10 - | 20 £ 1°C, Pol., 0.56 M NaClO, Cosovic et al. (1982)
4-5 - | Estimate at | = 0 from Cosovic et Hummel and Curti (2003) Cosovic et al. (1982)
al. (1982)
Co®" + 2C05* = Co(COs),>
Co™ + COs” + H" = CoHCO3"
Co* + HCO5 = CoHCOs' 1.39 - | Estimated Cosovic et al. (1982) Zhorov et al. (1976)
Co(lln
Co* + 3C0s* = Co(COs)s* - - | Synthesis McCutcheon and Schuele
(1953)
29 - | 1 M KCI? Approximate value, Al-Obadie (1980)
Hydrolysis of COs* and HCOs5'
neglected.
29 -1 1=1 Palmer and Van Eldik Al-Obadie (1980)

(1983)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

* Corrected using bicarbonate dissociation equation from PHREEQC
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Table 2. Solubility Constants of Solid Carbonates in the System CoO/C0,03-CO,-H,0

Solubility Constant Reaction Log K® AHg o Comments Secondary Reference Primary reference
kJ
Minerals
Co(ll)
Sphaerocobaltite
CoCOs4(s) = Co* + COs>
-12.84 Estimated value Kelley and Anderson (1935)
-12.10 Estimated from primary reference | Latimer (1952) Kelley and Anderson (1935)
with revized value of DGf for Co**
-12.0 Zhuk (1954) Goskhimizdat (1952)
-9.82 Naumov et al. (1974) Butkevitsch (1967)
-9.98 Cosovic et al. (1982) Butkevitsch (1967)
-9.98 1=0 Palmer and Van Eldik Smith and Martell (1976)
(1983)
-9.52 Estimated. | = 0.7 Cosovic et al. (1982) Zhorov et al. (1976)
-11.2+0.2 Recommended value Grauer (1999)
CoCO;s(cr) + 2H+ = Co*" + CO4(g) + H,0 10.35 Cosovic et al. (1982) Kelley and Anderson (1935)
8.17 25°C,1=0 Gamsjager (1974) Butkevitsch (1967)
7.19+0.04 50°C, 1 M NaClO,, Gamsjager (1985) Reiterer (1980)
Co(lll)
Synthetic Phases
Co(ll)
K2Co(CO3),
KoCo(CO3), = Co?" + 2K + CO5> -6.00 Estimated Yoder and Rowand (2006)
C0,AI"(CO3)5(OH)e*(H,0)
Cobalt 89
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Table 2. Solubility Constants of Solid Carbonates in the System CoO/C0,03-CO,-H,O (Continued)

Solubility Constant Reaction Log K® AHg o Comments Secondary Reference Primary reference
kJ
C0,AI"(CO3)05(OH)e*(H-0) + 6H" = 2Mg** + A** | 23.89 +0.38 I = 0, corrected using the Davies Johnson and Glasser
+0.5C0O5” + TH,0 20.92 + 1.03 equation. | = 6.5 mM and 12.8 (2003)
23.04 + 0.44 mM. Equilibration up to 147 days
23.09£0.70
7.12 Calculated from thermochemical Allada et al. (2006)

Coo_yeAlo_z4(OH)2(003)o_1210.81gH20) +2H =
0.76Co*" + 0.24APF" +0.12C0O;* + 2.81H,0

data.

Co(lll)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System Co0O/C0,03-CO,-

H,O extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction

)
Log K AH g o Database

kJ

Source

Co(ll)

Co*" + COs% = CoCOs(aq)

- - | Minteq (2009)

4.228 0 | Minteq (2006) NIST46.4; MTQ3.11
- - | Phreeqc (2009)
- - | Wateq4f (2005)
4.23 - | ThermoChimie v.9

- - | NAGRA/PSI (2001)

- - | Data0.com.V8.R6+

- - | Data0.YMP.R5

Co* + HCO5 = CoCOs(aq) + H'

6.0970 - | Thermoddem (2009)

97Smi/Mar

Co®" + 2C03* = Co(COs)*

- - | Minteq (2009)

- - | Minteq (2006)

- - | Phreeqc (2009)

- - | Wateq4f (2005)

- | ThermoChimie v.9

- - | Data0.com.V8.R6+

- - | NAGRA/PSI (2001)

- - | Data0.YMP.R5

- - | Thermoddem (2009)

Co* + COs% + H' = CoHCO;"

- - | Minteq (2009)

12.2199 0 | Minteq (2006)

NIST46.4; MTQ3.11

- - | Phreeqc (2009)

- - | Wateq4f (2005)

12.22 - | ThermoChimie v.9

- - | Data0.com.V8.R6+

- - | NAGRA/PSI (2001)

- - | Data0.YMP.R5

Co*" + HCO5 + H' = CoHCO3"

-1.8930 0 | Thermoddem (2009)

97Smi/Mar

Co(lln)

No entries

@) At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3b. Solubility Constants of Solid Carbonates in the System CoO/Co0,05-CO,-H,0 extracted
from Databases of Distribution-of-Species Codes

Solubility Constant Reaction Log K& AH? Database Source
RP,.T,
kJ
Sphaerocobaltite
CoCO4(s) = Co*" + COs> - - | Minteq (2009)
-9.98 -12.7612 | Minteq (2006)
- - | Phreeqc (2009)
- - | Wateq4f (2005)
-11.2 - | ThermoChimie v.9
- - | NAGRA/PSI (2001)
CoCO;4(s) + H' = Co® + HCOy -0.2331 - | Data0.com.V8.R6+
0.7971 - | Data0.YMP.R5
-0.8730 - | Thermoddem (2009)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.V8.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://mwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MinteqA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQAZ2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://mwwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.9

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16-19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Wateq4f

Ball, J. W., & Nordstrom, D. K. (1991). User's manual for WATEQA4F, with revised thermodynamic data
base and test cases for calculating speciation of major, trace, and redox elements in natural waters.

U.S. GEOLOGICAL SURVEY, Open-File Report 91-183, Revised and reprinted - April, 2001. p. 81-94

Wateq4f (2005)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/WATEQ4F.DAT
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Table 4a. Thermodynamic Properties of Cobalt Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

Mineral Name Formula AG?,P, . Secondary Reference Primary Reference
kd/gfw
Minerals
co(ll)
Sphaerocobaltite CoCOs3 -650.90 Kelley and Anderson (1935)
estimated
-650.90 | Latimer (1952) Kelley and Anderson (1935)
-650.90 | Karpov et al. (1968) Latimer (1952)
-650.90 | Karapet'yants and Karapet'yants (1970) Latimer (1952)
-650.9 | Woods and Garrels (1987) Latimer (1952)
-647.26 | Karapet'yants and Karapet'yants (1970) Karapet'yants (1953)
calculated -648.06 Zhuk (1954)
-648.06 | Karpov et al. (1968) Zhuk (1954)
-648.06 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
-647.26 | Karpov et al. (1968) Karapet'yantz (1954b)
-650.9 | Woods and Garrels (1987) Pourbaix (1960)
-36.40 | Karpov et al. (1968) Kireev (1964)
-640.15 | Naumov et al. (1974) Butkevitsch (1967)
-640.2 | Woods and Garrels (1987) Naumov et al. (1974)
-739.20 | Stern (2000) Barin et al. (1977)
-657.27 £ 3.10 Tareen et al. (1991)
Co(lll)
Synthetic Phases
co(ll)
CoCO03.K,CO3 CoCO03.K,CO3 -1726.74 | Karapet'yants and Karapet'yants (1970) Karapet'yants (1953)

Co(lln)

@ Formation from the oxides
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Table 4b. Thermodynamic Properties of Cobalt Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

(NO3)0.0018°0.810H,0

Mineral Name Formula AH ?,F‘( . Secondary Reference Primary Reference
kd/gfw™
Minerals
co(ll)
Sphaerocobaltite CoCOs -725.129 | Kelley and Anderson (1935) De Carli (1931)
-722.58 | Zhuk (1954) Rossini et al. (1952), Karapet'yantz (1953)
-89.54 | Karpov et al. (1968) Kireev (1964)
-716.09 | Naumov et al. (1974) Butkevitsch (1967)
-712.95 Wagman et al. (1969)
-716.1 | Woods and Garrels (1987) Naumov et al. (1974)
-713.00 | Stern (2000) Barin et al. (1977)
-732.21 £3.10 Tareen et al. (1991)
-114.36 + 1.10" Allada et al. (2002), Allada et al. (2006)
-745.82 £ 1.68 Allada et al. (2002), Allada et al. (2006)
-745.82 £ 1.68 | Radha and Navrotsky (2013) Allada et al. (2002)
Co(llN)
Synthetic Phases
co(ll)
Co(HCO3), Co(HCO3), -1451.85 + 62.76 | Estimated value of fictive compound Wilcox and Bromley (1963)
-1451.85 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)
Co-Al hydrotalcite C00.756Al0.244(OH)2(CO3)0.1202(N 957.89 + 3.33 Allada et al. (2002)
03)0.001820.810(H20)
C00.756Al0.244(OH)2(CO3)0.1202 —967.89 + 3.33 | Radha and Navrotsky (2013) Allada et al. (2002)

C00.68Al0.32(OH)2(CO3)0.1620.779
H,O

-1044.17 + 2.54

Allada et al. (2002)

Coo.68Alo.32(OH)2(CO3)0.1620.78(
H,0)

-1044.17 + 2.54

Radha and Navrotsky (2013)

Allada et al. (2002)
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Table 4b. Thermodynamic Properties of Cobalt Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation
(Continued)

Mineral Name Formula AH? Secondary Reference Primary Reference
f,P T,
kd/gfw™

C00,756A|0,244(OH)2(CO3)0,12L'0.8 -991.79+£1.72 Allada et al. (2002)
0(5H.0)

C00.76Al0.24(OH)2(C0O3)0.1220.81( -991.79 £ 1.72 | Radha and Navrotsky (2013) Allada et al. (2002)
H,0)

COo,53A|0,32(OH)z(CO3)0,16:0.78( -1044.17 + 2.54 Allada et al. (2006)
H,0)

COo_59A|0_31(OH)z(co:g)o_le:O.68( -1006.26 + 1.62 Allada et al. (2006)
H,0)

COo,70A|0,30(OH)z(CO3)0,16:0.23( -877.34 £1.35 Allada et al. (2006)
H,0)

Coo_76AI0_24(OH)Z(CO3)0_12:O.81( -991.79+1.72 Allada et al. (2006)
H,0)

COo_goAlo_zo(OH)z(co:g)o_lo:O.76( -933.36 + 2.17 Allada et al. (2006)
H,0)

C00,33A|0,17(OH)2(CO3)0,09:0.29( -777.09 £1.97 Allada et al. (2006)
H,0)

co(ll)

@ Formation from the oxides
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Table 4c. Thermodynamic Properties of Cobalt Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral S g' . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
Minerals
Co(ll)
Sphaerocobaltite CoCOs
calculated 91.63 Zhuk (1954)
91.63 | Karpov et al. (1968) Zhuk (1954)
91.63 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
88.5 Kostryukov and Kalinkina (1964)
88.5 | Karapet'yants and Karapet'yants (1970) Kostryukov and Kalinkina (1964)
88.62 £ 0.42 | Naumov et al. (1974) Kostryukov and Kalinkina (1964)
88.6 | Woods and Garrels (1987) Naumov et al. (1974)
87.86 | Stern (2000) Barin et al. (1977)
Synthetic Phases
Co(ll)
Co(lll)
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Table 5. Crystallographic Properties of Cobalt Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference

Minerals

co(ll)

Kolwezite CuU1.34C00,66(CO3)(OH), Deliens and Piret (1980), Gaines et al. (1997)

Sphaerocobaltite CoCOs; Graf (1961), Gaines et al. (1997)

Sphaerocobaltite RRUFF ID: R060497.9

Mineralogy Database (http://webmineral.com/)

4 | Sphaerocobaltite Pertlik (1986)

co(lll)

Comblainite Ni"sC0"2(CO3)(OH)16*4(H-0) Gaines et al. (1997)

Comblainite Ni"sC0"2(CO3)(OH)16*4(H-0) Piret and Deliens (1980)

Name Cell Constants Space Vo
a0 A bo, A co A @ ° B, ° e 7 Group cm® gfw™®

Minerals

co(ll)
1 [Kolwezite 9.50 12.15 3.189 93.32 90.74 91.47 4 P1orp-1 55.301
2 | Sphaerocobaltite 4.6581 14.958 6 R3c 28.211
3 | Sphaerocobaltite 4.630(8) 14.94(4) 6 R3c 27.838
4 | Sphaerocobaltite 4.6618 14.963 6 R3c 28.265

Co(ll
5 [Comblainite 6.08 45.58 3 R-3m or 292.92

R3m,
6 |Comblainite 3.038 22.79 3/8 R-3m, 292.53
R3m, R32,
R-3, or R3
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Cobalt

Name Formula Reference
Synthetic Phases
Co(ll)
7
Co(lll)
8
Name Cell Constants Space Vo
a,, A bo, A Co, A o, ° B,° v, 7z Group cm?® gfw™
Synthetic Phases
Co(ll)
7
Co(ll
8

*Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than 10 wt.% Cobalt*

Name Formula Cobalt, wt.% gfw Thermodynamic
Data
Est. Meas.
co(ll)
Kolwezite (Cu,Ca")5(CO3)(OH), 17.84 218.07 No No
Sphaerocobaltite Co''CO; 49.55 118.94 No yes
Co(lll)
Comblainite Ni"sC0"2(CO3)(OH)16+4(H20) 13.48 874.19 No No

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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COPPER
Table 1. Association Constants for Aqueous Carbonate Complexes in the System Cu,0/Cu0O-CO,-H,0
Association Constant Reaction Log K® AH g o Comments Secondary Reference Primary Reference
kJ
Cu* + CO3” = CuCOs(aq) 6.42 Solubility Scaife (1957)
6.34 1=0 Bilinski et al. (1976) Scaife (1957)
6.77 +0.08 Silman (1958)
6.77 1=0 Bilinski et al. (1976) Silman (1958)
6.77 Vieillard (1988) Silman (1958)
6.77 Zirino and Yamamoto Sillen and Martell (1964)
(1972)
6.34 Vieillard (1988) Sillen and Martell (1964,
1971)
6.73 Schindler et al. (1968)
6.73 Mattigod and  Sposito | Schindler et al. (1968)
(1977)
6.73 Vieillard (1988) Schindler et al. (1968)
6.8+0.1 ISE Stiff (1971)
6.8 Var. Bilinski et al. (1976) Stiff (1971)
57+0.2 DPP, 0.1 M KNO3 Ernst et al. (1975)
5.7 DPP Bilinski et al. (1976) Ernst et al. (1975)
6.1+0.2 DPASV, 0.1 M KNO3 Ernst et al. (1975)
6.1 DPASV Bilinski et al. (1976) Ernst et al. (1975)
6.1 DPP, 0.1 M KNO3 Bilinski et al. (1976)
6.0 ASV, 0.1 M KNO3 Bilinski et al. (1976)
6.75 +0.02 1=0 Palmer and Van Eldik | Smith and Martell (1976)
(1983)
6.73 McBride (1979) Mattigod and Sposito
(1977) and Novozamsky
and Beek (1976)
6.04 1=0.05 Stella and Ganzeril-
Valentini (1979)
6.74 Sunda and Hanson (1979)
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Table 1. Association Constants for AQueous Carbonate Complexes in the System Cu,0O/Cu0O-C0O,-H,0 (Continued)

Association Constant Reaction Log K& AH? Comments Secondary Reference Primary Reference
RP,T,
kJ
6.78 -1 1=0 Palmer and Van Eldik Sunda and Hanson (1979)
(1983)
6.8 -1 1=01 Palmer and Van Eldik Van den Berg and Kramer
(1983) (1979)
6.8 - | DPASV. 0.01 M KNO3 Van den Berg and Kramer
(1979)
6.89 Zuehlke and Kester (1983)
6.89 - Vieillard (1988) Zuehlke and Kester (1983)
6.73 -11.30 | Estimate Fouillac and Criaud (1984)
6.82 Byrne and Miller (1985)
6.73 - Millero and Hawke (1992) Byrne and Miller (1985)
6.74 - Vieillard (1988) Grenthe (1985)
491+0.01 | 10.38+1.21 | | =that of seawater Soli and Byrne (1989)
6.73 Puigdomenech and Taxén Ball and Nordstrom (1991)
(2000)
6.77 Puigdomenech and Taxén Martell et al. (1997)
(2000)
6.75+0.01 - Powell et al. (2007)
6.74 £0.01 - Millero et al. (2010)
Cu* + 2C0O5* = Cu(COy),” 10.01 + 0.08 - Silman (1958)
10.01 -1 1=0 Bilinski et al. (1976) Silman (1958)
10.01 - Vieillard (1988) Silman (1958)
8.6 - | 18°C, Pol. 1.7 M KNO3; (+ K,CO3 Faucherre and Bonnaire
+ KHCO;3) (1959)
8.6 - | 18°C. Pol.,, 1.7 M KNOs, Krishnamurty et al., 1970) Faucherre and Bonnaire
(1959
9.83 Mattigod and Sposito | Schindler et al. (1968)
(1977)
9.83 - Vieillard (1988) Schindler et al. (1968)
9.8 - | Pol./lon Exchange, 1.8 N (K,CO3 Fromage and Fiorina

+ KNOy)

(1969)
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Table 1. Association Constants for AQueous Carbonate Complexes in the System Cu,0O/Cu0O-C0O,-H,0 (Continued)

Association Constant Reaction Log K® AH g o Comments Secondary Reference Primary Reference
kJ
10.0 Estimate Zirino and Yamamoto
(1972)
8.1+0.3 L# =1.63, DPP, 0.1 M KNO3 Ernst et al. (1975)
8.2+0.2 L# = 1.65, DPASV, 0.1 M KNO3 Ernst et al. (1975)
8.1 DPP Bilinski et al. (1976) Ernst et al. (1975)
8.2 DPASV Bilinski et al. (1976) Ernst et al. (1975)
9.7 DPP, 0.1 M KNO3 Bilinski et al. (1976)
10.0 ASV, 0.1 M KNO3 Bilinski et al. (1976)
8.6 18°C, 1 =1.7. Palmer and Van Eldik | Smith and Martell (1976)
(1983)
9.92 +0.09 1=0 Palmer and Van Eldik | Smith and Martell (1976)
(1983)
9.28 1=0.05 Stella and Ganzeril-
Valentini (1979)
10.23 Sunda and Hanson (1979)
10.24 1=0 Palmer and Van Eldik | Sunda and Hanson (1979)
(1983)
10.6 Byrne and Miller (1985)
10.41 Millero and Hawke (1992) Byrne and Miller (1985)
10.83 Vieillard (1988) Grenthe (1985)
9.83 Puigdomenech and Taxén Ball and Nordstrom (1991)
(2000)
10.2 Puigdomenech and Taxén Martell et al. (1997)
(2000)
10.30 £ 0.10 Powell et al. (2007)
10.52 + 0.06 Millero et al. (2010)
7.2 Pol., 1 M KNO3 Krishnamurty et al. (1970) Meites (1950)
10.5 Pol./lon Exchange, 1.8 N (K,CO3 Fromage and Fiorina
+ KNO3) (1969)
Cu* + COs” + H" = CuHCO;" >12.73 Solubility Scaife (1957)
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Table 1. Association Constants for AQueous Carbonate Complexes in the System Cu,0O/Cu0O-C0O,-H,0 (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP,T,
kJ
- - | ISE. No evidence for existence. Stiff (1971)
13.0 - | Estimate Zirino and Yamamoto
(1972)
12.53* -10.46* | Estimate Fouillac and Criaud (1984)
12.13 Byrne and Miller (1985)
12.8* - Vieillard (1988) Zuehlke and Kester (1983)
12.15* - Millero and Hawke (1992) Byrne and Miller (1985)
12.1+0.1 - Powell et al. (2007)
12.20 £+ 0.01 - Millero et al. (2010)
Cu** + HCO5 = Cu(HCOs) 2.10 Estimate Mattigod and Sposito
(1977)
20.9 Palmer and Van Eldik Rages (1978)
(1983)
2.08 234 Palmer and Van Eldik Bauman (1981)
(1983)
2.7 Puigdomenech and Taxén Ball and Nordstrom (1991)
(2000)
1.8 Puigdomenech and Taxén Martell et al. (1997)
(2000)
6.27 | = 7.18 (lake water) Mugabe et al. (1998)
Cu** + 2HCO3 = Cu(HCOs),(aq) 5.9 - | Pol./lon Exchange, 1. N (K,CO3 + Fromage and Fiorina
KNO3) (1969)
Cu* + 2HCO; = Cu(HCOs),(aq) 7.46 | = 7.18 (lake water) Mugabe et al. (1998)
Cu* + 3HCO3 = Cu(HCO3)" 9.84 | = 7.18 (lake water) Mugabe et al. (1998)
Cu® + 4HCO3 = Cu(HCOs).> 11.52 - | Pol., 1 M KNO;s Krishnamurty et al. (1970) Meites (1950)
Cu*" + CO3% + H,0 = Cu(OH),COs% + 2H" ~15. Silman (1958)
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Table 1. Association Constants for AQueous Carbonate Complexes in the System Cu,0O/Cu0O-C0O,-H,0 (Continued)

KzCU(HCO3)4(aq) + HCO;3 = KzCU(HCOg,)s’ +
2K*

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP,T,
kJ
Cu*" + CO3% + H,0 = Cu(OH)CO3 + H' -2.79+0.3 Powell et al. (2007) Symes and Kester (1985)
Cu(OH); + 3CO5”~ = 2(OH) + Cu(COs)s* -7.18+0.4 Pol., 1 M KNO3 Meites (1950)
-7.18 Latimer (1952) Meites (1950)
Cu® + 4HCO3 + 2K" = K,Cu(HCO3)4(aq) 11.52£0.25 Pol., 1 M KNO3 Meites (1950)
1.98 Pol., 1 M KNO3 Meites (1950)

Cu®* + 2C0O5% + 2H,0 = [CU(OH)x(HCO3).1*

0.5 -1.0 M KHCOg;. Evidence for
complex. Incurrectly specified
charge on complex.

Shirai (1961)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

* Equation recast using bicarbonate dissociation equation from PHREEQC
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Table 2. Solubility Constants of Solid Carbonates in the System Cu,0/Cu0O-CO,-H,0

Solubility Constant Reaction Log K® AHS o Comments Secondary Reference Primary Reference
kJ
Minerals
Aurichalcite
ZN5.75CU227(CO3)2(OH)s = 2.73Zn*" + 2.27Cu® -90.1 Alwan et al. (1980)
+2C0O5” + 60H
Azurite
Cu3(CO3)2(OH), +2H" = 3Cu?" + 2C0O5> + 2H,0 -17.96 Natural material Silman (1958)
-17.96 Vieillard (1988) Silman (1958)
-16.88 Vieillard (1988) Schindler et al. (1968)
-16.9+0.2 Powell et al. (2007) Schindler et al. (1968)
-11.4 Vieillard (1988) Helgeson et al. (1978)
-16.88 Vieillard (1988) Reiterer et al. (1981)
+3.10 Vieillard (1988) Wagman et al. (1982)
-17.8 Vieillard (1988) Grenthe (1985)
-19.46 Vieillard (1988) Vink (1986)
-18.4 Vieillard (1988) Woods and Garrels (1986)
-16.8 See note 1. Vieillard (1988)
-16.8 Vieillard et al. (1989)
-16.91 Puigdomenech and Taxén Ball and Nordstrom (1991),
(2000) Martell et al. (1997), Baes
and Mesmer (1976)
-17.38 £0.30 Preis and Gamsjager
(2002)
-18.52 Estimated Yoder and Rowand (2006)
-16.00 Estimated Yoder et al. (2010)
Cus(CO3)2(OH), +6H* = 3Cu*" + 2CO, + 4H,0 19.41 + 0.09 Schindler et al. (1968)
19.41 +0.09 Naumov et al. (1974) Schindler et al. (1968)
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Table 2. Solubility Constants of Solid Carbonates in the System Cu,0/Cu0O-CO,-H,0 (Continued)

Solubility Constant Reaction Log K® AHg o Comments Secondary Reference Primary Reference
kJ
2/3Cu3(CO3),(OH), +2H" = Cu®* + 2/3CO, + 6.30 -20.2 Preis and Gamsjager
4/3H,0 (2001)
Caledonite
PbsCu,CO5(S0,)s(OH)s + 6H" = 5Pb*" + 2Cu® -26.6 - | See note 2. Abdul-Samad et al. (1982)
+ CO;” + 3S0,” + 6H.0
Juangodoyite
Na,Cu(COs), =2Na" + Cu** + 2CO5> -6.40 Estimated Yoder and Rowand (2006)
Malachite
Cu,CO3(0H), +2H" = 2Cu** + CO4” + 2H,0 -4.45 - | Synthetic material Scaife (1957) Free (1908)
-5.75 - | Estimate for natural material Silman (1958) Free (1908)
-5.35 - | Synthetic material Silman (1958) Free (1908)
-3.90 - | Synthetic material Scaife (1957)
-4.71 - | Synthetic material Silman (1958) Scaife (1957)
-3.9 - Vieillard (1988) Scaife (1957)
-5.78 - | Natural material Silman (1958)
-5.78 - Vieillard (1988) Silman (1958)
-5.16 - Vieillard (1988) Schindler et al. (1968)
-5.16 + 0.08 - Powell et al. (2007) Schindler et al. (1968)
-6.19 - Vieillard (1988) Rickard (1971)
-4.35 - Vieillard (1988) Helgeson et al. (1978)
-3.249 - | 1=0.05. precipitated. Stella and Ganzeril-
Valentini (1979)
-5.16 Vieillard (1988) Reiterer et al. (1981)
-3.94 Vieillard (1988) Wagman et al. (1982)
-5.46 + 0.22 - Symes and Kester (1984)
-5.46 - Vieillard (1988) Symes and Kester (1984)
-5.16 - Vieillard (1988) Grenthe (1985)
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Table 2. Solubility Constants of Solid Carbonates in the System Cu,0/Cu0O-CO,-H,0 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P, T,
kJ
-5.97 - Vieillard (1988) Woods and Garrels (1986)
-5.78 - Vieillard (1988) Vink (1986)
-4.80 - Vieillard (1988) Vieillard et al. (1989)
-5.18 Puigdomenech and Taxén Ball and Nordstrom (1991)
(2000)
-5.3 Puigdomenech and Taxén Martell et al. (1997)
(2000)
-5.46 + 0.20 - Preis and Gamsjager
(2002)
-4.00 Estimated Yoder and Rowand (2006)
-6.00 Estimated Yoder et al. (2010)
0.5CU,CO3(OH), +2H" = Cu*" + 0.5CO4(g) + 6.49 + 0.04 - Naumov et al. (1974) Schindler et al. (1968)
1.5H,0
6.34 -27.1 Preis and Gamsjager
(2001)
Cu,CO3(0H), +2H" = 2Cu** + CO4” + 2H,0 12.98 + 0.08 - Schindler et al. (1968)
Rosasite
Cuy1.16ZN0ssCO(OH), = 1.16Cu*" + 0.84Zn*" + -36.4 - Alwan et al. (1980)
COs” + 20H
Synthetic Phases
CuCOs
CuCO; = Cu*" + COZ? 18°C, Solubility = 0.03% and Haehnel (1924)
0.041% at P(CO,) = 1 and 56
atm., respectively
-9.863 - | 18°C Kelley and Anderson (1935) | Haehnel (1924)
-9.60 Latimer (1952) Haehnel (1924)
-9.627 - | Review. No correction for activity Kelley and Anderson (1935)
coefficients
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Table 2. Solubility Constants of Solid Carbonates in the System Cu,0/Cu0O-CO,-H,0 (Continued)

Solubility Constant Reaction Log K® AH g o Comments Secondary Reference Primary Reference
kJ
-9.63 Zhuk (1954) Goskhimizdat (1952)
-9.63 0 Palmer and Van Eldik Smith and Martell (1976)
(1983)
-9.60 Vieillard (1988) Helgeson et al. (1978)
-11.43 Vieillard (1988) Reiterer et al. (1981)
-11.5 Puigdomenech and Taxén Martell et al. (1997)
(2000)
-11.45+0.10 Literature review Grauer (1999)
-11.45 Puigdomenech and Taxén Grauer (1999)
(2000)
-10.00 - | Estimated Yoder et al. (2010)
CuCO; + 2H+ = Cu* + COy) + H0 6.44 - | 25°C, 1=0. Gamsjager (1974) Schindler et al. (1968)
7.16 £ 0.05 50°C, 1 M NaClOy, Gamsjager (1985) Reiterer (1980)
6.70 £0.10 - | Phase prepared following Reiterer et al. (1981)
Ehrhardt et al. (1973) and Seidel
et al. (1974)
CuCO; + 2H+ = Cu* + COy + H.0 6.95+0.04 25°C, 0.20 M NaClO,4 Reiterer et al. (1981)
K2Cu(COgz),
K2Cu(COs)2 = 2K* + Cu** + 2C0O5> -2.00 Estimated Yoder and Rowand (2006)
KoCu(HCO3)s
KoCu(HCOg)s = 2K* + Cu®* + 4HCO5 -11.52+0.26 - Meites (1950)
-11.52 Latimer (1952) Meites (1950)
CusCO3(OH)4
CusCO3(OH),+ 4H" = 3Cu®* + CO4” + 4H,0 -1.70 - | Estimated Yoder et al. (2010)
CusCO3(OH)4
Cu,CO3(OH)e+ 6H" = 4Cu** + CO4” + 6H,0 2.48 - | Estimated Yoder et al. (2010)
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Table 2. Solubility Constants of Solid Carbonates in the System Cu,0/Cu0O-CO,-H,0 (Continued)
Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference

R,P, T,
kJ

CU5CO3!OH!3

CusCO3(OH)g+ 8H" = 5Cu** + CO5* + 8H,0 6.60 - | Estimated Yoder et al. (2010)

CU5 CO3 OH

Cus(CO3)2(OH)s+ 6H" = 5CU** + CO5* + 6H,0 -7.52 - | Estimated Yoder et al. (2010)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
Note 1: Calculated from the solubility product for malachite by Vieillard et al. (1989), and fixing the equilibrium P(CO,) between malachite and azurite at 10™° atm.

Note 2: Abdul-Samad et al. (1982) also determined the solubility of wherryite with an assumed formula: PbCuCO3(S0O,4),O(OH,Cl),. However, a subsequent crystallographic structure
determination by Cooper and Hawthorne (1994) indicated that its composition is actually Pb;Cu,(SQ4)4(Si04)2(OH),.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System Cu,0/CuO-CO,-

H,O extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction Log K® AH? Database Source
RP,.T,
kJ
Cu* + COs% = CuCOs(aq) 6.73 MinteqA2
6.73 Wateq4f
3.37 V8.R6+
6.73 0 | Minteq (2009)
6.77 0. | Minteq (2006) NIST46.4, MTQ3.11
- - | Phreeqc (2009)
6.73 - | Wateqaf (2005)
- - | ThermoChimie v.7.b
NAGRA/PSI (2001)
- - | Data0.YMP.R5
- - | Thermoddem (2009)
Cu*" + 2C0O4% = Cu(COs,),> 9.83 MinteqA2
9.83 Wateq4f
10.48 V8.R6+
9.83 0 | Minteq (2009)
10.2 0. | Minteq (2006) NIST46.4, MTQ3.11
- - | Phreeqc (2009)
9.83 - | Wateqaf (2005)
- - | ThermoChimie v.7.b
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
- - | Thermoddem (2009)
Cu®* + CO5% + H' = CUHCO3" 13.16 MinteqA2
13.16 Wateq4f
- V8.R6+
13. 0 | Minteq (2009)
12.129 0. | Minteq (2006) NIST46.4, MTQ3.11
- - | Phreeqc (2009)
13.029 - | Wateqaf (2005)
- - | ThermoChimie v.7.b
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
- - | Thermoddem (2009)
Cu* + CO5” + H,0 = 13.11 V8.R6+
CuCO3(OH),” + 2H+
- - | Minteq (2009)
- - | Minteq (2006)
- - | Phreeqc (2009)
- - | Wateq4f (2005)
- - | ThermoChimie v.7.b
- - | NAGRA/PSI (2001)
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System Cu,0/CuO-
CO,-H,0 extracted from Databases of Distribution-of-Species Codes (Continued)

Association Constant Reaction Log K® AH? Database Source
R.PT,

kJ

Data0.YMP.R5
Thermoddem (2009)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3b. Solubility Constants of Solid Carbonates in the System Cu,0/Cu0O-CO,-H,0 extracted

from Databases of Distribution-of-Species Codes

Solubility Constant Reaction Log K& AH? Database Source
RP.T,
kJ
Minerals
Azurite
Cus(CO3),(OH), +2H" = 3Cu® + -17.40 MintegA2
2C0O5* + 2H,0
-16.17 Wateq4f
-11.50 V8.R6+
-16.92 -99.54 | Minteq (2009)
-16.906 -95.22 | Minteq (2006)
- - | Phreeqc (2009)
-16.908 99.362 | Wateq4f (2005)

- - | ThermoChimie v.7.b

- - | NAGRA/PSI (2001)

-11.4969 - | Data0.YMP.R5 Helgeson et al. (1978)
-11.5385 - | Thermoddem (2009) Helgeson et al. (1978)
Malachite
Cu,CO3(0OH), +2H" = 2Cu** + CO5> -5.47 MintegA2
+ 2H,0
-4.67 Wateq4f
-4.39 V8.R6+
-5.18 -65.31 | Minteq (2009)
-5.306 76.38 | Minteq (2006)
- - | Phreeqc (2009)
-5.179 -67.777 | Wateq4f (2005)

- - | ThermoChimie v.7.b

- - | NAGRA/PSI (2001)

-4.3889 - | Data0.YMP.R5 Helgeson et al. (1978)
-4.4159 - | Thermoddem (2009) Helgeson et al. (1978)
Synthetic Phases
Cu(CO3)
Cu(CO;) = Cu** + CO5> -9.63 -0 | Minteq (2009)
-11.5 -0. | Minteq (2006)
- - | Phreeqc (2009)
-9.63 - | Wateq4f (2005)

- - | ThermoChimie v.7.b

- - | NAGRA/PSI (2001)

- - | Data0.YMP.R5

- - | Thermoddem (2009)

(1) At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.V8.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.
USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-

Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical
Modeling of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las
Vegas, Nevada: Bechtel SAIC Company.DOC.20070619.0007.

MintegA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQA2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqgc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of
the Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy)
Larnaca (Cyprus) 16—19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr
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Table 4a. Thermodynamic properties of Copper Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

Mineral AG?,P, . Secondary Reference Primary Reference
Name Formula 1
kJ/gfw
Minerals
Aurichalcite ZN373CU2,27(CO3)2(OH)e -2765.8 Alwan et al. (1980)
Azurite Cus(CO3)2(OH), -1438 + 0.33 Silman (1958)
-1438.2 | Woods and Gatrrels (1987) Silman (1958)
-1438.04 | Rickard (1971) Garrels (1960)

-1438.17 + 2.09

Robie (1962, 1966)

Garrels (1960)

-1438.17 + 2.09

Karpov et al. (1968)

Robie (1962)

-1419.4 | Woods and Garrels (1987) Reinert (1965)
-1419.4 | Vieillard (1988) Reinert (1965)
-1430.89 + 5.02 Schindler et al. (1968)
-1430.93 | Naumov et al. (1974) Schindler et al. (1968), Roth et al.
(1941)
-1430.9 | Vieillard (1988) Gedansky et al. (1970),
-1430.9 | Vieillard (1988) Naumov et al. (1971)
-1430.9 | La lglesia and Felix (1994) Naumov et al. (1971)
-1430.9 | Woods and Gatrrels (1987) Naumov et al. (1974)
Woods and Garrels (1987) Robie et al. (1978)
-1399.2 | Woods and Garrels (1987) Helgeson et al. (1978)
-1399.2 | Vieillard (1988) Helgeson et al. (1978)
-1436.93 | Vieillard (1988) Lewis (1978)
-1419.4 | La Iglesia and Felix (1994) Woods and Garrels (1987)
-1315.5 | Woods and Garrels (1987) Wagman et al. (1982)
-1315.5 | Vieillard (1988) Wagman et al. (1982)
-1391.4 £ 2.2 | Robie and Hemingway (1995) Wagman et al. (1982)
-1429.7 | Woods and Gatrrels (1987) Sangameswar and Barnes (1983)
-1429.7 | Vieillard (1988) Sangameshwar and Barnes (1983)
-1429.7 | La lglesia and Felix (1994) Sangameshwar and Barnes (1983)
-1429.22 Calculated from the solubility constant
for azurite given by Vieillard (1988,
Table 2)
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Table 4a. Thermodynamic properties of Copper Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of

Formation (Continued)

Mineral AG?,P, . Secondary Reference Primary Reference
Name Formula 1
kJ/gfw
-1438.2 | Vieillard (1988) Woods and Garrels (1986)
-1388.7 £ 8.2 Kiseleva et al. (1992)
-1431.43 | Puigdomenech and Taxén (2000) Kubaschewski et al. (1993)
-1419.4 £ 3.8 La Iglesia and Felix (1994)
-1434.2 £1.8 Preis and Gamsjager (2002)
Caledonite PbsCu,CO3(S04)3(OH)s -4328 £ 2 Abdul-Samad et al. (1982)
Malachite (natural) CuCO3(0OH), -908. Estimated by Garrels (1957)
-905.59 + 0.21 Silman (1958)
-905.6 | Woods and Garrels (1987) Silman (1958)
-905.58 + 2.09 | Robie (1962, 1966) Garrels (1960)
-907.93 | Karpov et al. (1968) Garrels (1960)
-905.58 £ 2.09 | Karpov et al. (1968) Robie (1962)
-893.90 | Vieillard (1988) Reinert (1965)
-893.9 | Woods and Garrels (1987) Reinert (1965)
-901.32 £ 0.46 Schindler et al. (1968)
-901.28 | Naumov et al. (1974) Schindler et al. (1968), Roth et al.
(1941)
-893.70 Wagman et al. (1969)
-901.20 | Vieillard (1988) Gedansky et al. (1970),
-890.2 + 2.2 | Robie and Hemingway (1995) Richardson and Brown (1974)
-901.28 | Vieillard (1988) Naumov et al. (1971)
-901.3 | Woods and Garrels (1987) Naumov et al. (1974)
-901.3 | La lglesia and Felix (1994) Naumov et al. (1974)
Woods and Garrels (1987) Robie et al. (1978)
-896.2 | Woods and Garrels (1987) Helgeson et al. (1978)
-896.23 | Vieillard (1988) Helgeson et al. (1978)
-901.26 | Vieillard (1988) Lewis (1978)
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Table 4a. Thermodynamic properties of Copper Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of
Formation (Continued)

Mineral AG?,P, . Secondary Reference Primary Reference
Name Formula 1
kJ/gfw
-893.6 | Woods and Garrels (1987) Wagman et al. (1982)
-893.6 | Vieillard (1988) Wagman et al. (1982)
-893.9 | Lalglesia and Felix (1994) Wagman et al. (1982), Woods and
Garrels (1987)
-900.4 | Woods and Garrels (1987) Sangameswar and Barnes (1983)
-900.40 | Vieillard (1988) Sangameshwar and Barnes (1983)
-900.4 | La lglesia and Felix (1994) Sangameswar and Barnes (1983)
-903.7 | Woods and Garrels (1987) Symes and Kester (1984)
-905.0 Woods and Garrels (1986)
-905.0 | Woods and Garrels (1987) Woods and Garrels (1986)
-905.00 | Vieillard (1988) Woods and Garrels (1986)
-898.50 Calculated from the solubility constant
for malachite given by Vieillard (1988,
Table 2)
-899.1 Calculated from reaction paratacamite-
malachite by Vieillard (1988)
-882.9+6.4 Kiseleva et al. (1992)
-896.2 | La lglesia and Felix (1994) Helgeson et al. (1978)
-903.7 | Lalglesia and Felix (1994) Woods and Garrels (1987)
-905.0 | La Iglesia and Felix (1994) Woods and Garrels (1987)
-902.35 | Puigdomenech and Taxén (2000) Kubaschewski et al. (1993)
Predicted -901.4 + 3.6 La lglesia and Felix (1994)
-903.3+1.2 Preis and Gamsjager (2002)
Rosasite Cuy.16ZN.84CO3(OH); -1100.5 Alwan et al. (1980)
Voglite Ca,Cu(UO,)(COs)4*6(H-0) -5791.4 £ 35.0 Hemingway (1982)
Voglite CazCu(UO,)(CO3)4 -4469.0 £ 15.0 Van Genderen and Van der Weijden
(1984)
Synthetic Phases
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Table 4a. Thermodynamic properties of Copper Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of
Formation (Continued)

Mineral AGO Secondary Reference Primary Reference
f.P.T,
Name Formula 1
kJd/gfw

CuCOs CuCOs -516.22 | Kelley and Anderson (1935) Haehnel (1924)

-516.22 Kelley and Anderson (1935)

-517.98 | Latimer (1952) Rossini et al. (1952)?

-517.98 | Zhuk (1954) Rossini et al. (1952), Karapet'yants

(1953)

-517.98 | Karpov et al. (1968) Rossini et al. (1952)
calculated -518.06 Zhuk (1954)

-518.06 | Karapet'yants and Karapet'yants (1970) | Zhuk (1954)

5.02 | Karpov et al. (1968) Kireev (1964)
-519.15 Barin et al. (1973)
-622.42 | Stern (2000) Barin et al. (1977)
-518.3 | Dobrydiev et al. (2005) Ryabin et al. (1977)

monoclinic -528.06 £ 0.25 Reiterer et al. (1981)

-527.27 | Calculated from the solubility constant Reiterer et al. (1981)

for CuCOs given by Vieillard (1988) in
Table 2

-528.20 | Puigdomenech and Taxén (2000) Kubaschewski et al. (1993)
CuC03.K,CO4 CuCO03.K,CO4 -1608.75 | Karapet'yants and Karapet'yants (1970) | Karapet'yants (1955)
CuC03.Na,CO4 CuCO3.Na,CO3 -1579.04 | Karapet'yants and Karapet'yants (1970) Karapet'yants (1955)
KoCu(HCO3)4 KoCu(HCO3)s -2913.9 | Vieillard (1988) Wagman et al. (1982)

@ Formation from the oxides
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Table 4b. Thermodynamic properties of Copper Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

Mineral AH? Secondary Reference Primary Reference
f,P.T,
Name Formula n
kJ/gfw

Minerals

Azurite Cu3(COg3)2(OH), -1629.80 Calculated by Vieillard (1988) from the
enthalpy of reaction AH, = 87.36 kJ mol™
for 3CuO(c) + H,O(l) +2C04(g) = Cus.
(CO3)2(OH),(c) by Roth et al. (1941)

-1627.58 | Naumov et al. (1974) Roth et al. (1941)
1632.18 Wagman et al. (1969)
-1632.180 + 2.000 | Robie et al. (1979) Wagman et al. (1969)
-1632.18 + 2.00 | Radha and Navrotsky (2013) Wagman et al. (1969), Robie et al. (1978)
-1627.6 | Woods and Gatrrels (1987) Naumov et al. (1974)
-1627.6 | La Iglesia and Felix (1994) Naumov et al. (1974), Sangameswar and
Barnes (1983)
-1632.2 | Woods and Garrels (1987) Helgeson et al. (1978)
La Iglesia and Felix (1994) Helgeson et al. (1978)
-1632.2 | Woods and Gatrrels (1987) Robie et al. (1978)
-1632.2 | Woods and Gatrrels (1987) Wagman et al. (1982)
-1632.2 | La Iglesia and Felix (1994) Wagman et al. (1982), Robie et al.
(1978), Helgeson et al. (1978)
-1632.2 £ 2.0 | Robie and Hemingway (1995) Wagman et al. (1982),
-1627.6 | Woods and Garrels (1987) Sangameswar and Barnes (1983)
-1629.5+ 8.3 Kiseleva et al. (1992)

Predicted -1641.6 £5.3 La Iglesia and Felix (1994)

-1675.1+5.1 Preis and Gamsjager (2002)

Chalconatronite Na,Cu(CO3),*3 (H.0) -2609.89 | Vieillard (1988) Wagman et al. (1982)

Juangodoyite Na,Cu(CO3), -1712.5 | Vieillard (1988) Wagman et al. (1982)

Malachite Cu,CO3(OH), -1055.58 Calculated by Vieillard (1988) from the
enthalpy of reaction AH, = 57.66 kJ mol™
for 2CuO(c) + H,O(l) +2C0,(g) = Cu,.
(C0O3)2(OH),(c) by Richardson and Brown
(1974)
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Table 4b. Thermodynamic properties of Copper Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

(Continued)

Mineral AH ?,P, . Secondary Reference Primary Reference
Name Formula n
kJ/gfw
-1048.51 | Naumov et al. (1974) Roth et al. (1941)
-1051.44 Wagman et al. (1969)
-1048.5 | Woods and Garrels (1987) Naumov et al. (1974)
-1048.5 | La lglesia and Felix (1994) Naumov et al. (1974)
synthetic 1053.9+2.1 Richardson and Brown (1974)
-1053.950 + 2.090 | Robie et al. (1979) Richardson and Brown (1974),
-1054 + 2.1 | Robie and Hemingway (1995) Richardson and Brown (1974),
-1053.95 + 2.09 | Radha and Navrotsky (2013) Richardson and Brown (1974), Robie et
al. (1978)
-1054.0 | Woods and Gatrrels (1987) Robie et al. (1978)
-1053.9 | Woods and Garrels (1987) Helgeson et al. (1978)
-1063.9 | La lglesia and Felix (1994) Helgeson et al. (1978)
-1051.4 | Woods and Garrels (1987) Wagman et al. (1982)
-1051.4 | La lglesia and Felix (1994) Wagman et al. (1982)
-1053.9 | Woods and Garrels (1987) Sangameswar and Barnes (1983)
-1046.5+£ 6.0 Kiseleva et al. (1992)
Predicted -1048.6 £ 5.0 La Iglesia and Felix (1994)
-1067.1 £ 3.4 Preis and Gamsjager (2002)
Voglite Ca,Cu(UO,)(CO3)4+6(H,0)
Voglite CazCu(UO,)(CO3)4 -4830.0 Van Genderen and Van der Weijden
(1984)
Synthetic Phases
CuCOs CuCO; -597.48 Kelley and Anderson (1935)

-594.96 | Latimer (1952)

Rossini et al. (1952)?

-594.96 | Zhuk (1954)

Rossini et al. (1952), Karapet'yants
(1953)

-46.02 | Karpov et al. (1968)

Kireev (1964)
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Table 4b. Thermodynamic properties of Copper Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation
(Continued)

Mineral AH? Secondary Reference Primary Reference
f.P.T,
Name Formula n
kJ/gfw
-596.22 | Stern (2000) Barin et al. (1977)
-595.4 | Dobrydiev et al. (2005) Ryabin et al. (1977)
Cu(HCO3), Cu(HCO3), -1347.25 + 62.76 | Estimated value of fictive compound Wilcox and Bromley (1963)
-1347.25 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)
K2Cu(COs),, form 2, B K2Cu(COs), -1733.4 | Vieillard (1988) Wagman et al. (1982)
K2Cu(COs),, form 4, B K2Cu(COs), -1741.8 | Vieillard (1988) Wagman et al. (1982)
K,Cu(CQO3),, form 5, a K2Cu(COs), -1744.3 | Vieillard (1988) Wagman et al. (1982)
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Table 4c. Thermodynamic properties of Copper Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral S gr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
Minerals
Azurite Cuz(CO3)2(OH), 402.50 Naumov et al. (1974)
402.5 | Woods and Garrels (1987) Naumov et al. (1974)
-280.2 | Woods and Garrels (1987) Helgeson et al. (1978)
388.9 Vieillard (1988)
254.4 +3.8 Kiseleva et al. (1992)
254.4 + 3.8 | Robie and Hemingway (1995) Kiseleva et al. (1992)
254.4 | Puigdomenech and Taxén (2000) Kiseleva et al. (1992)
2544+ 3.8 Preis and Gamsjager (2002)
Malachite Cu,CO3(0OH), 186.19 Wagman et al. (1969)
221.75 Naumov et al. (1974)
221.8 | Woods and Garrels (1987) Naumov et al. (1974)
186.2 | Woods and Garrels (1987) Helgeson et al. (1978)
186.2 | Woods and Garrels (1987) Wagman et al. (1982)
188.4 Vieillard (1988)
166.3+2.5 Kiseleva et al. (1992)
166.3 £ 2.5 | Robie and Hemingway (1995) Kiseleva et al. (1992)
166.3 | Puigdomenech and Taxén (2000) Kiseleva et al. (1992)
166.3+ 2.5 Preis and Gamsjager (2002)
Synthetic Phases
CuCOs CuCOs 74.06 Kelley and Anderson (1935)
87.86 | Latimer (1952) Rossini et al. (1952)?
87.86 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
87.86 | Karpov et al. (1968) Rossini et al. (1952)
estimate 92.05+4.18 Kelley and King (1961)
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Table 4c. Thermodynamic properties of Copper Carbonate Minerals and Synthetic Solid Carbonates: Entropies (Continued)

Mineral S gr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
calculated 88.70 Zhuk (1954)
88.70 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
92.05 +4.18 | Karpov et al. (1968) Kelley and King (1961)
92.05 | Karapet'yants and Karapet'yants (1970) Kelley and King (1961)
87.86 | Stern (2000) Barin et al. (1977)
87.9 | Puigdomenech and Taxén (2000) Kubaschewski et al. (1993)
@ Formation from the oxides
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Table 5. Crystallographic Properties of Copper Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference
Minerals
1 | Astrocyanite-Ce) Cu,(Ce,Nd,La)2(UO2)(CO3)s(OH),+1.5(H,0) Gaines et al. (1997), Deliens and Piret (1990)
2 Aurichalcite Zn373CU2.27(C0O3)2(OH)s Gaines et al. (1997)
3 Aurichalcite ZN373CU2.27(C0O3)2(OH)s Harding et al. (1994)
4 Aurichalcite ZN3.33CU2.62(CO3)2(OH)s Giester and Rieck. (2014)
5 Azurite Cuz(CO3)2(0OH), Gaines et al. (1997)
6 Azurite Cus(COs3)2(OH), Mineralogy Database (http://webmineral.com/)
7 | Azurite Cu3(COg3)2(OH), RRUFF ID: R050497.1, Mineralogy Database
(http://webmineral.com/)
Azurite Cu3(CO3)2(0OH), Belokoneva et al. (2001)
9 Caledonite PbsCu,CO3(S0,4)3(OH)s Gaines et al. (1997)
10 | Caledonite PbsCu,C0O3(S0,4)3(OH)s Mineralogy Database (http://webmineral.com/)
Name Cell Constants Space vo*
ao, A be, A Co, A a,° B,° 7° 7 Group cm?® gfw™
Minerals
1 Astrocyanite-(Ce) 14.96 26.86 12 P 6/mmm 261.26
2 Aurichalcite 13.82 6.419 5.29 101.04 2 P2:/m 138.69
3 Aurichalcite 13.82 6.419 5.29 101.04 2 P2:/m 138.69
4 | Aurichalcite 13.790(2) 6.414(2) 5.266(1) 100.99(1) 2 P2/m 137.68
5 Azurite 5.00 5.85 10.36 92.33 2 P2,/a 91.169
6 Azurite 5.008 5.844 10.336 92.333 2 P2,/a 91.010
7 | Azurite 5.0095(2) | 5.8455(2) 10.3441(5) 92.420(3) 2 P2,/a 91.126
8 Azurite 5.010 5.850 10.353 92.41 2 P2,/a 91.285
9 Caledonite 20.089 7.146 6.560 2 Pmn2; 283.56
10 Caledonite 20.088 7.143 6.564 2 Pmn2; 283.60
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Name Formula Reference

11 | Caledonite PbsCu,C0O3(S0,4)3(OH)s Schofield et al. (2009)

12 | Callaghanite Cu;Mg,(COg3)(OH)e*2(H,0) Gaines et al. (1997)

13 | Callaghanite Cu;Mg,(COg3)(OH)e*2(H,0) Brunton (1973)

14 | Carrboydite Nis 50CU0.40Al1.80(SO4)2.30(CO3)0.4s(OH)21.69°3.67(H20) Nickel and Clarke (1976)

15 | Carrboydite Ni13Cu;Alg(SO4)4(CO3)2(OH)43¢7(H,0), assumed Gaines et al. (1997)

16 | Carrboydite Ni1oCU4Alg(SO4)4(CO3)2(OH)43¢7(H20) Mineralogy Database (http://webmineral.com/)

17 | Chalconatronite Na,Cu(CO3),*3 (H.0) Gaines et al. (1997)

18 | Chalconatronite Na,Cu(CO3),*3 (H.0) Mukhopadyhay and Bernal (2004)

19 | Claraite CupZn(CO3)(OH)4#4(H20) Gaines et al. (1997)

20 | Claraite CupZn(CO3)(OH)4#4(H20) Mineralogy Database (http://webmineral.com/)

Name Cell Constants Space vo*
ao, A b, A Co, A o, ° B, ° e 7 Group em® gfw?

11 Caledonite 20.085 7.141 6.563 2 Pmn2; 286.44
12 Callaghanite 10.06 11.8 8.24 107.3 4 C2/c 140.60
13 Callaghanite 10.0060 11.7520 8.2132 107.38 4 C2/c 138.77
14 Carrboydite 9.14 10.34 1 hex 450.05
15 Carrboydite 9.14 10.34 1/2 hex 901.00
16 | Carrboydite 18.28 20.68 4 hex 901.00
17 Chalconatronite 13.72 6.12 9.7 91.3 4 P2:/n

18 | Chalconatronite 9.6933(3) | 6.0296(2) 13.7863(4) 91.908(2) 4 P2:/n 121.24
19 | Claraite 26.22 21.56 66 P1orp-1 117.13
20 Claraite 14.28 8.03 7.27 79.16 107.9 99.68 4 P1or p-1 116.48
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Name Formula Reference

21 | Claraite (Cu2.6ZN0.4)(CO3)(OH)4+4(H,0) Walenta and Dunn (1982), Walenta (1999)

22 | Georgeite (amorph) | Cu"5(CO3)s (OH)4*6(H20) Gaines et al. (1997)

23 | Glaukosphaerite Cuy sNig5(CO3)(OH), Gaines et al. (1997)

24 | Glaukosphaerite Cuy sNig5(CO3)(OH), Mineralogy Database (http://webmineral.com/)

25 | Glaukosphaerite Cuy sNig5(CO3)(OH), Perchiazzi and Merlino (2006)

26 | Juangodoyite Na,Cu(CO3), Gaines et al. (1997)

27 | Juangodoyite Na,Cu(CO3), Maslen et al. (1986)

28 | Kolwezite Cu;.34C00.66(CO3)(OH), Deliens and Piret (1980), Gaines et al. (1997)

29 | Malachite Cu,CO3(0OH), Zigan et al. (1977)

30 | Malachite Cu,CO3(0OH), Gaines et al. (1997)

Name Cell Constants Space vo*
ao, A be, A Co, A a,° B,° 7,° 7 Group cm?® gfw™

21 Claraite 14.28 8.03 7.27 79.16 107.9 99.68 4 P1or p-1 116.54
22 Georgeite (amorph) - - - - - - - - -
23 | Glaukosphaerite 9.35 11.97 3.13 96.0 4 P2,/a 52.451
24 | Glaukosphaerite 9.34 11.93 3.07 90.0 4 P2,/a 51.501
25 | Glaukosphaerite 12.0613 9.3653 3.1361 90.085 4 P2,/a 53.333
26 Juangodoyite 6.171 8.171 5.645 116.23 2 P2,/a 76.883
27 | Juangodoyite 6.170(2) 8.171(2) 5.648(2) 116.24(1) 2 P2,/a 76.905
28 Kolwezite 9.50 12.15 3.189 93.32 90.74 91.47 4 P1 or p-1 55.301
29 Malachite 9.502 11.974 3.240 98.75 4 P2,/a 54.854
30 | Malachite 9.48 12.03 3.21 98. 4 P2i/a 54.579
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Name Formula Reference

31 | Malachite Cu,CO3(0OH), Mineralogy Database (http://webmineral.com/)

32 | Mcguinnessite (Mg, Cu),(CO3)(OH), Gaines et al. (1997)

33 | Mcguinnessite (Mg, Cu),(CO3)(OH), Perchiazzi (2006)

34 | Nakauriite (Cu)s(S04)4(CO3)(OH)6+48(H,.0) Suzuki et al. (1976)

35 | Nakauriite (Cu)s(S04)4(CO3)(OH)6+48(H,.0) Peacor et al. (1982)

36 | Rosasite Cu1.16ZN0 84CO3(OH), Gaines et al. (1997)

37 | Rosasite CU1.16ZN0 84CO3(OH), Mineralogy Database (http://webmineral.com/)

38 | Rosasite Cu1.16ZN0.84CO3(0OH), (assumed) Perchiazzi (2006)

39 | Roubaultite Cuz(UO2)3 (CO3)202(0OH),#4(H,0) Ginderow and Cesbron (1985)

40 | Roubaultite Cuz(UO2)3 (CO3)202(0OH),#4(H,0) RRUFF ID: R080131.9, Mineralogy Database

(http://webmineral.com/)
Name Cell Constants Space Vo
ao, A bo, A Co, A a,° B, ° y,° Group cm?® gfw™
31 Malachite 9.502 11.974 3.240 98.75 P2,/a 54.854
32 Mcguinnessite 9.398 12.011 3.379 93.28 P2/a or 57.330
P2./a
33 Mcguinnessite 12.9181 9.3923 3.1622 111.233 4 P2./a
34 Nakauriite 14.585 11.47 16.22 2 Orthorh. 817.04
35 Nakauriite 9.62{1} 6.231(6) 7.857(8) 111.82(7) 1/3* P? 790.00
36 Rosasite 9.366 12.116 3.127 90.06 4 P2,/m or 53.423
P2,
37 Rosasite 12.873 9.354 3.156 110.36 4 P2./a 53.641
38 Rosasite 12.8976(3) 9.3705(1) 3.1623(1) 110.262(3) 4 P2./a 53.980
39 Roubaultite 7.767 6.942 7.85 92.16 90.89 93.48 1 P-1 254.20
40 Roubaultite 7.765(2) 6.915(2) 7.840(2) 92.31(2) 90.89(2) 93.48(2) 1 triclin 252.80
Copper 130



http://webmineral.com/data/Malachite.shtml
http://webmineral.com/data/Malachite.shtml
http://webmineral.com/data/Malachite.shtml
http://webmineral.com/data/Malachite.shtml
http://webmineral.com/data/Malachite.shtml
http://webmineral.com/data/Malachite.shtml

rreeees |1

BERKELEY LAB

Name Formula Reference

41 | Schulenbergite (Zn,Cu)7(S04)15(CO3)0.5(0OH)10°3(H20) Gaines et al. (1997)

42 | Zn-Schulenbergite ZNnsCuU(S04)1.5(CO3)0.5(OH)10°3(H20) Ohnishi et al. (2007)

43 | Tyrolite CaCus(AsO4)2(CO3)(OH)4+6H,0 Gaines et al. (1997)

44 | Tyrolite CaCus(AsO4)2(CO3)(OH)4#6(H20) Guillemin (1956)

45 | Clinotyrolite CayCug(ASO4)3.5(SO4)0.3(CO3)(OH)g 9¢10.3(H,0) Gaines et al. (1997)

46 | Tyrolite-1M [Ca,Cug(ASO4)4(OH)s(CO3)(H20)11]*x(H20), x = 0.1 Krivovichev et al. (2006)

47 | Tyrolite-2M [Ca,Cug(ASO4)4(OH)s(CO3)(H20)11]*x(H20), x = 0.1 Krivovichev et al. (2006)

48 | Voglite CazCu(U0,)(CO3)426(H.0) Piret (1979)

49 | Zincrosasite (Zn,Cu)2(CO3)(CH)2 Mineralogy Database (http://webmineral.com/)

Name Cell Constants Space vo*
a0, A bo, A Co A a° B,° 1 z Group cm® gfw™*
41 Schulenbergite 8.249 7.183 1 P3 or P-3 254.91
42 Zn-Schulenbergite 8.292 7.271 1 hex 260.73
43 | Tyrolite 10.50 54.71 5.59 8 Pmma 241.73
44 | Tyrolite 10.212 55.510 5.602 8 Pmma 239.05
45 | Clinotyrolite 10.513 5.56 27.61 94.0 2 P2/a 484.76
46 | Tyrolite-1M 27.562(3)2 | 5.5682(7) | 10.4662(15) 98.074(11) 2 P2/c 478.86
47 | Tyrolite-2M 54.520(6) | 5.5638(6) | 10.4647(10) 96.432(9) 4 C2/c 474.90
48 | Voglite 25.97 245 10.7 104. 16 P2, or 248.63
P2:/m
49 Zincrosasite - - - - - - - P2i/a -
(mono)
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Name Formula Reference
Synthetic Phases
50 | CuCOs; CuCOs; Seidel et al. (1974)
51 | CuCOs; CuCOs; Pistorius (1960)*
52 | TICu(OH)CO;3 TICu(OH)CO4 Adam and Zheng (1994)
53 | TI,Cu(COs), TI,Cu(COs3), Ehrhardt et al. (1981)
54 | CugAl,(OH)3COs CuUsAl(OH)16CO3 Frost et al. (2009)
Name Cell Constants Space vo*
a0, A bo, A Co A a° B, ° 1 z Group cm’ gfw™*
Synthetic Phases
50 CuCOs3 6.092 4.493 7.030 101.34 4 Pa-C% 28.404
51 | CuCOs; 4.796(5) 15.48(1) 6 R3c 30.950
52 | TICu(OH)CO; 10.849(1) 6.118(1) 6 P6s/m 62.592
53 | TLCU(COs), 7.583(1) 9.799(1) 9.119(1) 111.51(1) 4 P2,/c 94.911
54 | CugAly(OH)16COs

*Note: Purported rhombohedral form of CuCOjs identifed on the basis of an XRD pattern alone, whose “...rhombohedral lattice [had] nearly the same dimensions as
siderite”

#Calculated from cell constants, this work.
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Table 6. Carbonate Minerals containing greater than 10 wt.% Copper

Name Formula Copper, gfw Thermodynamic
wt.% Data
Est. Meas.
Ashburtonite HPb,Cu"4Si,012(HCO3)4(OH).Cl 34.43 | 1735.88 no no
Astrocyanite-(Ce) Cuy(Ce,Nd,La),(UO,)(CO3)s(OH),#1.5(H,0) 32.37 951.38 no no
Aurichalcite (Zn,Cu)s(C0O3)2(OH)s 34.00 546.71 no yes
Azurite Cus (COs3)2(0OH), 55.31 344.67 no yes
Caledonite PbsCu,(CO3)(SO4); (OH)e 14.64 | 1613.34 no yes
Callaghanite Cu;Mg2(CO3)(OH)s*2(H.0) 55.31 373.79 no no
Camerolaite CusAlx[HSbO4,S0O4](OH)10(CO3)*2(H.0) 57.48 738.34 no no
Carbonatecyanotrichite | Cu"4Al(CO3S0,)(OH)12*2(H-0) 40.96 | 62053 | no no
Carrboydite (Ni,Cu)14Alg(SO4,C03)6(OH)43 *7(H20) 22.41 | 2445.61 no no
Chalconatronite Na,Cu(CO3),*3(H,0) 42.93 283.59 no yes
Claraite (Cu,Zn)3(CO3)(OH)4+4(H20) 49.66 392.58 no no
Decrespignyite-(Y) (Y,REE)4Cu(C03),CI(OH)s+2(H,0) 15.36 867.49 no no
Ferrisurite (Pb,Cu)2-3(CO3)1.5-2(OH,F)o 5.1[(Fe,Al)2Si4010(OH),]*n(H.0) 10.63 914.93 no no
Gartrellite Pb(Cu,Fe++),(As04,S04)2(CO3 H20)0.7 37.52 620.46 no no
Georgeite CU"5(CO3)3(OH)4*6(H,0) 49.66 | 639.86 | no no
Glaukosphaerite (Cu,Ni)z(CO3)(OH), 43.59 218.69 no no
Juangodoyite Na,Cu(COs3), 43.59 229.51 no yes
Kolwezite (Cu,Co0),(CO3)(0OH), 39.05 218.07 no no
Malachite Cuz(CO3)(OH), 57.48 221.12 no yes
Mcguinnessite (Mg,Cu),(CO3)(OH), 39.05 162.25 no no
Nakauriite (Cu)s(S0O4)4(CO3)(OH)e+48(H,0) 10.39 no no
Numanoite CayCuB404(0OH)s(CO3)2 19.58 573.17 no no
Paratooite-(La) REE; (Ca,Sr);NaCu(COs)s 13.36 | 2146.77 no no
Rosasite (Cu,Zn),(CO3)(OH) 42.93 222.04 no yes
Roubaultite CU(UO3)3(CO35)202(OH)2#4(H,0) 27.13 | 119527 | no no
Schulenbergite (Cu,Zn)7(S04,CO3)2(0OH) 41023 (H,0) 37.52 846.73 no no
Schuilingite-(Nd) PbCu(Nd,Gd,Sm,Y)(CO3)s(OH)+1.5(H,0) 21.33 | 696.16 | no no
Surite (Pb,Cu)25(CO3)1.52(OH, F)o.s1[(Al,Fe")2(Si,Al)4O16(OH)2]en(H-0) 1453 | 937.16 | no no
Tyrolite CaCus(AsO4)2(CO3)(OH)4+6(H20) 36.45 871.78 no no
Voglite CaCu(U0,)(CO3)4+6(H20) 14.91 761.86 yes no
Zincrosasite (Zn,Cu),(CO3)(0OH), 40.96 223.42 no no
Zn-Schulenbergite (Zn,Cu)7(S0O4,C0O3)2(OH)410°3 (H20) 36.45 852.26 no no

Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System FeO/Fe,03-CO,-H,0

Association Constant Reaction Log KW AH? Comments Secondary Reference Primary Reference
RP,T,
kJ
Fe(ll)
Fe®* + CO5* = FeCOs(aq) 4.83 - Nordstrom et al. (1990) Langmuir (1969)
6.57 Estimate Mattigod and Sposito
(1977)
6.57 FeHCOs", FeCOs(aq), Fe(COs),”, | Fosbal et al. (2010) Mattigod and Sposito
FeOH",Fe(OH),(aq), Fe(OH)s', (1977)
Fe(OH),*
4.00 - Fouillac and Criaud (1984) Serebrennikov (1977)
4 FeHCOs", FeCOs(aq) Fosbgl et al. (2010) Serebrennikov (1977)
4.73 FeCOs(aq), FeOH', Fe(OH),(aq), | Fosbgl et al. (2010) Turner et al. (1981)
Fe(OH)s, Fe(OH),*
4.73 -0.29 | Estimate Fouillac and Criaud (1984)
4.73 25°C,1=0 Wersin et al. (1989) Fouillac and Criaud (1984)
4.73 FeHCO;", FeCOs(aq) Fosbgl et al. (2010) Fouillac and Criaud (1984)
4.38 FeHCOs", FeCOs(aq), FeOH" Fosbagl et al. (2010) Nordstrom et al. (1990)
55+0.2 - Bruno et al. (1992) Bruno et al. (1992)
5.45 - Millero and Hawke (1992) Bruno (personal
Also cited by Millero et al. communication)
(1995)
5.69 - | Re-evaluation of data King (1998) Bruno et al. (1992)
59+0.2 - | Re-evaluation of data, in NaClO, | Silva et al. (2002) Bruno et al. (1992)
soln.
5.5 FeCOs(aq), Fe(COs).”, Fosbgl et al. (2010) Bruno et al. (1992)
5.45 FeHCOs", FeCOs(aq), Fe(COs),”, | Fosbal et al. (2010) Millero and Hawke (1992)
FeOH", Fe(OH)2(aq)
5.3 - Preis and Gamséager (2002) | Source not cited
5.3 FeCOs(aq), Fe(COs),” Fosbgl et al. (2010) Preis and Gamsja“'ger 2002
6.3+0.2 - | Sol., in NaCl soln. Silva et al. (2002)
6.3 FeCOs(aq) maybe more Fosbgl et al. (2010) Silva et al. (2002)
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System FeO/Fe,0;-CO,-H,O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.PT,
kJ
Fe® + CO,(g) + H,O = FeCO4(aq) + 2H" -12.9+0.12 - | 1 M NaClO,4 Bruno et al. (1992)
Fe® + 2C0O4” = Fe(COs5),” 9.51 Estimate Mattigod and Sposito
(2977)
9.51 FeHCOs", FeCOs(aq), Fe(COs),”, | Fosbal et al. (2010) Mattigod and Sposito
FeOH',Fe(OH),(aq), Fe(OH)s, (1977)
Fe(OH),*
7.1+0.2 - Bruno et al. (1992)
7.17 - Millero and Hawke (1992) Bruno (personal
communication)
7.45 - | Re-evaluation of data King (1998) Bruno et al. (1992)
7.16 - Millero et al. (1995) Millero and Hawke (1992)
7.1 - | Source not cited Preis and Gamsjager
(2002)
7.1 FeCOs(aq), Fe(COs),”, Fosbgl et al. (2010) Bruno et al. (1992)
7.17 FeHCOs", FeCOs(aq), Fe(COs),”, | Fosbal et al. (2010) Millero and Hawke 1992
FeOH", Fe(OH)(aq)
7.1 FeCOs(aq), Fe(COs),” Fosbgl et al. (2010) Preis and Gamsja“'ger
(2002)
Fe®* + 2C0,(g) + 2H,0 = Fe(COs),> + 4H" -28.4+0.10 - | 1 M NaClO,4 Bruno et al. (1992)
Fe®* + COs” + H" = FeHCO;' 12.50 -10.55 | Estimate Fouillac and Criaud (1984)
12.3* - Nordstrom et al. (1990) Fouillac and Criaud (1984)
11.78* - Millero and Hawke (1992)
11.80* - Millero et al. (1995) Millero and Hawke (1992)
Fe? + HCOs = FeHCOs" 2.05 Estimate Mattigod and Sposito
(1977)
2.05 FeHCOs", FeCOs(aq), Fe(COs),”, | Fosbal et al. (2010) Mattigod and Sposito
FeOH",Fe(OH),(aq), Fe(OH)s', (1977)
Fe(OH),*
2 FeHCOs", FeCOs(aq) Fosbgl et al. (2010) Serebrennikov (1977)
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System FeO/Fe,0;-CO,-H,O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P,T,
kJ
1-15 0.1 M NaCl? Johnson and Bauman
(1978)
1-15 Palmer and Van Eldik Johnson and Bauman
(1983) (1978)
2.0 25°C,1=0 Wersin et al. (1989) Fouillac and Criaud (1984)
2.17 FeHCOs", FeCOs(aq) Fosbgl et al. (2010) Fouillac and Criaud (1984)
2 FeHCOs", FeCOs(aq), FeOH" Fosbgl et al. (2010) Nordstrom et al. (1990)
1.47 FeHCOs", FeCOs(aq), Fe(COs),”, | Fosbal et al. (2010) Millero and Hawke (1992)
FeOH", Fe(OH)(aq)
Fe®" + COs¥ + OH = FeCO;0H 9.97 Re-evaluation of data King (1998) Bruno et al. (1992)

Fe(lll)

2Fe® + 3H,0 + 3CO5” = Fe,(OH)5(CO3)s> + 3H"

Evidence for the existence of.
Preparative, Sol., Sat. (NH,).CO3

Krishnamurty et al. (1970)

Zvyagintsev and Lopatto
(1962)

4Fe® + 3H,0 + 6C0O3> = Fe,045(CO3)s” + 6H"

Evidence for the existence of.
Preparative, Sol., Sat. (NH,),CO;

Krishnamurty et al. (1970)

Zvyagintsev and Lopatto
(1962)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

* Equation recast using bicarbonate dissociation equation from PHREEQC
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Table 2. Solubility Constants of Solid Carbonates in the System FeO/Fe,03;-CO,-H,O

Solubility Constant Reaction Log K® AH g o Comments Secondary Reference Primary Reference
kJ
Minerals
Fe(ll)
Siderite
FeCO;s(cr) = Fe*" + COs>
10.46 - | 30°C. Uncorrected for complex Smith (1918)
speciation and lonic strength
-10.503 - Kelley and Anderson (1935) | Smith (1918)
-10.55 - | 30°C, recalculation Bénézeth et al. (2009) Smith (1918)
10.46 - | 25°C. Braun (1991) Smith (1918)
-10.65 + 0.03 - | 30°C, Sol. Langmuir (1969) Smith (1918)
-10.57 + 0.03 - | 25°C, Sol. Langmuir (1969) Smith (1918)
-10.89 -10.38 Nordstrom et al. (1990) Smith (1918)
-10.46 30°C Fosbgl et al. (2010) Smith (1918)
18°C. Solubility = 0.072 and Haehnel (1924)
0.077% at P(CO;) = 1 and 56
atm., respectively
-9.57 18°C Fosbgl et al. (2010) Tillmans and Klarmann
(1924)
-10.67, -10.5 30°C Fosbgl et al. (2010) Kelley and Anderson (1935)
-10.676 - | Review. No correction for activity Kelley and Anderson (1935)
coefficients
-10.68 In agreement with Kelley and Latimer (1952)
Anderson (1935)
-10.68 Not reported Jensen et al. (2002) Latimer (1952)
-10.68 -19.37 Fosbgl et al. (2010) Latimer (1952)
-10.68 - Zhuk (1954) Goskhimizdat (1952)
-10.67 Fosbgl et al. (2010) Robie and Waldbaum
(1968)
-10.69 21.05 | Thermodynamic calculations Helgeson (1969)
-10.70 - Braun (1991) Helgeson (1969)
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Table 2. Solubility Constants of Solid Carbonates in the System FeO/Fe,05;-CO,-H,0 (Continued)

Solubility Constant Reaction Log K® AHg - Comments Secondary Reference Primary Reference
kJ
-10.69 -21.05 Fosbgl et al. (2010) Helgeson (1969)
-10.55 - Preis and Gamsjager Langmuir (1969)
(2002)
-10.55+0.03 | -25.2+3.1 | Sol. Langmuir (1969)
-10.45 Naumov et al. (1974) Langmuir (1969)
-10.55 -25.20 | FeOH'", Fe(OH),(aq), Fe(OH)s, Fosbgl et al. (2010) Langmuir (1969)
Fe(OH),
-10.45 Precipitated. See note Nordstrom et al. (1990), Singer and Stumm (1970)
-10.24 - by Braun (1991) Singer and Stumm (1970)
-10.24 - Bénézeth et al. (2009) Singer and Stumm (1970)
-10.24 -19.37 Fosbgl et al. (2010) Singer and Stumm (1970)
-10.7 - | Calculated from DG data by Emerson (1976)
Berner (1967)
-10.7 -1 1=0 Palmer and Van Eldik Smith and Martell (1976)
(1983)
-10.68 Fosbgl et al. (2010) Martell and Smith (1976)
-10.54 FeHCO;", FeCOs(aq), Fosbgl et al. (2010) Serebrennikov (1977)
-10.40 + 0.05 - | 20°C. Sol. Bardy and Péré (1978)
-10.46 - | Sol., extrapolated to 25°C Bardy and Péré (1978)
-10.37 - | based on regression of data Haarberg et al. (1990) Bardy and Pere (1976),
Wagman et al. (1982) and
Greenberg and Tomson
(1992)
-10.40 20°C. Sol. Braun (1991) Bardy and Péré (1978)
-10.40 - | 20°C. Sol. Bénézeth et al. (2009) Bardy and Péré (1978)
-10.46 Fosbgl et al. (2010) Bardy and Pe” re” (1976)
-10.99 Suess (1979) Murray et al. (1978)
-10.5 -29.26 Fosbgl et al. (2010) Robie et al. (1978)
-10.5 -25.67 | FeOH+ Fosbgl et al. (2010) Wagman et al. (1982)
-10.45 Precipitation from supersaturated | Jensen et al. (2002) Nordstrom et al. (1990),

solutions

Singer and Stumm (1970)
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Table 2. Solubility Constants of Solid Carbonates in the System FeO/Fe,05;-CO,-H,0 (Continued)

Solubility Constant Reaction Log K& AH? Comments Secondary Reference Primary Reference
R,P.T,
kJ
-10.89 Resuspension of wet crystals Jensen et al. (2002) Nordstrom et al. (1990),
Smith (1918)
-10.45 -10.38 | FeHCO;", FeCOs(aq), FeOH+ Fosbgl et al. (2010) Nordstrom et al. (1990)
-10.91 Fosbgl et al. (2010) Reiterer (1980)
-11.20 Resuspension of dry crystals Jensen et al. (2002) Reiterer et al. (1981)
-10.6 Fosbgl et al. (2010) Robie et al. (1984)
-10.60 - | Recalculation from Smith (1918) Bénézeth et al. (2009) Robie et al. (1984)
and Langmuir (1969)
-10.56 -22.8 | FeHCO;", FeCOs(aq), Fosbgl et al. (2010) Greenberg (1986)
FeOH+,Fe(OH),(aq)
-10.605, -22.9 | FeHCO;', FeCOs(aq), Fosbgl et al. (2010) Greenberg and Tomson
-10.58 FeOH+,Fe(OH)2(aq) (1986)
-10.37 Fosbgl et al. (2010) Haarberg et al. (1990)
-11.0 - | Sol. Braun (1991)
-10.99 Resuspension of crystals Jensen et al. (2002) Braun (1991)
-11.11 - | 30°C Bénézeth et al. (2009) Braun (1991)
-10.98 - | 25°C, | = 0. Temperature Sun et al. (2009) Braun (1991)
extrapolation
-10.99 Fosbgl et al. (2010) Braun 1991
-10.45 -30.14 | FeHCOs', FeOH" Fosbgl et al. (2010) Johnson and Tomson
(1991)
-10.8+0.2 - Bruno et al. (1992)
-10.80 Resuspension of dry crystals Jensen et al. (2002) Bruno et al. (1992)
-10.8 FeCOs(aq), Fe(COs),* Fosbgl et al. (2010) Bruno et al. (1992)
-10.78 £ 0.01 -9.46 + 2. Greenberg and Tomson
(1992)
-10.78 25°C, | = 0. Temperature Sun et al. (2009) Greenberg and Tomson
extrapolation (1992)
-10.77 Precipitation from supersaturated | Jensen et al. (2002) Greenberg and Tomson
solutions (1992)
-10.78 -9.46 | FeHCO;', FeCOs(aq), FeOH" Fosbgl et al. (2010) Greenberg and Tomson

(1992)
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Table 2. Solubility Constants of Solid Carbonates in the System FeO/Fe,05;-CO,-H,0 (Continued)

Solubility Constant Reaction Log K® AHg - Comments Secondary Reference Primary Reference
kJ
-11.0--11.2 FeHCO;", FeCO;(aq), FeOH" Fosbgl et al. (2010) Ptacek (1992)
-11.06 £ 0.13 - | <0.01->6 M NacCl Ptacek and Reardon (1992)
-11.08 £ 0.12 - |,0.01->2.2 M Na;SO, Ptacek and Reardon (1992)
-10.93 Resuspension of wet crystals Jensen et al. (2002) Ptacek and Reardon (1992)
-10.93 - Bénézeth et al. (2009) Ptacek and Reardon (1992)
-11.06 FeHCO;", FeCO;(aq), FeOH" Fosbgl et al. (2010) Ptacek and Reardon (1992)
-11.03 £ 0.26 - Ptacek and Blowes (1994)
-11.03 Resuspension of wet crystals Jensen et al. (2002) Ptacek and Blowes (1994)
-11.03 - Bénézeth et al. (2009) Ptacek and Blowes (1994)
-11.03 -10.38 | FeHCOs", FeCOs(aq), FeOH" Fosbgl et al. (2010) Ptacek and Blowes (1994)
-11.53 -10.4 | Unknown Fosbgl et al. (2010) Robie and Hemingway
(1995)
-10.66 Unknown speciation Fosbgl et al. (2010) Garber et al. (1996)
-10.8+0.2 - | Literature review Grauer (1999)
-10.8 FeCOs(aq), Fe(COs),* Fosbgl et al. (2010) Grauer (1999)
-11.03 £ 0.10 - | dried crystals Jensen et al. (2002)
-10.43£0.15 - | wet crystals Jensen et al. (2002)
-11.03 - | dried crystals Bénézeth et al. (2009) Jensen et al. (2002)
-10.43 - | wet crystals Bénézeth et al. (2009) Jensen et al. (2002)
-11.03, FeHCOs", FeCOs(aq), maybe Fosbgl et al. (2010) Jensen et al. (2002)
-10.43 FeOH"
-10.59 + 0.10 - | After work by other investigators Preis and Gamsjager
(2002)
-10.59 -13.23 | FeCOs(aq), Fe(COs),” Fosbgl et al. (2010) Preis and Gamsjager
(2002)
-10.90 - Bénézeth et al. (2009) Silva et al. (2002)
-10.90 + 0.15 - Silva et al. (2002)
-10.90 25°C, ionic strength extrapolation | Sun et al. (2009) Silva et al. (2002)
-10.9 FeCO3(aq) maybe more Fosbgl et al. (2010) Silva et al. (2002)
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Table 2. Solubility Constants of Solid Carbonates in the System FeO/Fe,05;-CO,-H,0 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.PT,
kJ
-11.06 FeCOs(aq), FeOH" Fosbgl et al. (2010) Marion et al. (2003)
-10.59 Unknown Fosbgl et al. (2010) Sun and Nesic (2004)
-10.90 - Bénézeth et al. (2009)
-10.89 25°C, 1 =0. Ave. of 9 Sun et al. (2009) Smith (1918), Latimer
independent studies from (1952), Braun (1991),
literature Bruno et al. (1992),
Greenberg and Tomson
(1992), Ptacek and
Reardon (1992), Ptacek
and Blowes (1994), Jensen
et al. (2002), Silva et al.
(2002),
-10.89 - | 25°C, | = 0. Temperature Sun et al. (2009)
extrapolation
FeCOs(cr) + H+ = Fe?" + HCO5 -0.23 25°C,1=0 Wersin et al. (1989) Langmuir (1969)
FeCOs(cr) + 2H+ = Fe** + CO,(g) + H,0 8.58 -] 25°C,1=0 Gamsjager (1974) Latimer (1952), Larson et
al. (1968)
7.47 - | 25°C,1=0 Gamsjager (1974) Latimer (1952), Randall and
Frandsen (1932)
7.61 £0.04 50°C, 1 M NaClOy, Gamsjager (1985) Reiterer (1980)
7.61 £ 0.05 - | 50°C and | = 1.0 mole/kg NaClO, Reiterer et al. (1981)
7.61 - | 50°C Braun (1991) Reiterer et al. (1981)
7.59 - | 1 M NaClO4 Bruno et al. (1992)
7.56 -17.3 Preis and Gamsjager
(2001)
Fe(ll)
Hydrotalcite-CO3 (-Pyroaurite)
Mg3A|0,396Feo.097(CO3)0,33e(oH23.305'2.51(H20) = -68.76 £ 3.55 SOlUblllty Rozov et al. (2010)

3Mg®" + 0.896A1" + 0.097Fe”" + 0.336CO5> +
8.305(0H)" + 2.51H,0
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Table 2. Solubility Constants of Solid Carbonates in the System FeO/Fe,05;-CO,-H,0 (Continued)

Solubility Constant Reaction

Log K®

AH®

RP.T,
kJ

Comments

Secondary Reference

Primary Reference

MgBA|0.827FeO.lQZ(COS)O.SBG(OH27-987'2-62(H20) =
3Mg®" + 0.827AF" + 0.192Fe”" + 0.536CO5> +
7.987(OH)" + 2.62H,0

-67.79 + 3.62

Solubility

Rozov et al. (2010)

Mg3A|0.802Feo.zos(cos)0.537(oH27-946'2-67(H20) =
3Mg®" + 0.802AF" + 0.205Fe” + 0.537CO5> +
7.946(0H)" + 2.67H,0

-71.61+3.75

Solubility

Rozov et al. (2010)

Mg3A|0.895Feo.304(co3)0.481(oH28-034'2-52(H20) =
3Mg®* + 0.695A1" + 0.304Fe + 0.481CO5> +
8.034(0H) + 2.52H,0

-70.83 +3.61

Solubility

Rozov et al. (2010)

MQ3A|0.825Feo.394(coa)o.553(oH27-95'2-50(H202 =
3Mg®* + 0.625A1*" + 0.394Fe + 0.553C05* +
7.950(0H)" + 2.50H,0

-68.7 + 3.65

Solubility

Rozov et al. (2010)

Mg3A|0.502FeO.A%(COS)O.SGl(OH28-276'2-45(H20) =
3Mg®" + 0.502AF" + 0.496Fe”" + 0.361CO5> +
8.276(0H)" + 2.45H,0

—-69.25 + 3.63

Solubility

Rozov et al. (2010)

Mg3A|0.415FeO.GIQ(CO3)O.531(OHg8-039'2-47(H20) =
3Mg®" + 0.415AF" + 0.619Fe” + 0.531CO5> +
8.039(0H) + 2.47H,0

-69.51 +3.74

Solubility

Rozov et al. (2010)

Mg3A|0.299FeO.7O3(CO3)O.248(OH28-509'2-55(H20) =
3Mg®* + 0.299A1" + 0.619Fe + 0.248C0O5> +
8.509(0H) + 2.55H,0

-70.09 + 3.68

Solubility

Rozov et al. (2010)

Mg3Alo.207F€0.839(CO3)0.491(OH)g.15722.55(H20) =
3Mg®* + 0.207A1" + 0.839Fe” + 0.491CO5> +
8.157(OH)" + 2.55H,0

-70.23 +3.81

Solubility

Rozov et al. (2010)

Mg3A|0.108FeO.QOZ(COS)O.SAZ(OH28-344'2-64(H20) =
3Mg®" + 0.108AF" + 0.902Fe”" + 0.342C05> +
8.334(0H)" + 2.64H,0

-70.38 + 3.53

Solubility

Rozov et al. (2010)

Mg3Fe1_085gCO3)0_343(OH)8.57o'2.15(H20) = 3'\/|g2+
+1.086Fe> + 0.343CO;* + 8.570(0H) +
2.15H,0

=72.36 +3.99

Solubility

Rozov et al. (2010)

Synthetic Phases

Fe(ll)

Fe(lll)

Fe—monocarbonate
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Table 2. Solubility Constants of Solid Carbonates in the System FeO/Fe,05;-CO,-H,0 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.PT,
kJ
Cay[Fe(OH)g]2(CO3)*6(H,0) = 4Ca* + 2Fe(OH), -35.5+0.3 - | Solubility, - Moschner et al. (2008)

+ CO5% + 40H + 6H,0

CayFe,(CO3)(OH)1226(H.0) = 4Ca®" + 2Fe(OH),” -34.59 - | Solubility - Dilnesa et al. (2011)
+COz> +40H™ + 6H,0

Fe—Hemicarbonate

CayFe;065(CO3)05011.5(H,0) = 4Ca" + -33.1 - | Estimated - Lothenbach et al. (2008)
2Fe(OH), + 0.5CO3* + 50H" + 5H,0

CayFes(COs)os5(OH)13.55(H,0) = 4Ca”" + -33.1 - | Estimated - Lothenbach (2010)
2Fe(OH), + 0.5CO45” + 50H + 5.5H,0

CauFes(CO3)os5(OH)1°4(H,0) = 4Ca*" + -30.83 - | Solubility - Dilnesa et al. (2011)
2Fe(OH),” + 0.5COs> + 50H" + 3.5H,0

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Note: Log K of Smith (1918) recalculated using Nordstrom et al. (1990) aqueous model at 303 K, adjusted to 298 K using DHOr calculated using ion values from Wagman et al. (1982)
and Robie et al. (1984) for solid.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System FeO/Fe,03-CO,-

H,O extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction

Log K&

AH?

RP.T,
kJ

Database

Source

Fe(ll)

Fe?* + COs* = FeCOs(aq)

Minteq (2009)

Minteq (2006)

NIST46.4

4.380

Phreeqgc (2009)

not cited

4.38

Wateq4f (2005)

not cited

5.69

-5.764

ThermoChimie v.7.b

#99CHIb

NAGRA/PSI (2001)

5.4500

Data0.YMP.R5

Millero et al. (1995)

Thermoddem (2009)

Sverjensky et al. (1997)

Fe®" + 2CO5% = Fe(COs),”

Minteq (2009)

Minteq (2006)

Phreeqc (2009)

Wateq4f (2005)

7.45

ThermoChimie v.7.b

#98KIN in 99CHIb

NAGRA/PSI (2001)

7.1600

Data0.YMP.R5

Millero et al. (1995)

Thermoddem (2009)

Fe* + COs* + H' = FeHCO;"

Minteq (2009)

11.429

Minteq (2006)

NIST46.4;, MTQ3.11

12.329

Phreeqgc (2009)

not cited

12.329

Wateq4f (2005)

not cited

11.77

ThermoChimie v.7.b

#95CHI

NAGRA/PSI (2001)

11.799

Data0.YMP.R5

Millero et al. (1995)

Thermoddem (2009)

Shock and Koretsky
(1995)

Fe®* + COsZ + H,0 = FeOHCO; +
H+

Minteq (2009)

Minteq (2006)

Phreeqc (2009)

Wateq4f (2005)

-4.03

ThermoChimie v.7.b

#98KIN in 99CHIb

NAGRA/PSI (2001)

Data0.YMP.R5

Thermoddem (2009)

Fe(lll)

Fe®* + COs* = FeCOs(aq)

Minteq (2009)

Minteq (2006)

Phreeqgc (2009)

Wateq4f (2005)

ThermoChimie v.7.b

NAGRA/PSI (2001)
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System FeO/Fe,05;-
CO,-H,0 extracted from Databases of Distribution-of-Species Codes (Continued)

Association Constant Reaction Log K® AH? Database Source

RP.T,
kJ

- | Data0.YMP.R5
Thermoddem (2009)
Fe®* + 3CO5% = Fe(COs)s> - | Minteq (2009)

- | Minteq (2006)

- | Phreeqc (2009)

- | Wateq4f (2005)
24.24 - | ThermoChimie v.7.b
- | NAGRA/PSI (2001)
- | Data0.YMP.R5
Thermoddem (2009)
Minteq (2009)

#O5GRI

Fe* + COs” + H,0 = FeCO;0H + -
H+

0 | Minteq (2006)

- | Phreeqc (2009)
Wateq4f (2005)
ThermoChimie v.7.b
NAGRA/PSI (2001)
- | Data0.YMP.R5
Thermoddem (2009)

10.76 - #O5GRI

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Table 3b. Solubility Constants of Solid Carbonates in the System FeO/Fe,03-CO,-H,0 extracted
from Databases of Distribution-of-Species Codes

Solubility Constant Reaction Log K& AH? Database Source
R,P, T,
kJ
Siderite
FeCOs4(s) = Fe*" + CO5” -10.55 -22.292 | Minteq (2009) not cited
-10.24 -16. | Minteq (2006) not cited
-10.890 -10.376 | Phreeqc (2009) not cited
-10.89 -10.376 | Wateqg4f (2005) not cited
Siderite(d)(3): FeCOs(s) = Fe*" + CO3> -10.45 - | Wateqgaf (2005) not cited
-10.8 -12.012 | ThermoChimie v.7.b Bruno et al. (1992)
NAGRA/PSI (2001)
-10.5200 - | Data0.YMP.R5 Helgeson et al. (1978);
Helgeson (1985)
Thermoddem (2009)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.V8.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MintegA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQA2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16—19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Wateq4f

Ball, J. W., & Nordstrom, D. K. (1991). User's manual for WATEQA4F, with revised thermodynamic data
base and test cases for calculating speciation of major, trace, and redox elements in natural waters.

U.S. GEOLOGICAL SURVEY, Open-File Report 91-183, Revised and reprinted - April, 2001. p. 81-94

Wateq4f (2005)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/WATEQ4F.DAT
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Table 4a. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

Mineral AGO Secondary Reference Primary Reference
f.PT,
Name Formula 1
kJ/gfw
Minerals
Fe(ll)
Ankerite -1819.29 Holland and Powell (1990)
predicted -1807.4 £ 3.0 La Iglesia and Felix (1994)
-1819.29 Holland and Powell (1998)
Fe Dolomite -1817.2 | La Iglesia and Felix (1994) Holland and Powell (1990)
Siderite Fe'CO; -673.75 | Kelley and Anderson (1935) Smith (1918)
-678.94 | Mel'nik (1972) Smith (1918), Kelley and Anderson
(1935)
synthetic -673.75 Kelley and Anderson (1935)
-673.75 | Fosbagl et al. (2010) Kelley and Anderson (1935)
-673.88 | Fosbgl et al. (2010) Latimer (1952)
-673.88 | Latimer (1952) Rossini et al. (1952)?
-673.88 | Zhuk (1954) Rossini et al. (1952), Karapet'yants
(1953)
-673.88 £ 3.35 | Robie (1962, 1966). Data from Kelley Rossini et al. (1952), Kelley and King
and King (1961).corrected for magnetic (1961)
contribution to entropy
-673.88 | Karpov et al. (1968) Rossini et al. (1952)
-673.88 | Mel'nik (1972) Rossini et al. (1952), Latimer (1952),
Krestovnikov et al. (1963), Nikolaev and
Dolivo-Dobovolskii (1961)
-35.15% | Mel'nik (1972) Rossini et al. (1952), Latimer (1952),
Krestovnikov et al. (1963), Nikolaev and
Dolivo-Dobovolskii (1961)
-673.9 | Woods and Garrels (1987) Rossini et al. (1952)
calculated -674.00 Zhuk (1954)
-674.00 | Karpov et al. (1968) Zhuk (1954)
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Table 4a. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

(Continued)

Mineral AG?,P,,T, Secondary Reference Primary Reference
Name Formula Kalgfw ™
-674.00 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
-35.15% | Karpov et al. (1968) Kireev (1964)
-673.75 £ 2.09 | Mel'nik (1972) Robie and Waldbaum (1968)
-34.18% | Mel'nik (1972) Robie and Waldbaum (1968)
-673.749 | Fosbagl et al. (2010) Robie and Waldbaum (1968)
-666.72 | Mel'nik (1972) Wagman et al. (1969)
-27.20% | Mel'nik (1972) Wagman et al. (1969)
-679.64 £ 2.13 Langmuir (1969)
-677.64 | Mel'nik (1972) Langmuir (1969)
-679.44 | Fosbagl et al. (2010) Langmuir (1969)
-680.32 | Naumov et al. (1974) Langmuir (1969)
-666.72 Wagman et al. (1969)

-666.698 + 2.092

Robie et al. (1979)

Wagman et al. (1969), Kelley and
Anderson (1935)

-666.72 | Fosbgl et al. (2010) Wagman et al. (1969)
-680.32 | Mel'nik (1972) Naumov et al. (1971)
-40.79% | Mel'nik (1972) Naumov et al. (1971)
-676.51 | Mel'nik (1972) Singer and Stumm (1970)
-671.53 | Fosbgl et al. (2010) Singer and Stumm (1970)
-697.05 | Fosbagl et al. (2010) French (1971)
-666.72 | Barin et al. (1977), Stull and Prophet (1971)
recommended value -679.48 Mel'nik (1972)
recommended value -40.84%Y Mel'nik (1972)
spherulitic, FeCO3+n(H,0), as FeCO3 -676.55 Mel'nik (1972)
recommended value
Amorphous, FeCOz*n(H.0), as FeCO3 -664.84 Mel'nik (1972)
recommended value
-679.5 | Woods and Garrels (1987) Mel'nik (1972)
-768.26 | Fosbagl et al. (2010) Barin et al. (1973)
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Table 4a. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

(Continued)

Mineral AG?,P,,T, Secondary Reference Primary Reference
Name Formula Kalgfw ™
-680.3 | Woods and Garrels (1987) Naumov et al. (1974)
-665.5 | Dobrydiev et al. (2005) Ryabin et al. (1977)
-679.4 | Woods and Garrels (1987) Helgeson et al. (1978)
-679.54 | BSC (2007) Helgeson et al. (1978)
-679.440 | Fosbagl et al. (2010) Helgeson et al. (1978)
-666.7 | Woods and Garrels (1987) Robie et al. (1978)
-666.698 | Fosbagl et al. (2010) Robie et al. (1978)
-666.70 £ 2.09 | Radha and Navrotsky (2013) Robie et al. (1978)
-669.02 | Fosbgl et al. (2010) Reiterer (1980)
-662.91 £ 0.46 | At50°C Reiterer et al. (1981)
-669.02 £ 0.46 Reiterer et al. (1981)
-665.67 | Bénézeth et al. Wagman et al. (1982)
-666.67 | Fosbagl et al. (2010) Wagman et al. (1982)
recommended value -665.16 | Fosbgl et al. (2010) Wagman et al., 1982
-679.5 | Woods and Garrels (1987) Helgeson (1983, 1984)
-679.4 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
-682.8+ 5.5 Robie et al. (1984)
-680.03 £ 0.6 | from solubility data, cited by Bénézeth et | Robie et al. (1984),
al. (2009) and by Chai and Navrotsky
(1994)
-682.8 £ 5.5 | Robie and Hemingway (1995) Robie et al. (1984)
-680.03 | Fosbgl et al. (2010) Robie et al. (1984)
recommended value -676.88 | Fosbgl et al. (2010) Cox et al. (1989), Parker and
Khodakovskii (1995)
-688.04 | Fosbgl et al. (2010) Holland and Powell (1990)
-682.8 Robie and Hemingway (1995)
-682.80 | Bénézeth et al. (2009) Robie and Hemingway (1995)
-682.8 | Fosbgl et al. (2010) Robie and Hemingway (1995)
-688.16 Holland and Powell (1998)
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Table 4a. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

(Continued)

Mineral AGO Secondary Reference Primary Reference
f.P.T,
Name Formula 1
kd/gfw
-668.978 NAGRA
-678.9+ 1.2 Preis and Gamsjager (2002)
-678.9 | Fosbal et al. (2010) Preis and Gamsjager (2002)
-680.71 £ 2. Bénézeth et al. (2009)

Fe(ll)/Fe(lll)
Fougerite  (GR(CO3™))
sp.
GR1(CO5%) [Fe'",Fe"»(OH)2][COs* -4042.79 | Génin et al. (1998) Drissi et al. (1994)

'2(H2
GR1(CO#%) [Fe",Fe",(OH)1][COs™ -4042.28 + 0.84 Drissi et al. (1995)

*2(H20)]
GR1(CO5)annya Fe",Fe",(OH)12(CO5%) -3568.41 Drissi et al. (1995)
GR1(CO3%) anhyd Fe",Fe",(OH)12(CO3) -3588.0 + 11 | Bourrié et al. (1999) Drissi et al. (1995)
GR(CO#%) Fe",Fe",(OH);2,CO52(H20) -4076 | Refait et al. (2006) Drissi et al. (1995)
Fougerite (GR(CO3?)) Fe",Fe",(OH);1,C0O402(H,0) -4064 + 10 | Bourdoiseau et al. (2012) Drissi et al. (1995), Génin et al. (1998)
GR(CO#%) [Fe"sFe",(OH)]*'[ COs” -3590 + 5 | Bourrié et al. (2004) Bourrié et al. (1999)

*n(H,0)*
GR(CO4%) calculated [Fe'",Fe"(OH)]*' COs* -3872 Bourrié et al. (2004)

n(H0)*
GR(CO#%) Fe",Fe",0.,H1,CO5 -3601.62 Génin et al. (2006), Ruby et al. (2006)
GR(CO#%) Fe",Fe",01,H10,COs -3488.76 Génin et al. (2006), Ruby et al. (2006)
GR(CO3)* Fe"s01,HsCO; -3345.18 Génin et al. (2006), Ruby et al. (2006)
Fougerite (GR(CO5%)) -4070 £ 15 Bourdoiseau et al. (2012)
GR1(CO3)anhya Fe",Fe",(OH).COs -3588.00 Trolard and Bourrié (2012)
Fe(lll)
Hydrotalcite—C03 Mg3A|0.395Feo.097(C03)0.336(oH) -3671.87 + 112.49 Rozov et al. (2010)
(-Pyroaurite) 8.305°2.51(H20)

Mg3A|0,327Feo,lgz(CO3)0,53e(oH) -3690.29 + 112.49 Rozov et al. (2010)

7-987'2-62(H20)
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Table 4a. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation
(Continued)

Mineral

Name

Formula

0
AG f.P.T,
kd/gfw ™

Secondary Reference

Primary Reference

Mg3Alo.g02F€0.205(CO3)0.537(OH)
7.046*2.67(H20)

-3701.77 £ 111.44

Rozov et al. (2010)

Mg3Alo.695F€0.304(CO3)0.481(OH)
8-034'2-52(H20)

-3623.89 + 104.99

Rozov et al. (2010)

MgzAlo 625 Fe0.304(CO3)0.553
OH)7.95'2.50(H20)

-3604.44 + 103.58

Rozov et al. (2010)

Mg3Alo.502F€0.496(CO3)0.361(OH)
3.275'2.45(H20)

—-3499.21 + 95.95

Rozov et al. (2010)

Mg3Alo.415F€0.619(CO3)0.531(OH)
8.039°2.47(H:0)

—-3513.97 £ 95.17

Rozov et al. (2010)

Mg3Alo.209F€0.703(CO3)0.248(OH)
3.509'2. 55(H20)

—-3387.14 + 85.67

Rozov et al. (2010)

Mg3A|0.207Feo_aag(CO3)0_4gl
OH)g.157°2.55(H,0)

-3418.14 + 86.37

Rozov et al. (2010)

Mg3Alo.108F€0.902(CO3)0.342(OH)
8-344°2.64(H,0)

-3323.14 £ 71.95

Rozov et al. (2010)

MgsFe
1.086(CO3)0.343(OH)g.570°2.15(H2
0)

-3321.52 £ 78.70

Rozov et al. (2010)

Synthetic Phases

Fe(ll)

Fe(lll)

Fe—monocarbonate

Cay[Fe(OH)s]2(COs)+6(H20)

-6679.20 + 1.71

Moschner et al. (2008)

CayFe,(CO3)(OH)12#6(H20) -6674.0 Dilnesa et al. (2011)
Fe—hemicarbonate CasFe;065(CO3)05°11.5(H,0) -6440.19 Lothenbach et al. (2008)
CayFez(C0O3z)05(0OH)1204(H20) -5952.9 Dilnesa et al. (2011)

@ Formation from the oxides
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Table 4b. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates:

Enthalpies of Formation

Mineral AH? Secondary Reference Primary Reference
f.P.T,
Name Formula "
kJ/gfw
Minerals
Fe(ll)
Ankerite Ca(Feo.1583MJo.8417)(CO3)2 —1964.65 + 3.59 | Radha and Navrotsky (2013) Chai and Navrotsky (1996 a,b),
Robie et al. (1978)
Ca(Feo.2090Md0.7010)(CO3)2 -1914.73 + 2.87 | Radha and Navrotsky (2013) Chai and Navrotsky (1996 a,b),
Robie et al. (1978)
Ca(Feo.4096Mdo.5004)(CO3)2 —1842.80 + 5.00 | Radha and Navrotsky (2013) Chai and Navrotsky (1996 a,b),
Robie et al. (1978)
Ca(Feo.6482M00.3518) (CO3)2 -1793.51 + 2.66 | Radha and Navrotsky (2013) Chai and Navrotsky (1996 a,b),
Robie et al. (1978)
CaFe(CO0s), —1687.17 + 3.09 | Radha and Navrotsky (2013) Chai and Navrotsky (1996 a,b),
Robie et al. (1978)
-1971.50 + 1.48 Holland and Powell (1998)
Fe Dolomite CaFe(CO0s), -1969.30 + 1.97 Holland and Powell (1990)
-1969.3 | La lglesia and Felix (1994) Holland and Powell (1990)
predicted -1959.6 £ 2.5 La Iglesia and Felix (1994)
Siderite crystalline, at Fe'Co; -718.4 + 0.5% Roth (1929)
constant volume
crystalline, at constant -722.2 + 0.5% Roth (1929)
pressure
synthetic -748.48 Kelley and Anderson (1935)
-747.6 | Chai and Navrotsky (1994) Kelley and Anderson (1935)
-747.6 | Preis and Gamsjager (2002) Kelly and Anderson (1935)
-747.60 | Fosbgl et al. (2010) Kelley and Anderson (1935)
-744.8 | Fosbgl et al. (2010) Latimer (1952)
-744.75 | Latimer (1952) Rossini et al. (1952)?
-747.68 | Zhuk (1954) Rossini et al. (1952), Karapet'yants
(1953)
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Table 4b. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation
(Continued)

Mineral AH? Secondary Reference Primary Reference
f,PT,
Name Formula "
kJ/gfw
-745.59 £ 5.02 | Robie (1962, 1966) Data from Kelley Rossini et al. (1952), Kelley and King
and King (1961).corrected for magnetic (1961)
contribution to entropy
-744.75 | Karpov et al. (1968) Rossini et al. (1952)
-747.68 | Mel'nik (1972) Rossini et al. (1952), Latimer (1952),
Krestovnikov et al. (1963), Nikolaev and
Dolivo-Dobovolskii (1961)
-88.07% | Melnik (1972) Rossini et al. (1952), Latimer (1952),
Krestovnikov et al. (1963), Nikolaev and
Dolivo-Dobovolskii (1961)
-747.7 | Woods and Garrels (1987) Rossini et al. (1952)
-740.6 | Stern (2000) Kubaschevski and Evans (1958)
-745.59 £ 5.02 | Karpov et al. (1968) Robie (1962)
-753.12 | Karapet'yants and Karapet'yants (1970) Egorev and Titova (1962)
-748.94 £ 62.76 | Estimated value Wilcox and Bromley (1963)
-748.94 | Karapet'yants and Karapet'yants (1970) | Wilcox and Bromley (1963)
-748.9 | Fosbgl et al. (2010) Wilcox and Bromley (1963)
-91.63% | Karpov et al. (1968) Kireev (1964)
-752.07 | Mel’nik (1972) Karpov et al. (1968)
-91.63" | Mel'nik (1972) Karpov et al. (1968)
-743.97 £2.26 | Langmuir (1969) Robie and Waldbaum (1968)
-743.97 £ 2.26 | Mel'nik (1972) Robie and Waldbaum (1968)
-84.18" | Mel'nik (1972) Robie and Waldbaum (1968)
-743.965 | Fosbgl et al. (2010) Robie and Waldbaum (1968)
-753.12 | Naumov et al. (1974) Langmuir (1969)
-740.57 | Mel'nik (1972) Wagman et al. (1969)
-80.79% | Mel'nik (1972) Wagman et al. (1969)
-740.57 Wagman et al. (1969)

-736.985 + 2.259

Robie et al. (1979)

Wagman et al. (1969), Kelley and
Anderson (1935)

-740.57

Fosbgl et al. (2010)

Wagman et al. (1969)

Iron

161




rreeees |1

BERKELEY LAB

Table 4b. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates:

(Continued)

Enthalpies of Formation

Mineral AH ?,P, . Secondary Reference Primary Reference
Name Formula KIlgfw™
-775.71 | Fosbgl et al. (2010) French (1971)
-753.12 | Mel'nik (1972) Naumov et al. (1971)
-93.30" | Melnik (1972) Naumov et al. (1971)
recommended value -752.20 Mel'nik (1972)
recommended value -93.43% Mel'nik (1972)
-752.2 | Woods and Garrels (1987) Mel'nik (1972)
-740.6 | Preis and Gamsjager (2002) Barin and Knacke (1973)
-740.57 | Fosbgl et al. (2010) Barin et al. (1973)
-753.1 | Woods and Garrels (1987) Naumov et al. (1974)
-738.6 | Dobrydiev et al. (2005) Ryabin et al. (1977)
-749.6 | Woods and Garrels (1987) Helgeson et al. (1978)
solubility data -749.70 | Chai and Navrotsky (1994) Helgeson et al. (1978) after Langmuir
(1969)
-749.70 | Bénézeth et al. (2009) Helgeson et al. (1978)
-749.656 | Fosbagl et al. (2010) Helgeson et al. (1978)
-737.0 | Woods and Garrels (1987) Robie et al. (1978)
-736.985 | Fosbagl et al. (2010) Robie et al. (1978)
-740.6 | Woods and Garrels (1987) Robie et al. (1978)
solubility data -737.0 £ 2.3 | Chai and Navrotsky (1994) Robie et al. (1978)
-736.98 £ 2.26 | Radha and Navrotsky (2013) Robie et al. (1978)
solubility data -741.90 | Chai and Navrotsky (1994) Reiterer et al. (1981)
-741.90 | Bénézeth et al. (2009) Reiterer et al. (1981)
-740.6 | Chai and Navrotsky (1994) Wagman et al. (1982)
-740.57 | Bénézeth et al. Wagman et al. (1982)
-740.6 | Preis and Gamsjager (2002) Wagman et al. (1982)
-740.57 | Fosbgl et al. (2010) Wagman et al. (1982)
-749.6 | Woods and Garrels (1987) Helgeson (1983, 1984)
-737.0 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
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Table 4b. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates:

(Continued)

Enthalpies of Formation

Mineral AH ?,P, . Secondary Reference Primary Reference
Name Formula kJ/gfw'l
-755.9+5.5 Robie et al. (1984)
solubility data -753.2 | Chai and Navrotsky (1994) Robie et al. (1984),
phase equilibrium -758.6 | Chai and Navrotsky (1994) Robie et al. (1984)
-755.9 + 5.5 | Robie and Hemingway (1995) Robie et al. (1984)
753.22 + 0.6 | Bénézeth et al. (2009) Robie et al. (1984)
-753.22 | Fosbgl et al. (2010) Robie et al. (1984)
phase equilibrium -749 Stubina and Toguri (1989)
-749.21 | Chai and Navrotsky (1994) Stubina and Toguri (1989),
-749.0 | Preis and Gamsjager (2002) Stubina and Toguri (1989)
-749 | Fosbgl et al. (2010) Stubina and Toguri (1989)
-761.18 £ 0.91 Holland and Powell (1990)
phase equilibrium -761.2 £ 0.9 | Chai and Navrotsky (1994) Holland and Powell (1990)
phase equilibrium -760.6 £ 0.5 | Chai and Navrotsky (1994) Holland and Powell (1990, updated)
-761.20 £ 0.9 | Bénézeth et al. (2009) Holland and Powell (1990)
-761.18 | Fosbgl et al. (2010) Holland and Powell (1990)
-740.5 | Preis and Gamsjager (2002) Knacke et al. (1991)
average of 2 values -750.6 £ 1.1 Chai and Navrotsky (1994)
-750.6 £ 1.1 | Preis and Gamsjager (2002) Chai and Navrotsky (1994)
-750.6 | Fosbgl et al. (2010) Chai and Navrotsky (1994)
-750.5 £ 0.8 | Radha and Navrotsky (2013) Chai and Navrotsky (1994), Robie et al.
(1978)
-755.9 Robie and Hemingway (1995)
-755.000 Matas et al. (2000)
-752+1.2 Preis and Gamsjager (2002)
-752 | Fosbgl et al. (2010) Preis and Gamsja“ger (2002)
-755.9 £ 5.5 | Preis and Gamsjager (2002) Robie and Hemingway (1995)
-755.9 | Fosbgl et al. (2010) Robie and Hemingway (1995)
-761.50 £ 0.51 Holland and Powell (1998)
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Table 4b. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates:

(Continued)

Enthalpies of Formation

Mineral AH ?,P, . Secondary Reference Primary Reference
Name Formula "
kJd/gfw
-740.6 Stern (2000)
-752.00£ 1.2 Preis and Gamsjager (2002)
-755.90 £ 5.5 Bénézeth et al. (2009)
-749.59 * 2. Bénézeth et al. (2009)
-738.28 | Recommended value (Wagman et al., Fosbgl et al. (2010)
1982)
-750.01 | Recommended value (Cox et al., 1989; Fosbgl et al. (2010)
Parker and Khodakovskii, 1995)
-749.66 EQ3/6
-754.037 NAGRA
Fe(Il)/Fe(lln)
Fe(ll)
Synthetic Phases
Fe(ll)
Fe(HCOs), Fe(HCOs), -870+8 Yatsimirskii (1958)
Undetermined 4H
Estimated value of fictive -1481.14 + 62.76 Wilcox and Bromley (1963)
compound
-1481.14 | Karapet'yants and Karapet'yants (1970) | Wilcox and Bromley (1963)
Fe(ll)
Fe—Monocarbonate Cay[Fe(OH)g)2(CO3)*6(H,0) -7637 | - Moschner et al. (2008)
CayFe,(CO3)(OH)12¢6(H20) -7485 | - Dilnesa et al. (2011)
Fe—Hemicarbonate CayFe;065(C03)05°11.5(H,0) -7363 | - Lothenbach et al. (2008)
CayFez(C0O3)0.5(0OH)12¢4(H20) -6581 | - Dilnesa et al. (2011)

@ Formation from the oxides
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Table 4c. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral S g{ . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
Minerals
Fe(ll)
Ankerite 187.00 Holland and Powell (1998)
Fe Dolomite CaFe(CO0s), 185.60 Holland and Powell (1990)
Siderite Fe"CO; 74.06 | Kelley and Anderson (1935) Smith (1918)
synthetic
graphical 92.9+17 Anderson (1934)
calculated 90.8 Anderson (1934)
92.88 £ 1.67 | Kelley and King (1961) Anderson (1934)
92.9 | Fosbgl et al. (2010) Anderson (1934)
92.9 | Fosbgl et al. (2010) Kelley and Anderson (1935)
92.9 | Fosbgl et al. (2010) Latimer (1952)
92.88 | Latimer (1952) Rossini et al. (1952)?
92.88 | Zhuk (1954) Rossini et al. (1952), Karapet'yants
(1953)
92.88 £ 1.67 | Mel'nik (1972) Rossini et al. (1952), Krestovnikov et al.
(1963), Nikolaev and Dolivo-Dobovolskii
(1961)
92.88 | Karpov et al. (1968) Rossini et al. (1952)
92.9 | Woods and Gatrrels (1987) Rossini et al. (1952)
calculated 93.30 Zhuk (1954)
93.30 | Karpov et al. (1968) Zhuk (1954)
93.30 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
93.30 | Mel'nik (1972) Zhuk (1954)
92.9 | Stern (2000) Kubaschevski and Evans (1958)
100.00 + 2.51 | Robie (1962, 1966), corrected for Kelley and King (1961)
magnetic contribution
100.00 + 2.51 | Karpov et al. (1968) Robie (1962)
92.88 + 1.67 | Karpov et al. (1968) Kelley and King (1961)
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Table 4c. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates: Entropies (Continued)

Mineral S g . Secondary Reference Primary Reference
Name Formula : 1
J K™ gfw
96.1 Kostryukov and Kalinkina (1964)
96.1 | Karapet'yants and Karapet'yants (1970) Kostryukov and Kalinkina (1964)
96.11 £ 0.42 | Mel'nik (1972) Kostryukov and Kalinkina (1964),
Naumov et al. (1974)
96.11 + 0.4 | Naumov et al. (1974) Kostryukov and Kalinkina (1964)
96.1 | Fosbal et al. (2010) Kostryukov and Kalinkina (1964)
105.02 £ 2.51 | Mel'nik (1972) Robie (1965), Robie and Waldbaum
(1968)
105.0 £ 2.5 | Robie et al. (1979) Robie (1965)
105.0 | Fosbal et al. (2010) Robie (1965)
105.0 | Fosbal et al. (2010) Robie and Waldbaum (1968)
92.88 Wagman et al. (1969)
92.9 | Fosbal et al. (2010) Wagman et al. (1969)
74.1 | Fosbal et al. (2010) French (1971)
recommended value 96.11 Mel'nik (1972)
96.1 | Woods and Gatrrels (1987) Mel'nik (1972)
92.9 | Fosbal et al. (2010) Barin et al. (1973)
96.1 | Woods and Gatrrels (1987) Naumov et al. (1974)
105.0 | Fosbgl et al. (2010) Helgeson et al. (1978)
105.0 | Woods and Garrels (1987) Helgeson et al. (1978)
105.0 | Woods and Garrels (1987) Robie et al. (1978)
105.0 | Fosbal et al. (2010) Robie et al. (1978)
92.9 | Woods and Gatrrels (1987) Robie et al. (1978)
92.90 | Bénézeth et al. (2009) Wagman et al. (1982)
92.9 | Fosbgl et al. (2010) Wagman et al. (1982)
95.5+£0.2 Robie et al. (1984)
natural (Feo.965MnNo.042MJ0.002) CO3 95.5 | Woods and Garrels (1987) Robie et al. (1984)
95.5+0.2 | Robie and Hemingway (1995) Robie et al. (1984)
95.47 £ 0.15 | Preis and Gamsjager (2002) Robie et al. (1984)
95.47 £ 0.15 | Bénézeth et al. (2009), Chai and Robie et al. (1984), from solubility data,
Navrotsky (1994)
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Table 4c. Thermodynamic properties of Iron Carbonate Minerals and Synthetic Solid Carbonates: Entropies (Continued)

Mineral S gr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
95.47 | Fosbgl et al. (2010) Robie et al. (1984)
95.47 | Fosbgl et al. (2010) Robie et al. (1984)
95.50 Holland and Powell (1990)
95.50 | Bénézeth et al. (2009) Holland and Powell (1990),
95.50 | Fosbgl et al. (2010) Holland and Powell (1990)
95.47 Robie and Hemingway (1995)
95.47 | Fosbgl et al. (2010) Robie and Hemingway (1995)
95.47 Matas et al. (2000)
92.9 Stern (2000)
95.47 | Fosbgl et al. (2010) Preis and Gamsja“ger (2002)
109.54 + 2. Bénézeth et al. (2009)
95.47 | Recommended value (Wagman et al., Fosbgl et al. (2010)
1982)
95.47 | Recommended value (C Cox et al., Fosbgl et al. (2010)
1989; Parker and Khodakovskii, 1995)
105.02 BSC (2007)
NAGRA
Fe(Il)/Fe(ll)
Fe(ll)
Synthetic Phases
Fe(ll)
Fe(ll)
Fe—Monocarbonate Cay[Fe(OH)s]2(CO3)*6(H.0) 737 | - Méoschner et al. (2008)
CayFe,(CO3)(0OH)1226(H20) 1230 | - Dilnesa et al. (2011)
Fe—Hemicarbonate CayFe;065(C03)05211.5(H,0) 749 | - Lothenbach et al. (2008)
CayFe;(CO3)0.5(0OH)1204(H20) 1270 | - Dilnesa et al. (2011)
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Table 5. Crystallographic Properties of Iron Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference
Minerals
Fe(ll)
1 Biraite-(Ce) Ce,Fe"(CO3)(Si,07) Mineralogy Database (http://webmineral.com/)
2 | Bonshtedtite NagFe'(PO,)(CO3) Gaines et al. (1997)
3 | Caresite Fe"4Al(OH)12CO3#3(H-0) Chao and Gault (1997)
4 | Caresite Fe"4Al(OH)12CO3¢3(H-0) Gaines et al. (1997)
5 | Chukanovite Fe",(CO3)(OH), Gaines et al. (1997)
6 | Chukanovite Fe",(CO3)(OH), Pekov et al. (2007)
7 | Fex(CO3)(OH), Fe",(CO3)(OH), Erdds and Altorfer (1976)
8 | Ferrotychite NagFe"»(S04)(CO3)s Malinovskii et al. (1979)
9 | Ferrotychite NagFe"»(S04)(CO3)s Gaines et al. (1997)
10 | Siderite Fe'CO; Graf (1961)
Name Cell Constants Space vo*
a0, A bo, A Co, A o, ° B, ° e z Group cm® gfw*
Minerals
Fe(ll)
Biraite-(Ce) 6.505 6.744 18.561 108.75 4 P2;/c 116.09
Bonshtedtite 8.921 6.631 5.151 90.42 2 P2;/m 91.747
Caresite 10.805 22.48 6 P3; or 228.13
P3,12
4 Caresite 10.805 22.48 6 P3,22 or 228.13
P3;12
5 Chukanovite 12.396 9.407 3.2152 97.78 4 P2;/a 55.927
6 Chukanovite 12.396 9.407 3.2152 97.78 4 P2;/a 55.927
7 | Fey(CO3)(OH), 9.390 24.53 3.212 orthorh 55.693
8 Ferrotychite 13.962 8 Fd3 204.88
9 Ferrotychite 13.962 8 Fd3 204.88
10 | Siderite 4.6887 15.373 4 R3c 29.376
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Iron

Name Formula Reference

11 | Siderite Fe'Co; Gaines et al. (1997)
12 | Siderite Fe'CO; Mineralogy Database (http://webmineral.com/)

Fe(Il)/Fe(lll)
13 | Fougérite Fe",Fe",(OH);,CO5*3(H20) Génin et al. (2014)
14 | Trébeurdenite Fe",Fe",0,(0H);10CO33(H,0) Génin et al. (2014)

Fe(lll)
15 | Brugnatellite MgsFe'" (COs)(OH)13+4(H;0) Gaines et al. (1997)
16 | Brugnatellite MgsFe'" (COs)(OH)13+4(H;0) [not found]
17 | Coalingite MgioFe",(CO3)(OH)z42(H,0) Pastor-Rodriguez and Taylor (1971)
18 | Coalingite MgioFe",(CO3)(OH)z42(H,0) Gaines et al. (1997)
19 | Coalingite MgzoFe"2(CO3)(OH)2402(H20) Mineralogy Database (http://webmineral.com/)

Name Cell Constants Space Vo
a, A bo, A Cor A o, ° B, ° i z Group cm?® gfw*

11 | Siderite 4.6916 15.3796 R3c 29.425
12 | Siderite 4.72 15.46 R3c 29.938

Fe(I)/Fe(lll)
13 | Fougeérite 3.182 22.896 R-3m
14 | Trébeurdenite 3.173 22.695 R-3m

Fe(lll)
15 | Brugnatellite 5.48 16.00 P6s/mmc 250.59
16 | Brugnatellite 8.629 5.805 7.654. 103.17 P2,/m or 224.82

P2,

17 | Coalingite 3.12 37.4 0.5 R3c 379.75
18 Coalingite 6.24 74.8 4 R3c 379.75
19 Coalingite 3.12 37.4 0.5 R3c 379.75
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Iron

Name Formula Reference
20 | Fencooperite BasFe"3Sig023(CO3)-Clae(H20) Gaines et al. (1997)
21 | Fencooperite BagFe";Sig023(CO3)-Clss(H.0) Grice (2001)
22 | Mossbauerite Fe"s04(OH)sCO3+(3H,0) Génin et al. (2014)
23 | Pyroaurite MgsFe"2(CO3)(OH)164(H20) Ingram and Taylor (1967)
24 | Pyroaurite MgsFe"2(CO3)(OH)1g4(H20) Gaines et al. (1997)
25 | Pyroaurite MgsFe"2(CO3)(OH)1g4(H20) Mineralogy Database (http://webmineral.com/)
26 | Reevesite NisFe",(CO3)(OH)1624(H20) de Waal and Viljoen (1971)
27 | Reevesite NigFe"';(CO3)(OH)16°4(H20) Gaines et al. (1997)
28 | Sjogrenite MgsFe"»(CO3)(OH)1g°4(H20) Ivanov et al. (1986)
29 | Sjogrenite MgsFe"»(CO3)(OH)1g°4(H,0) Gaines et al. (1997)

Name Cell Constants Space Vo

a0, A bo, A Cor A e B,° e z Group cm® gw*

20 | Fencooperite 10.727 7.085 P3m1 425.19
21 | Fencooperite 10.7409 7.0955 1 P3m1 426.92
22 | Mdssbauerite (=3.16) =~22.02 R-3m
23 | Pyroaurite 3.13 23.49 3 R3m 320.05
24 | Pyroaurite 6.219 46.83 3 R-3m 314.87
25 | Pyroaurite 6.19 46.54 3 R-3m 310.00
26 | Reevesite 6.614(3) 45.54(2) 3 R-3m 346.32
27 Reevesite 6.614 45.54 3 R-3m 346.32
28 | Sjogrenite 3.113 15.61 0.25 P6s/mmc 315.58
29 | Sjogrenite 6.22 15.61 1 P6s/mmc 314.97
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Iron

Name Formula Reference
Synthetic Phases
Fe(ll)
30
Fe(lll)
31
Name Cell Constants Space Vo
a0, A bo, A Con A a, B, ° " Z Group cm® gfw™
Synthetic Phases
Fe(ll)
30
Fe(lll)
31

*Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than

10 wt.% Iron*

Name Formula Iron, wt.% gfw Thermodynamic
Data
Est. Meas.

Fe(ll)

Ankerite Ca(Fe",Mg,Mn)(COs), 16.24 206.39 no yes
Bonshtedtite NagFe"(PO4)(CO3) 19.96 279.80 no no
Caresite Fe",Al,(OH);2,CO323(H20) 37.51 595.49 no no
Chukanovite Fe,(CO3)(OH), 53.18 206.88 no no
Ferrotychite NasFe";(S04)(CO3), 19.07 585.73 no no
IMA2009-010 Bas(PO.)2(COs)][Fe"(OH)4Fe",0,(SiOs)s 21.99 2285.23 no no
Siderite Fe'CO; 48.20 115.86 no yes
Fe(ll)/Fe(lll)

Fougeérite Fe'sFe",(OH)1,C0O53(H,0) no yes
Trébeurdenite Fe'";,Fe" 405(0H):10C03#3(H,0) no no
Fe(lll)

Mé&ssbauerite Fe"s04(OH)sCO3+(3H,0) no no
Brugnatellite MgsFe" (CO3)(OH)1324(H20) 10.07 554.84 no no
Coalingite MgzoFe"2(CO3)(OH)24+2(H20) 13.00 858.96 no no
IMA2009-010 Bas(PO.)2(COs)][Fe"-(OH)4Fe",0,(SiOs)s 21.99 2285.23 no no
Pyroaurite MgsFe"2(CO3)(OH)1g4(H20) 16.88 661.71 no yes
Reevesite NisFe",(CO3)(OH)1624(H20) 12.87 868.02 no no
Sjogrenite MgsFe'"2(CO3)(OH)16*4(H-0) 16.88 661.71 no no

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System PbO-CO,-H,0
Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P.T,
kJ
Pb?" + COs* = PbCO3(aq) 7.0+0.08 Sol. 1.0 M Na,COj3; + NaClO4 Baranova (1969)
7.0 Sol. 1.0 M NaClO, Bilinski et al. (1976) Baranova (1969)
7.0 Sol.,, 1.0 M NaClO, Clever and Johnston (1980) | Baranova (1969)
7 Palmer and Van Eldik Baranova (1969)
(1983)
10.9 200°C Palmer and Van Eldik Baranova (1969)
(1983)
7.5 Estimate Zirino and Yamamoto
(1972)
7.5 1=0 Bilinski et al. (1976) Zirino and Yamamoto
(1972)
6.51 1=0.72 Whitfield and Turner (1980) | Zirino and Yamamoto
(1972)
7.5 1=0 Palmer and Van Eldik Zirino and Yamamoto
(1983) (1972)
3.0 1=0.72 Whitfield and Turner (1980) | Dyrssen and Wedborg
(1975)
6.2+0.2 DPP, = 0.1 M KNO3 Ernst et al. (1975)
6.3+0.4 DPASV, = 0.1 M KNO3 Ernst et al. (1975)
6.3 DPP/DPASV, 0.1 M KNO3 Bilinski et al. (1976) Ernst et al. (1975)
6.3 Long and Angino (1977) Ernst et al. (1975)
6.3 DPP, 0.1 M KNO3 Clever and Johnston (1980) | Ernst et al. (1975)
6.2 1=0.72 Whitfield and Turner (1980) | Stumm and Brauner (1975)
5.31 1=0.72 Whitfield and Turner (1980) | Long and Angino (1977)
7.4 1=0.72 Whitfield and Turner (1980) | Lu and Chen (1977)
6.4 1=01-1.0 Palmer and Van Eldik Clever and Johnston (1980)
(1983)
5.36 1=0.7 Palmer and Van Eldik Laddha et al. (1981)?
(1983)
5.59 I=0 Palmer and Van Eldik Laddha et al. (1981)?

(1983)
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System PbO-CO,-H,0O (Continued)

Association Constant Reaction Log K& AH? Comments Secondary Reference Primary Reference
RP,T,
kJ
5.62 - | seawater Palmer and Van Eldik Laddha et al. (1981)?
(1983)
54+0.1 -1 1=03 Palmer and Van Eldik Bilinski and Schindler
(1983) (1982)
5.75 - | Sol. 0.3 M NaClO,4 Bilinski et al. (1976) Bilinski and Schindler (to be
published)
5.62 - | See Bilinski et al. (1976) Bilinski et al. (1976) L Sipos, private
0.7 M NaClo, communication.
5.62 - | ASV, 0.7 M NaClO, Clever and Johnston (1980) | Sipos, cited in Bilinski et al.
(1976)
6.4 - | ASV, 0.1 M KNO; Bilinski et al. (1976)
6.1 - | DPP, 0.1 M KNO3 Bilinski et al. (1976)
6.3 - | ASV, 0.1 M KNO; Clever and Johnston (1980) | Bilinski et al. (1976)
6.40 - | ASV, 0.1 M KNO3 Clever and Johnston (1980) | Bilinski et al. (1976)
6.11 - | DPP, 0.1 M KNO3 Clever and Johnston (1980) | Bilinski et al. (1976)
7.24 Hem (1976)
5.62 - | ASV, 0.7 M NaClO, Sipos (1976)
6.20 - | | = seawater, estimate Sipos et al. (1980)
7.00 - Millero and Hawke (1992) Turner et al. (1981)
7.0 - | Estimated value Woosley and Millero (2013) | Turner et al. (1981)
6.601 - Bilinski and Schindler
(1982)
5.40 £+ 0.10 - | Sol. 0.3 M NaClO,4 Bilinski and Schindler
(1982)
5.75 - | Sol., 0.3 M NaClO, Clever and Johnston (1980) | Bilinski and Schindler
(1982), cited in Bilinski et
al. (1976)
7.20 -17.15 | Estimate Fouillac and Criaud (1984)
7.14 Taylor and Lopata (1984)
6.45+0.72 - | Review, indicative value Powell et al. (2009)
6.789 + -1 1=0 Woosley and Millero (2013) | Easley and Byrne (2011)
0.022
6.87 £ 0.09 - | =0, NaCl and NaClO, media Woosley and Millero (2013)
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System PbO-CO,-H,O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP,T,
kJ
Pb?" +2C05% = Pb(COs),> 8.2 18°C. Pol., 1.7 M KNO; (+ K,CO3 Faucherre and Bonnaire
+ KHCO3) (1959)
8.2 18°C. Pol., 1.7 M KNOs Krishnamurty et al. (1970) Faucherre and Bonnaire
(1959)
8.2 Pol., 1.7 M KNOs, Bilinski et al. (1976) Faucherre and Bonnaire
(1959)
8.20 18°C. Pol., 1.7 M KNO3 Clever and Johnston (1980) | Faucherre and Bonnaire
(1959)
10.8 Re-interpreted. | = 0 Bilinski et al. (1976) Baranova and Barsukov
(1965)
9.09 £ 0.04 Sol. 1.0 M NaClO, Baranova (1968)
9.0+ 0.08 Sol. 1.0 M Na,COj3 + NaClO4 Baranova (1969)
9.0 Sol. 1.0 M NaClO, Bilinski et al. (1976) Baranova (1969)
9.0 Sol.,, 1.0 M NaClO, Clever and Johnston (1980) | Baranova (1969)
9.0 Palmer and Van Eldik Baranova (1969)
(1983)
12.3 200°C Palmer and Van Eldik Baranova (1969)
(1983)
10.5 Sol.1=0 Ferri et al. (1987) Baranova (1969)
10.64 Long and Angino (1977) Ernst et al. (1875)
9.1 DPP, 0.1 M KNO; Bilinski et al. (1976)
9.8 ASV, 0.1 M KNO; Bilinski et al. (1976)
9.8 0.1 M KNO3 Clever and Johnston (1980) | Bilinski et al. (1976)
9.80 ASV, 0.1 M KNO3 Clever and Johnston (1980) | Bilinski et al. (1976)
9.11 DPP, 0.1 M KNO3 Clever and Johnston (1980) | Bilinski et al. (1976)
9.15 Sol., 0.3 M NaClO, Clever and Johnston (1980) | Bilinski and Schindler (to be
published) cited in Bilinski
et al. (1976)
10.6 ASV,1=0 Ferri et al. (1987) Bilinski et al. (1976)
9.9 DPP,1=0 Ferri et al. (1987) Bilinski et al. (1976)
10.64 Hem (1976)
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System PbO-CO,-H,O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P, T,
kJ
8.2 18°C, 1=1.7 Palmer and Van Eldik Smith and Martell (1976)
(1983)
9.65 1=0.72 Whitfield and Turner (1980) | Long and Angino (1977)
9.89 1=0.72 Whitfield and Turner (1980) | Lu and Chen (1977)
9.4 1=01-1.0 Palmer and Van Eldik Clever and Johnston (1980)
(1983)
9.96 | = seawater, estimate Sipos et al. (1980)
8.8 seawater Palmer and Van Eldik Balko et al. (1981)?
(1983)
8.6 1=0.7 Palmer and Van Eldik Laddha et al. (1981)?
(1983)
9.08 1=0 Palmer and Van Eldik Laddha et al. (1981)?
(1983)
10.29 Millero and Hawke (1992) Turner et al. (1981)
8.86 = 0.04 1=0.3 Palmer and Van Eldik Bilinski and Schindler
(1983) (1982)
9.15 Sol. 0.3 M NaClO, Bilinski et al. (1976) Bilinski and Schindler (to be
published)
10.06t Bilinski and Schindler
(1982)
8.86 +0.10 Sol. 0.3 M NaClO, Bilinski and Schindler
(1982)
10.1 Sol.1=0 Ferri et al. (1987) Bilinski and Schindler
(1982)
8.9+0.10 Sol. 3 M NaClO,4 Ferri et al. (1987)
10.4 Sol.1=0 Ferri et al. (1987)
10.13+0.24 Review, provisional value Powell et al. (2009)
2Pb?" + H,0 + CO4(g) = Pb,COs™" + 2H" -10.51 £ 0.37 EMF, 3 M NaClO, Neher-Neumann (1992)
2Pb?" + COs” = Pb,COs*" 8.28 + 0.37* EMF, 1=0 Neher-Neumann (1992)
3Pb® + H,0 + CO4(g) = PhsCOs™ + 2H* -9.20 £ 0.01 EMF, 3 M NaClO,4 Neher-Neumann (1992)
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System PbO-CO,-H,O (Continued)

Association Constant Reaction Log K& AH? Comments Secondary Reference Primary Reference
R,P, T,
kJ
3Pb? + COs* = PbsCOs*" 7.19 + 0.05* - | EMF,1=0 Neher-Neumann (1992)
Pb* + COs” + OH = PbCOs0H 10.9+0.3 - | Sol. 3 M NaClO,4 Ferri et al. (1987)
Pb* + CO3” + H" = PbHCO," 13.2 - | Estimate Zirino and Yamamoto
(1972)
12.23* -11.26* | Estimate Fouillac and Criaud (1984)
12.38* - Millero and Hawke (1992)
12.72*+ 0.1 - | EMF,1=0 Neher-Neumann (1992)
Pb® + H,0 + CO,(g) = PbHCO," + H* -6.09 £ 0.04 - | EMF, 3 M NaClO, Neher-Neumann (1992)
Pb? + HCOs* = PbHCO;" 2.9 - Long and Angino (1977) Zirino and Yamamoto
(1972)
2.40 -1 1=0.72 Whitfield and Turner (1980) | Zirino and Yamamoto
(1972)
2.9 -1 1=0 Palmer and Van Eldik Zirino and Yamamoto
(1983) (1972)
2.2 - 1=0.72 Whitfield and Turner (1980) | Dyrssen and Wedborg
(1975)
1.86+0.1 - | Review, provisional value 3.5 M Powell et al. (2009)
NaClO4
Pb? +3C05% + 3H" = Pb(HCO3)s 36.18 - | 20°C, =7 Baranova and Barsukov
(1965)
Pb?" + 2HCO; = Pb(HCO3),(aq) 4.77 - | 20°C. Pal. 1. M NaHCO; + Baranova and Barsukov
NaNO; (1965)
4.77 - | 18 £0.5°C. Pol., 1 M NaHCO3 Baranova (1967)
4,78 £ 0.07 - 1=1. Baranova (1969) Baranova (1967)

Lead

186




rreeees |1

BERKELEY LAB

Table 1. Association Constants for Aqueous Carbonate Complexes in the System PbO-CO,-H,O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP,T,
kJ
Pb?" + 3HCO; = Pb(HCO3)s 5.19 - | 20°C. Pol., 1. M NaHCO3; + Baranova and Barsukov
NaNOs; (1965)
5.21 +0.06 18 £ 0.5°C. Pol., 1 M NaHCOs Baranova (1967)
6.20 £ 0.05 1=1. Baranova (1969) Baranova (1967)
Cu* + 2C0O5% + 2H,0 = [Cu(OH),(HCO3),]* - - | 0.5-1.0 M KHCOs. Evidence for Shirai (1961)
complex. Incurrectly specified
charge on complex.
Pb? + COs* + CI = PbCOCI 7.23+0.74 -l1=0 Woosley and Millero (2013)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
* Corrected using bicarbonate dissociation equation from PHREEQC

T Corrected to 0 ionic strength using the extended Debye-Huckel equation
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Table 2. Solubility Constants of Solid Carbonates in the System PbO-CO,-H,O

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P,.T,
kJ
Minerals
Caledonite
PbsCu,CO5(SO,)s(0OH)s + 6H" = 5Pb** + 2Cu** -26.6 See note Abdul-Samad et al. (1982)
+ CO5” + 3504 + 6H,0
Cerussite
PbCOs(s) = Pb*" + CO5> ~-14. 16°C Johnston (1915)
=-14. 16°C Kelley and Anderson Johnston (1915)
(1935)
18°C. Solubility = 0.014% and Haehnel (1924)
0.015% at P(CO,) = 1 and 56
atm., respectively
-11.87 18°C Kelley and Anderson Haehnel (1924)
(1935)
-13.140 - | Review. No correction for activity Kelley and Anderson
coefficients (1935)
-12.82 - | Literature Review Latimer (1952) Kelley and Anderson
(1935)
-13.66 - | Based on electrochemical cell Saegusa (1950)
measurements
-12.89 - Zhuk (1954) Goskhimizdat (1952)
-13.24 - | Cond. measurements Uggla (1959)
-13.13 - Nasénen et al. (1961)
-13.13 - Clever and Johnston (1980) | Nésénen et al. (1961)
-12.96 - Clever and Johnston (1980) | Egorev and Titova (1962)
-12.83 - | From thermodynamic data Clever and Johnston (1980) | Wagman et al. (1968)
-13.45 23.89 | Thermodynamic calculations Helgeson (1969)
-13.45 - Clever and Johnston (1980) | Helgeson (1969)
-13.13 Hem (1976)
-13.1 -1 1=0 Palmer and Van Eldik Smith and Martell (1976)
(1983)
-11.0 -1 1=1 Palmer and Van Eldik Smith and Martell (1976)
(1983)
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Table 2. Solubility Constants of Solid Carbonates in the System PbO-CO2-H20 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RPT,
kJ
-13.1 1=0 Palmer and Van Eldik Clever and Johnston (1980)
(1983)
-12.15 + 0.05 Sol. 0.3 M NaClO,4 Bilinski and Schindler
(1982)
-13.35% Bilinski and Schindler
(1982)
-12.1 1=0.3 Palmer and Van Eldik Bilinski and Schindler
(1983) (1982)
-12.8 Wagman et al. (1982)
-13.21 Taylor and Lopata (1984)
-13.2+0.2 Literature Review Grauer (1999)
-13.18 £ 0.07 Review, recommended value Powell et al. (2009)
-11.70 Estimated Yoder et al. (2010)
PbCOg3(s) = PbCOs(aq) 6.4+0.1 1=0.3 Palmer and Van Eldik Bilinski and Schindler
(1983) (1982)
Hydrocerussite
Pb3(COs)2(OH), + 2H" = 3Pb? + 2C0O5* + 2H,0 - Soly in distilled water and various Ruchhoft and Kachmar
salts (1942)
-17.64 Taylor and Lopata (1984)
-16.91 [not found in ref] Mercy et al. (1998)
-9.70 Estimated Yoder and Rowand (2006)
-14.30 Estimated Yoder et al. (2010)
Pb3(CO3)2(OH), = 3Pb*" + 2C0O5> + 20H -46.78 Sol. | = 0. Calc from Gibbs free Schrock (1980)
energy of formation
-44.08 £ 0.06 Sol. 0.3 M NaClO,, uncorrected Bilinski and Schindler
for complex formation (1982)
-44.81 +0.20 Sol. 0.1 M NaClO,, uncorrected Bilinski and Schindler
for complex formation (1982)
-43.77 £0.30 Sol. 0.3 M NaClO,, corrected for Bilinski and Schindler

complex formation

(1982)
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Table 2. Solubility Constants of Solid Carbonates in the System PbO-CO2-H20 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P. T,
kJ
-44.1+0.1 1=0.3 Palmer and Van Eldik Bilinski and Schindler
(1983) (1982)
-44.8 + 0.2 I=0.1 Palmer and Van Eldik Bilinski and Schindler
(1983) (1982)
Pb3(CO3),(OH), + 7OH- = 3HPbhO, + 2C0O5> + -5.10 - | Corrections for ionic strength Randall and Spencer
3H,0 approximate (1928)
-5.10 Naumov et al. (1974) Randall and Spencer
(1928)
Leadbhillite
PbsS04(COs)2(OH), + 2H" = 4Pb*" + 350,% + 2 -26.7 Abdul-Samad et al. (1982)
COs” + 2H,0
Phosgenite
Pb,(CO3)Cl, = 2Pb** + CO5> + 2CI -9.90 - Naumov et al. (1974) Nasénen et al. (1963)
-9.93 + 0.08 - | Review, recommended value Powell et al. (2009)
Pb,(CO3)Cl, + 2H" + 2CI" = 2PbCl,(s) + CO,(g) 19.78 - | 25°C,1=0 Naséanen et al. (1962)
+ H0
Pb,(CO3)Cl, + CO,(g) + H,0 = PbCO;z + 2H" -19.68 - | 25°C,1=0 Nasanen et al. (1962)
2CI
Synthetic Phases
Pb,CO5(OH),
Pb,CO3(OH), + 2H" = 2Pb* + CO4” + 2H,0 -2.70 - | Estimated Yoder et al. (2010)
PbsCO5(0OH)4
Pb3sCO3(OH), + 4H" = 3Pb* + CO3> + 4H,0 6.30 - | Estimated Yoder et al. (2010)
Pb,CO;(OH)e
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Table 2. Solubility Constants of Solid Carbonates in the System PbO-CO2-H20 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P. T,
kJ
Pb4CO3(OH)s + 6H" = 4Pb* + COZ* + 6H,0 15.30 - | Estimated Yoder et al. (2010)
PbsCO3(OH)g
PbsCO3(OH)s + 8H" = 5Pb* + COZ* + 8H,0 24.30 - | Estimated Yoder et al. (2010)
Pbs(COs3),(OH)s
Pbs(CO3)2(OH)s + 6H" = 5Pb** + 2C0O5” + 6H,0 3.60 - | Estimated Yoder et al. (2010)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

T Corrected to 0 ionic strength using the extended Debye-Huckel equation

Note: Abdul-Samad et al. (1982) also determined the solubility of wherryite with an assumed formula: PbCuCO3(S0O,),O(OH,Cl),. However, a subsequent crystallographic structure
determination by Cooper and Hawthorne (1994) indicated that its composition is actually Pb;Cu,(SQ4)4(Si04)2(OH),.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System PbO-CO,-H,0
extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction Log K® AH? Database Source
RPT,
kJ
Pb* + COs* = PbCOs(aq) 6.53 MinteqA2
7.24 Wateq4f
6.58 V8.R6+
7.24 0 | Minteq (2009)
6.478 0. | Minteq (2006) NIST46.4, MTQ3.11
7.240 - | Phreeqc (2009)
7.24 - | Wateqgaf (2005)
7. -3.015 | ThermoChimie v.7.b Blanc et al. (2006)
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
7.0568 - | Thermoddem (2009) Blanc et al. (2006)
Pb? +2C05% = Pb(COs),> 9.94 MinteqA2
10.64 Wateqg4f
9.40 V8.R6+
10.64 0 | Minteq (2009)
9.938 0. | Minteq (2006) NIST46.4, MTQ3.11
10.64 - | Phreeqc (2009)
10.64 - | Wateqa4f (2005)
10.13 - | ThermoChimie v.7.b Lothenbach et al. (1999)
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
10.1296 - | Thermoddem (2009) Blanc et al. (2006)
Pb* + COs* + H" = PbHCO;" 13.23 MintegA2
13.36 Wateqg4f
- V8.R6+
13.2 0 | Minteq (2009)
13.2 0. | Minteq (2006) NIST46.4, MTQ3.11
13.229 - | Phreeqc (2009)
13.229 - | Wateqa4f (2005)
- - | ThermoChimie v.7.b
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
13.7698 - | Thermoddem (2009) Martell and Smith (1989)
@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3b. Solubility Constants of Solid Carbonates in the System PbO-CO,-H,0 extracted from
Databases of Distribution-of-Species Codes

Solubility Constant Reaction Log K® AH? Database Source
RP,T,
kJ
Cerussite
PbCOs(s) = Pb* + CO4” -13.39 MintegA2
-13.29 Wateq4f
-13.54 V8.R6+
-13.13 20.33 | Minteq (2009)
-13.13 24.79 | Minteq (2006)
-13.13 20.33 | Phreeqc (2009)
-13.13 20.33 | Wateq4f (2005)
-13.29 27.414 | ThermoChimie v.7.b Not cited.
- - | NAGRA/PSI (2001)
-13.5379 - | Data0.YMP.R5 Helgeson et al. (1978)
-13.2898 - | Thermoddem (2009) Taylor and Lopata
(1984)
Hydrocerussite
Pb3(CO3),(OH), + 2H" = 3Pb** + 2CO5” + -18.76 MintegA2
2H,0
-17.46 Wateq4f
-18.81 V8.R6+
-17.46 -0 | Minteq (2009)
-18.7705 -0 | Minteq (2006)
- - | Phreeqc (2009)
-17.460 - | Wateq4f (2005)
-17.91 -5.16 | ThermoChimie v.7.b Sangameshwar and
Barnes (1983)
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
-17.9040 - | Thermoddem (2009) Taylor and Lopata
(1984)
Pb,OCO;
Pb,OCO; + 2H" = 2Pb*? + H,0 + CO;” -0.5 -47.95 | Minteq (2009)
-0.5578 -40.8199 | Minteq (2006)
- - | Phreeqc (2009)
-0.5 -47.95 | Wateq4f (2005)
- - | ThermoChimie v.7.b
- - | NAGRA/PSI (2001)
-0.6577 - | Data0.YMP.R5 Wagman et al. (1982)
- - | Thermoddem (2009)
Pb30,C0O4
Pb30,CO; + 4H" = 3Pb™® + COz” + 2H,0 11.02 -110.58 | Minteq (2009)
11.02 -110.583 | Minteq (2006)
- - | Phreeqc (2009)
11.020 -110.58 | Wateq4f (2005)

ThermoChimie v.7.b
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Table 3b. Solubility Constants of Solid Carbonates in the System PbO-CO,-H,0 extracted from

Databases of Distribution-of-Species Codes (Continued)

Solubility Constant Reaction Log K® AH? Database Source
R,P.,T,
kJ
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
- - | Thermoddem (2009)
Phosgenite
PbCl,:PbCO; = 2Pb*? + 2CI" + CO;? -19.81 -0 | Minteq (2009)
-19.81 -0 | Minteq (2006)
- - | Phreeqc (2009)
-19.810 - | Wateqg4f (2005)
-19.9 -163.291 | ThermoChimie v.7.b Naumov et al. (1974)
- - | NAGRA/PSI (2001)
-19.9643 - | Data0.YMP.R5 Wagman et al. (1982)
-19.8998 - | Thermoddem (2009) Rickard and Nriagu
(1978)
Plumbonacrite
Pb1o(OH)sO(COs)s + 8H' = 10Pb*™ + - - | Minteq (2009)
6CO;” + TH,0
-8.76 -0 | Minteq (2006)
- - | Phreeqc (2009)
- - | Wateq4f (2005)
-42.09 - | ThermoChimie v.7.b Not cited.
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
-42.0891 - | Thermoddem (2009) Taylor and Lopata

(1984)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.V8.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://mwwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MintegA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQAZ2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16-19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Wateq4f Ball, J. W., & Nordstrom, D. K. (1991). User's manual for WATEQA4F, with revised thermodynamic data
base and test cases for calculating speciation of major, trace, and redox elements in natural waters.
U.S. GEOLOGICAL SURVEY, Open-File Report 91-183, Revised and reprinted - April, 2001. p. 81-94

Wateq4f (2005) USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-

Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/WATEQ4F.DAT
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Table 4a. Thermodynamic properties of Lead Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

Mineral AG?,P, . Secondary Reference Primary Reference
Name Formula Kalgfw ™
Minerals
Caledonite PbsCu,(CO3)(SO4)3(OH)e -4328 + 2 Abdul-Samad et al. (1982)
Cerussite PbCO; -626.39 Kelley and Anderson (1935)
-627.60 | Karpov et al. (1968) Saegusa (1950)
-627.60 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)
-627.60 Saegusa (1950)
-626.34 | Latimer (1952) Rossini et al. (1952)?
-626.34 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
-626.30 £ 4.18 | Robie (1962, 1966) Rossini et al. (1952)
-626.34 | Karpov et al. (1968) Rossini et al. (1952)
-626.3 | Woods and Garrels (1987) Rossini et al. (1952)
-626.3 | La Iglesia and Felix (1994) Rossini et al. (1952)
calculated -625.59 Zhuk (1954)
-625.59 | Karpov et al. (1968) Zhuk (1954)
-627.60 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
-628.0 Uggla (1959)
-626.3 | Woods and Garrels (1987) Pourbaix (1960)
-626.39 | Karpov et al. (1968) Gerasimov (1961)
- | Phase equilibria Grisafe and White (1964)
-49.79% | Karpov et al. (1968) Kireev (1964)

-625.337 + 1.548

Robie et al. (1979)

Adami and Conway (1966), Parker et al.
(1971)

-629.02 | Naumov et al. (1974) Adami and Conway (1966)
-625.5+ 1.6 | Robie and Hemingway (1995), Wagman et al. (1982)
-629.0 | Woods and Garrels (1987) Naumov et al. (1974)
-629.0 | Lalglesia and Felix (1994) Naumov et al. (1974)
-626.3 | Dobrydiev et al. (2005) Ryabin et al. (1977)
-629.1 | Woods and Garrels (1987) Helgeson et al. (1978)
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Table 4a. Thermodynamic properties of Lead Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation
(Continued)

Mineral AG?,P, . Secondary Reference Primary Reference
Name Formula 1
kJ/gfw
-628.8 | Woods and Garrels (1987) Hem (1978)
-625.5 | Woods and Garrels (1987) Rickard and Nriagu (1978)
-625.3 | Woods and Garrels (1987) Robie et al. (1978)
-625.3 | Lalglesia and Felix (1994) Robie et al. (1979)
-625.5 | Woods and Garrels (1987) Wagman et al. (1982)
-625.5 | Lalglesia and Felix (1994) Wagman et al. (1982)
-738.16 | Stern (2000) Barin (1993)
predicted -626.3+ 1.5 La Iglesia and Felix (1994)
Hydrocerussite Pb3(C0O3),(0OH), -1711.00 + 4.18 | Naumov et al. (1974) Randall and Spencer (1928)
-1712. Latimer (1952)
-1711.67 | Karpov et al. (1968) Latimer (1952)
-1711.67 | Karapet'yants and Karapet'yants (1970) Latimer (1952)
estimated -1699. Garrels (1957)
-1699. | Woods and Garrels (1987) Garrels (1957)
-1698.70 | Karpov et al. (1968) Garrels (1960)
-1711.0 | Woods and Garrels (1987) Naumov et al. (1974)
-1711.0 | Mercy et al. (1998) Naumov et al. (1974) after Randall and
Spencer (1928)
TGA, phase transformation Ball and Casson (1977b)
-1714.2 | Woods and Garrels (1987) Hem (1978)
-1700.4 | Woods and Garrels (1987) Rickard and Nriagu (1978)
-1709.6 Schrock (1980)
-1705 + 11. | Mercy et al. (1998) Taylor and Lopata (1984),
Synthetic -1699.8 £ 1.6 Mercy et al. (1998)
Leadhillite Pb4(S0,)(CO3)2(OH). -2525+ 4 Abdul-Samad et al. (1982)
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Table 4a. Thermodynamic properties of Lead Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

(Continued)

Mineral AG?,P, . Secondary Reference Primary Reference
Name Formula 1
kJ/gfw
Phosgenite Pb,(CO,)Cl, -952.28 £ 4.18 | Naumov et al. (1974) Nasénen et al. (1963)
Plumbonacrite Pb;(CO3)sO(OH)s
Shannonite Pb,0OCO; 818.10 | Saegusa (1950), based in part on: Marshall and Bruzs (1925)
-816.88 Kelley and Anderson (1935)
-818.4 | Woods and Garrels (1987) Rossini et al. (1952)
- | Phase equilibria Grisafe and White (1964)
- | TGA, phase transformation Ball and Casson (1975, 1977b)
- | DTA-TG, high-pressure DTA Yamaguchi et al. (1980)
and PXRD
-816.7 | Woods and Garrels (1987) Wagman et al. (1982)
Widenmannite Pb2(UO,)(COs); -2818.0 £ 10.0 Van Genderen and Van der Weijden
(1984)
Synthetic Phases
2Pb0O.PbCO; 2Pb0O.PbCO; -1012. | Woods and Garrels (1987) Rossini et al. (1952)
- | Phase equilibria Grisafe and White (1964)
- | TGA, phase transformation Ball and Casson (1975, 1977a)
- | DTA-TG, high-pressure DTA Yamaguchi et al. (1980)
and PXRD
PbO.2PbCO; PbO.2PbCO; - | Phase equilibria Grisafe and White (1964)
TGA, phase transformation Ball and Casson (1977b)
- | DTA-TG, high-pressure DTA Yamaguchi et al. (1980)
and PXRD
3Pb0O.4PbCO; 3Pb0.4PbCO; - | Phase equilibria Grisafe and White (1964)

@ Formation from the oxides
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Table 4b. Thermodynamic properties of Lead Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

Mineral AH ?,P,,T, Secondary Reference Primary Reference
Name Formula "
kd/gfw
Minerals
Cerussite PbCO; -708.31 | Kelley and Anderson (1935) Gunther, cited, but not referenced
-700.23 Kelley and Anderson (1935)
-700.04 Saegusa (1950)
-700.04 | Karpov et al. (1968) Saegusa (1950)
-700.04 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)
-699.98 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
-699.98 | Latimer (1952) Rossini et al. (1952)?
-699.98 £ 2.93 | Robie (1962, 1966) Rossini et al. (1952)
-699.98 | Karpov et al. (1968) Rossini et al. (1952)
-700.0 | Woods and Garrels (1987) Rossini et al. (1952)
-7000.0 | La lglesia and Felix (1994) Rossini et al. (1952)
-722.6 Uggla (1959)
- | Phase equilibria Grisafe and White (1964)
-83.26" | Karpov et al. (1968) Kireev (1964)
-702.70 £ 1.26 | Naumov et al. (1974) Adami and Conway (1966)
-699.150 + 1.172 | Robie et al. (1979) Adami and Conway (1966), Parker et al.
(1971)
-702.7 | Woods and Garrels (1987) Naumov et al. (1974)
-702.7 | Lalglesia and Felix (1994) Naumov et al. (1974)
-690 + 40 | CO; atm Ball and Casson (1977a)
-689 + 40 | N, atm Ball and Casson (1977a)
-700.0 | Dobrydiev et al. (2005) Ryabin et al. (1977)
-702.9 | Woods and Garrels (1987) Helgeson et al. (1978)
-699.2 | Woods and Garrels (1987) Robie et al. (1978)
-699.2 | La lglesia and Felix (1994) Robie et al. (1978)
-699.1 | Woods and Garrels (1987) Wagman et al. (1982)
-699.1 | Lalglesia and Felix (1994) Wagman et al. (1982)
-699.2 + 1.2 | Robie and Hemingway (1995) Wagman et al. (1982)
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Table 4b. Thermodynamic properties

of Lead Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation
(Continued)

Mineral AH? Secondary Reference Primary Reference
f,P.T,
Name Formula "
kJ/gfw

-699.10 | Stern (2000) Barin (1993)
predicted -700.0+ 1.5 La Iglesia and Felix (1994)
amorphous PbCO; -697.47 | Kelley and Anderson (1935) Berthelot in Landolt-Bornstein (1923)
Hydrocerussite Pb3(CO3),(OH), -1906 + 80 Ball and Casson (1977a)
CO; atm
N atm -1939 + 81 Ball and Casson (1977a)

-1914.2 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
Plumbonactrite Pb1o(CO3)sO(0OH)s
Shannonite PbO.PbCO; -919.11 | Saegusa (1950), based in part on: Marshall and Bruzs (1925)

-919.31 Kelley and Anderson (1935)

-920.5 | Woods and Garrels (1987) Rossini et al. (1952)
Phase equilibria - Grisafe
and White (1964)
Thermal - Ball and Casson (1975, 1977a)
transformation
CO, atm -934 + 30 Ball and Casson (1977a)
N atm -917 £ 30 Ball and Casson (1977a)
-918.4 | Woods and Garrels (1987) Wagman et al. (1982)
Widenmannite Pb,(UO,)(COs)s -3102.0 Van Genderen and Van der Weijden
(1984)

Synthetic Phases
2Pb0O.PbCO; 2PbO.PbCO; -1142. | Woods and Garrels (1987) Rossini et al. (1952)

Phase equilibria

Grisafe and White (1964)
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Table 4b. Thermodynamic properties

of Lead Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation
(Continued)

Mineral AH (vapr . Secondary Reference Primary Reference
Name Formula "
kJd/gfw
Thermal - Ball and Casson (1975, 1977a)
transformation
CO, atm -1127 + 40 Ball and Casson (1977a)
N atm -1131+ 35 Ball and Casson (1977a)
Pb0O.2PbCO; PbO.2PbCO; - Grisafe and White (1964)
Phase equilibria
CO, atm -1624 + 60 Ball and Casson (1977a)
3Pb0O.4PbCO; 3Pb0O.4PhCO;3 -710.61 | Kelley and Anderson (1935) Thompsen, cited, but not referenced
Phase equilibria - Grisafe and White (1964)
Pb(HCOs3), Pb(HCO3), -837.22 | Karpov et al. (1968) Rossini et al. (1952)
Estimated value of -1456.03 + 62.76 Wilcox and Bromley (1963)
fictive compound
-1456.03 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)

@ Formation from the oxides
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Table 4c. Thermodynamic properties of Lead Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral Sgr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
Minerals
Cerussite PbCO; 131.0+3.3 Anderson (1934)
graphical
calculated 131.4 Anderson (1934)
130.96 + 3.35 | Kelley and King (1961) Anderson (1934)
130.96 + 3.35 | Naumov et al. (1974) Anderson (1934)
135.56 Saegusa (1950)
135.56 | Karpov et al. (1968) Saegusa (1950)
135.56 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)
130.96 | Karpov et al. (1968) Latimer (1952)
130.96 | Latimer (1952) Rossini et al. (1952)?
130.96 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
131.0 | Woods and Garrels (1987) Rossini et al. (1952)
calculated 128.45 Zhuk (1954)
128.45 | Karpov et al. (1968) Zhuk (1954)
128.45 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
131.0 + 3.4 | Robie and Hemingway (1995) Kelley (1960)
130.96 + 3.35 | Robie (1962, 1966) Kelley and King (1961)
130.96 + 3.35 | Robie et al. (1978) Kelley and King (1961)
Phase equilibria, - Grisafe and White (1964)
200-900°C. and
15-1400 bars
P(CO»)
131.0 | Woods and Garrels (1987) Naumov et al. (1974)
131.0 | Woods and Garrels (1987) Helgeson et al. (1978)
131.0 | Woods and Garrels (1987) Robie et al. (1978)
131.0 | Woods and Garrels (1987) Wagman et al. (1982)
131.00 | Stern (2000) Barin (1993)
Hydrocerussite Pb3(C0O3),(0OH),
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Table 4c. Thermodynamic properties of Lead Carbonate Minerals and Synthetic Solid Carbonates: Entropies (Continued)

Mineral SO Secondary Reference Primary Reference
Pr vTr
Name Formula 1 1
J K™ gfw

Plumbonacrite Pb;(CO3)sO(OH)s

Shannonite PbO.PbCO; 202.92 Kelley and Anderson (1935)
202.9 | Woods and Garrels (1987) Rossini et al. (1952)

Phase equilibria - Grisafe and White (1964)
204.2 | Woods and Garrels (1987) Wagman et al. (1982)

Synthetic Phases

2Pb0O.PbCO; 2Pb0O.PbCO; 272. | Woods and Garrels (1987) Rossini et al. (1952)

Phase equilibria - Grisafe and White (1964)

PbO.2PbCO; PbO.2PbCO; - Grisafe and White (1964)

Phase equilibria

3Pb0O.4PbCO; 3Pb0O.4PbCO; - Grisafe and White (1964)

Phase equilibria

Pb(HCOs3), Pb(HCOs3), 152.72 | Karpov et al. (1968) Latimer (1952)
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Table 5. Crystallographic Properties of Lead Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference
Minerals
1 Barstowite Pb4(CO3)Clse(H,0) Steele et al. (1999b)
2 Barstowite Pb4(CO3)Clse(H,0) Gaines et al. (1997)
3 | Caledonite PbsCu2(CO3)(SO4)3(OH)s Gaines et al. (1997)
4 | Caledonite PbsCu2(CO3)(SO4)3(OH)s Mineralogy Database (http://webmineral.com/)
5 | Caledonite PbsCu»(CO3)(SO4)3(OH)s Schofield et al. (2009)
6 Cerussite PbCO; Colby and LaCoste (1933)
7 Cerussite PbCO; Chevrier et al. (1992)
8 Cerussite PbCO; Antao and Hassan (2009)
9 Cerussite PbCO; Gaines et al. (1997)
10 | Cerussite PbCO; Mineralogy Database (http://webmineral.com/)
Name Cell Constants Space Group vo*
a0, A bo, A Cor A @ B, ° "o z cm’ gfw*
Minerals
1 Barstowite 4.2043 9.199 16.663 91.82 2 P2:m 193.97
2 Barstowite 4.218 9.180 16.673 91.48 2 P2; or P2:m 194.33
3 Caledonite 20.089 7.146 6.560 2 Pmn2; 5.689
4 Caledonite 20.088 7.143 6.564 2 Pmn2; 283.60
5 Caledonite 20.085 7.141 6.563 2 Pmn2, 286.44
6 Cerussite 5.16s 8.46g 6.146 4 Pmcn 40.494
7 Cerussite 5.179(1) 8.492(3) 6.141(2) 4 Pmcn 40.662
8 Cerussite 5.18324(2) 8.49920(3) 6.14746(3) 4 Pmcn 40.773
9 Cerussite 5.180 8.492 6.134 4 Pmcn 40.623
10 | Cerussite 5.195 8.436 6.152 4 Pmcn 40.591
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Lead

Name Formula Reference
11 | Dundasite PbAI(CO3),(OH)4¢(H.0) Birch et al. (2000)
12 | Dundasite PbAI(CO3),(OH)4¢(H20) Gaines et al. (1997), Cocco et al. (1972)
13 | Hydrocerussite Pb3(COs3),(OH), Gaines et al. (1997)
14 | Hydrocerussite Pb3(COs3),(OH), Cowley (1956)
15 | Hydrocerussite Pb3(COs3),(OH), Martinetto et al. (2002)
16 | Kegelite PbsAl4SigO20(S04)2(CO3)4(OH)s Gaines et al. (1997), Dunn et al. (1990)
17 | Leadhillite Pb4(SO4)(CO3),(OH), Gaines et al. (1997)
18 | Leadhillite Pb4(SO4)(COs)2(OH), Mineralogy Database (http://webmineral.com/)
19 | Leadhillite Pb4(S04)(CO3)2(OH), Bindi and Menchetti (2005)
20 | Leadhillite Pb4(S04)(CO3)2(OH), Giuseppetti et al. (1990)

Name Cell Constants Space Group Vo

a0, A bo, A Cor A @ B, ° "o z om’ gfw*

11 Dundasite 9.05 16.35 5.61 4 Pbmm 126.35
12 | Dundasite 9.08 16.37 5.62 4 Pbmm 125.77
13 | Hydrocerussite 5.24 23.74 3 P3;m 113.32
14 | Hydrocerussite 9.06 8.27 3 P3;m 118.01
15 | Hydrocerussite 5.2465 23.702 3 R-3m 113.42
16 | Kegelite 21.04(1) 15.55(1) 8.986(6) 91.0(1) 3 A2/m; A2, Am 590.07
17 | Leadhillite 9.09 11.57 20.74 90.5 8 P2,/a 164.19
18 Leadbhillite 9.08 20.76 11.56 89.8 8 P2,/a 164.03
19 Leadbhillite 9.0104 20.792 11.59 90.50 8 P2,/a 163.44
20 Leadbhillite 9.11 20.82 11.56 90.46 8 P2-1/a 165.05
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Name Formula Reference
21 | Macphersonite Pb4(SO4)(CO3),(0OH), Gaines et al. (1997)
22 | Macphersonite Pb4(SO4)(CO3),(0OH), Steele et al. (1998)

23 | Nasledovite

PbM n3AI4(003)4(SO4) Os'S(HzO)

Gaines et al. (1997)

24 | Petterdite

PbSro.1Cr1.5Al0.4(CO3)2.1(OH)364(H20)

Gaines et al. (1997)

25 | Petterdite

PbCr"',(CO3)2(OH)4*(H-0)

Birch et al. (2000)

26 | Phosgenite Pb,(CO5)Cl; Gaines et al. (1997)
27 | Phosgenite Pb,(CO5)Cl; Giuseppetti and Tadini (1974)
28 | Plumbonacrite Pb1o(CO3)sO(OH)s Gaines et al. (1997)
29 | Plumbonacrite Pb1o(CO3)6O(OH)s Krivovchev and Burns (2000a)
30 | Sanromanite Na,CaPb3(CO3)s Mineralogy Database (http://webmineral.com/)

Name Cell Constants Space Group Vo

a0, A bo, A Cor A @ B, ° 7 om’ gfw*

21 | Macphersonite 10.37 23.10 9.35 Pcab 171.85
22 | Macphersonite 9.242 23.050 10.383 8 Pbca 166.50
23 | Nasledovite Triclin
24 | Petterdite 9.079 16.321 5.786 4 Pbnm 129.08
25 | Petterdite 9.079(3) 16.321(9) 5.786(7) 4 Pbnm 129.08
26 | Phosgenite 8.112 8.112 8.814 4 P4/mbm 87.321
27 | Phosgenite 8.160 8.160 8.883 4 P4/mbm 89.049
28 | Plumbonacrite 9.076 24.96 3? hex 357.43
29 | Plumbonacrite 9.0921 24.932 3 P6-3cm 358.30
30 | Sanromanite 10.5564 6.6446 P6smc 193.09
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Name Formula Reference

31 | Sanromanite Na,CaPb3(COs3)s Schluter et al. (2007)

32 | Shannonite Pb,OCO;3 Krivovichev and Burns (2000b)

33 | Shannonite Pb,OCO;3 Roberts et al. (1995)

34 | Susannite Pb4(SO4)(CO3),(OH), Gaines et al. (1997)

35 | Susannite Pb4(SO4)(CO3),(OH), Mineralogy Database (http://webmineral.com/)

36 | Susannite * Pb4(SO4)(CO3),(0OH), Bindi and Menchetti (2005)

37 | Susannite Pb4(SO4)(CO3),(OH), Steele et al. (1999a)

38 | Widenmannite Pb2(UO2)(CO3)s Gaines et al. (1997)

39 | Widenmannite Pb2(UO2)(CO3)s Plasil et al. (2010)

Name Cell Constants Space Group vo*
a0, A bo, A Co, A o ° B, ° 7,° z cm® gfw™

31 | Sanromanite 10.570(1) 6.651(1) 2 P6smc 193.77

32 | Shannonite 5.1465 9.014 9.315 5 P2-12-12-1 52.047

33 | Shannonite 9.294(3) 9.000(3) 5.133(2) 4 P2,22; or 51.713
P2,2,2;

34 | Susannite 9.05 11.54 3 R-3 164.31

35 | Susannite 9.05 11.54 3 R-3 164.31

36 | Susannite * 9.077 11.611 3 P3 166.31

37 | Susannite 9.0718 11.570 3 P3 165.53

38 | Widenmannite 8.99 9.36 4.95 2 Pnnm, Pnm2; or 125.42
P22,2,

39 | Widenmannite 8.964(4) 9.378(6) 5.007(4) 2 Pnnm, Pnm2; or 126.74
P22,2;

Lead

207




rreeees |'1

BERKELEY LAB

Name Formula Reference

Synthetic Phases

40 | Pb3O,COs Pb;0,CO3 Krivovichev and Burns (2000c)

41 | NaPb,(COg3).(OH) NaPb,(CO3),(OH) Belokoneva et al. (2002)

42 | NaPb,(COgz),(OH) NaPb,(COs),(OH) Krivovichev and Burns (2000c)

Name Cell Constants Space Group vo*
a0, A bo, A Cor A a, B, 7,° z cm’ gfw*
Synthetic Phases
40 | Pbs0,COs 22.194(3) 9.108(1) 5.7405(8) Pnma 87.351
41 | NaPby(COj3),(OH) 5.268(4) 13.48(1) 2 P31c 97.551
42 | NaPby(CO;3)2(OH) 5.276(1) 13.474(4) 2 P63mc 97.804
*T=82C

*Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than 10 wt.% Lead*

Name Formula Lead, gfw Thermodynamic
wt.% Data
Est. Meas.
Ashburtonite HPb,Cu"4Si,012(HCO3)4(OH).Cl 47.75 1735.88 no no
Barstowite Pb4(CO3)Clse(H0) 74.03 1119.54 no no
Britvinite Pb7.xM0a.5[(Si,Al)5014] (BO3)(BO3,As04)(CO3)(OH,0)7(x<0.5) 66.62 4587.29 no no
Caledonite PbsCu,(CO3)(SO4)3(OH)e 64.21 1613.34 yes no
Cerussite PbCO; 77.54 267.21 no yes
Dundasite PbAI>(CO3),(OH)4¢(H20) 44.35 467.23 no no
Ferrisurite (Pb,Cu)2-3(CO3)1.5-2(0OH,F)o 5.1[(Fe,Al)2Sis010(OH)]en(H.0) 38.50 914.93 no no
Gartrellite Pb(Cu,Fe"),(AsO4,S04)2(COs,H20)0.7 33.39 620.46 no no
Gysinite-(Nd) Pb(Nd,La)(CO3),(OH)+(H,0) 41.02 505.15 no no
Hydrocerussite Pb3(CO3),(OH), 80.14 775.63 no yes
Kegelite PbgAlsSigO20(S04)2(CO3)4(OH)s 57.59 2878.42 no no
Leadhillite Pb4(S04)(CO3)2(OH), 76.82 1078.90 yes no
Macphersonite Pb4(SO4)(CO3)2(0OH), 76.82 1078.90 no no
Nasledovite PbMn3Al4(CO3)4(S0O4)Os5(H,0) 21.01 986.11 no no
Petterdite PbCr"',(CO3)2(OH)4+(H-0) 40.63 510.01 no no
Philolithite Pb1,0sMn(Mg,Mn)(Mn,M@)4(SO4)(CO3)4Cls(OH)12 69.30 3587.70 no no
Phosgenite Pb,(COs)Cl, 75.99 545.31 yes no
Plumbonacrite Pb1o(CO3)sO(0OH)e 81.25 2550.10 no yes
Sanromanite Na,CaPb3(COs3)s 61.68 1007.70 no no
Schuilingite-(Nd) PbCu(Nd,Gd,Sm,Y)(CO3)3(OH)+1.5(H,0) 29.76 696.16 no no
Shannonite Pb,0OCO; 84.50 490.41 no yes
Surite (Pb,Cu),- 39.80 937.16 no no
3(CO2)1.52(0H, F)osi[(Al,Fe")2(Si,Al)4010(OH)2]*n(H-0)
Susannite Pb4(S04)(CO3)2(OH), 76.82 1078.90 no no
Widenmannite Pb,(UO,)(COs3); 47.94 864.46 no no

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System MnO/Mn,03 -CO,-H,0
Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P,.T,
kJ
Mn?* + COs* = MnCOs(aq) 4.90 -l1=0 Palmer and van Eldik Zirino and Yamamoto
(1983) (1972)
6.31 Estimate Mattigod and Sposito
(1977)
4.4 - | Estimated rom linear free energy relationship Morgan (2005) Langmuir (1979)
with oxalate complexes
4.10 - Millero and Hawke (1992) Turner et al. (1981)
4.90 - Nordstrom et al. (1990), Palmer and van Eldik
(1983)
4.10 1.88 | Estimate Fouillac and Criaud (1984)
3.54+0.19 - | EMF, 3 M NaClO, Neher-Neumann (1994)
4.70 £ 0.03 - | EMF, 1=0 Neher-Neumann (1994)
4.97 £0.32 1=0 Wolfram and Krupp (1996)
Mn?* + 2CO5% = Mn(CO3),> 8.99 Estimate Mattigod and Sposito
(1977)
11.61* - Millero and Hawke (1992) Lesht and Bauman (1978)
5.7 - | Estimated from linear free energy relationship | Morgan (2005) Langmuir (1979)
with oxalate complexes
5.7+0.3 - | 1M K,CO3 Fattahi et al. (1999)
Mn?* + COs* + H' = MnHCO3" 13.8* - | EMF Lesht and Bauman (1978) Nasanen (1942)
12.13* - Hem (1963a)
12.11* - Michard and Faucherre | Hem (1963a)
(1964)
12.13 +0.12* - | EMF Lesht and Bauman (1978) Hem (1963a)
12.93 £ 0.2* - | 1=4x10°-8x10° M NaHCOs. T not given Michard and Faucherre

(1964)
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System MnO/Mn,03-CO,-H,O (Continued)

Association Constant Reaction Log K® AH g . Comments Secondary Reference Primary Reference
kJ
12.26 + 0.12* - | EMF Lesht and Bauman (1978) Morgan (1967)
12.28* - Nordstrom et al. (1990), Morgan (1967)
11.60 + 0.05* - | EMF. Lesht and Bauman (1978)
12.28 -8.21 | Estimate Fouillac and Criaud (1984)
11.09 + 0.08* - | EMF, 1=0 Neher-Neumann (1994)
11.6 - Morgan (2005) Stumm and Morgan (1996)
Mn?* + HCO3 = MnHCO3" 3.52 - 1=029 Nas&nen (1942)
3.52 - | 1=0.29 Michard and Faucherre Naséanen (1942)
(1964)
3.48 Lesht and Bauman (1978) Nasanen (1942)
1.80 - | Sol. Krishnamurty et al. (1970) Hem (1963a)
1.80 Lesht and Bauman (1978) Hem (1963b)
1.95 Mattigod and Sposito Morgan (1967)
(1977)
1.93 Lesht and Bauman (1978) Morgan (1967)
0.45 £ 0.05 3 M NaClO, Gamsjager et al. (1970)
1.95 1=0 Palmer and van Eldik Zirino and Yamamoto
(1983) (1972)
1.80 =0 Palmer and van Eldik Smith and Martell (1976)
(1983)
1.27 £0.03 - 1=? Johnson and Bauman Lesht (1977)
(1978)
1.95 McBride (1979) Mattigod and Sposito
(1977)
1.261 +0.019 5°C Lesht and Bauman (1978)
1.242 +0.010 10°C Lesht and Bauman (1978)
1.235 +0.003 15°C Lesht and Bauman (1978)
1.275 + 0.004 25°C Lesht and Bauman (1978)
1.330 + 0.009 40°C Lesht and Bauman (1978)
1.385 + 0.015 55°C Lesht and Bauman (1978)
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System MnO/Mn,03-CO,-H,O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P T,
kJ
1.27 4.1 Palmer and van Eldik Lesht and Bauman (1978)
(1983)
1.28 Palmer and van Eldik Bauman (1981)
(1983)
1.04 Sychev et al. (1981)
1.04 Palmer and van Eldik Sychev et al. (1981)
(1983)
0.32+0.08 - | EMF, 3 M NaClO, Neher-Neumann (1994)
2.2+0.32 1=0 Wolfram and Krupp (1996)
MnHCO;" + HCO5 = Mn(HCO3),** 0.57 Sychev et al. (1981)
0.57 Palmer and van Eldik Sychev et al. (1981)
(1983)
Mn* + CO3” + OH = MNOHCO3 8.22+041 -190°C,1=0 Wolfram and Krupp (1996)
Mn?* + COz* + H,0 = MNOHCO3 + H' -6.1 - | Extrapolated from higher-temperature data Morgan (2005) Wolfram and Krupp (1996)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

* Corrected using bicarbonate dissociation equation from PHREEQC
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Table 2. Solubility Constants of Solid Carbonates in the System MnO/Mn,05-CO,-H,0

Solubility Constant Reaction Log K® AHg . Comments Secondary Reference Primary Reference
kJ
Minerals
Mn(l1)
Kutnohorite
MnCa(COs),(cr) = Mn** + Ca®" + COs> -19.36 - | From Fig. 3 in ref. Sol./pH, contains 2.21 Garrels et al. (1960)
wt.% Mg and 0.50 wt.% Fe.
-19.52 - | Estimate Yoder and Rowand (2006)
Rhodocrosite
MnCOs(cr) = Mn** + CO4” -10.06 Latimer (1952) Ageno and Valla (1911),
precipitated Mellor (1932)
18°C. Solubility = 0.04% and 0.08% at Haehnel (1924)
P(CO,) =1 and 56 atm., respectively
-10.056 - | Temperature not specified. Ruff and Ascher (1930)
-9.297 - | Review. No correction for activity Kelley and Anderson
coefficients (1935)
-12.72 -1 25°C,1=0 Nasanen (1942)
-9.30 - Zhuk (1954) Goskhimizdat (1952)
-10.06 Not reported Jensen et al. (2002) Latimer (1952)
-11.08 From Fig. 3 in ref. Sol./pH Garrels et al. (1960)
-10.34 - | From Fig. 3 in ref. Sol./pH Garrels et al. (1960)
-11.13 -5.98 | See note Nordstrom et al. (1990) Garrels et al. (1960)
-10.39 - | See note Nordstrom et al. (1990), Garrels et al. (1960)
-10.30 - Murray et al. (1978) Morgan (1967)
-10.42 Resuspension of dry crystals Jensen et al. (2002) Morgan (1967)
-10.4 1=0 Palmer and van Eldik | Sillen and Martell (1967)
(1983)
-9.3 Palmer and van Eldik | Smith and Martell (1976)
(1983)
-10.0 - | Calculated from DG data Emerson (1976) Berner (1967)
dried crystals -8.99 - | Of MNCO3 component in Suess (1979)

(Mno.ggcao.15Mgo.05003 in Baltic
seawater. T not specified.
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Table 2. Solubility Constants of Solid Carbonates in the System MnO/Mn,05-CO,-H,O (Continued)

Solubility Constant Reaction Log K® AHg . Comments Secondary Reference Primary Reference
kJ
-10.58 + 0.01 1=0 Johnson (1982)
-10.60 Resuspension of dry crystals Jensen et al. (2002) Johnson (1982)
Solubility in 5-8 m LiCl(aq), 250-400°C Egorov (1985)
and 7 m (LiCl + NH4Cl)(aq)
-11.24 6.1+8.5 | 25°C, | =0, based on soly in seawater Wartel et al. (1990)
-9.78 £ 0.04 Sol, 3 M NaClO,4 Néher-Neumann (1994)
-10.76 Resuspension of crystals Jensen et al. (2002) Néher-Neumann (1994)
-12.19 +0.26 1=0 Wolfram and Krupp
(1996)
-12.19 Resuspension of crystal cleavages Jensen et al. (2002) Wolfram and Krupp
(1996)
-10.30 Resuspension of freeze dried crystals Jensen et al. (2002) Sternbeck (1997)
-9.47 Precipitation from supersaturated Jensen et al. (2002) McBeath et al. (1998)
solutions
-9.68 Sol, 1=3 Fattahi et al. (1999)
-11.0+0.2 - | Literature review Grauer (1999)
-11.39+£0.14 - | Dried crystals Jensen et al. (2002)
-12.51 £ 0.07 Wet crystals Jensen et al. (2002)
-11.65+0.14 From supersaturated solution Jensen et al. (2002)
MNCO4(s) + 2H+ = Mn*" + CO; + H,0 8.74 25°C, dilute solution Gamsjager et al. (1970) Ageno et al. (1911)
8.78 18°C, dilute solution Gamsjager et al. (1970) Haehnel (1924)
8.09 T="7 Gamsjager et al. (1970) Ruff and Ascher (1930)
7.81 ppt, 25°C, 1 =0 Gamsjager et al. (1970) Garrels et al. (1960)
7.07 Natural, 25°C, I =0 Gamsjager et al. (1970) Garrels et al. (1960)
7.97 £0.04 3 M NaClOs, Gamsjager et al. (1970)
8.32 25°C,1=0 Gamsjager (1974) Gamsjager et al. (1970)
7.36 £ 0.06 50°C, 1 M NaClOy, Gamsjager (1985) Reiterer (1980)
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Table 2. Solubility Constants of Solid Carbonates in the System MnO/Mn,05-CO,-H,O (Continued)
Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference

RP,T,
kJ

MNCOs(s) + H+ = Mn*" + HCO5' 0.08 25°C,1=0 Wersin et al. (1989) Stumm and Morgan

(1981)
Mn(I1)

Synthetic Phases
Mn(ll)

Mn(lll)

@) At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Note: DhOr from Wagman et al. (1982) and Robie et al. (1984) for solid.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System MnO/Mn,05-
CO,-H,0 extracted from Databases of Distribution-of-Species Codes

. ) o AHg P,
Association Constant Reaction Log K k.Y] e Database Source
Mn?* + COs* = MnCOs3(aq) - - | Minteq (2009)
Minteq (2006) NIST46.4
4.900 - | Phreeqc (2009) not cited
4.9 - | Wateq4f (2005) not cited
6.5 - | ThermoChimie v.7.b #96FAL/REA
NAGRA/PSI (2001)
Data0.YMP.R5
Thermoddem (2009) Sverjensky et al. (1997)
Mn?* + 2CO5% = Mn(CO3),> - - | Minteq (2009)
- - | Minteq (2006)
- - | Phreeqc (2009)
- - | Wateqg4f (2005)
- - | ThermoChimie v.7.b
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
Thermoddem (2009)
Mn?* + CO4* + H" = MnHCO3" 11.6 0 | Minteq (2009) not cited
11.629 -10.6 | Minteq (2006) NIST46.4; NIST46.4
12.279 - | Phreeqc (2009) not cited
12.279 - | Wateqg4f (2005) not cited
11.61 - | ThermoChimie v.7.b #95CHI
NAGRA/PSI (2001)
10.7706 - | Data0.YMP.R5 Wagman et al. (1982)

Thermoddem (2009)

Shock and Koretsky (1995)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3b. Solubility Constants of Solid Carbonates in the System MnO/Mn,03-CO,-H,0 extracted
from Databases of Distribution-of-Species Codes

AH?
Solubility Constant Reaction Log K® :"]P' T Database Source

Alstonite
MnCa(COs)x(s) = Mn** + Ca®* + Data0.YMP.R5
COs”
Mnrytocalcite
MNnCa(COs)x(s) = Mn* + Ca®" + Data0.YMP.R5
COy”
Rhodocrosite
MNCOs(s) = Mn?" + CO5> -10.41 -8.699 | Minteq (2009) not cited

-10.58 -1.98 | Minteq (2006) not cited

-11.130 -5.983 | Phreeqc (2009) not cited

-11.13 -5.983 | Wateqg4f (2005) not cited
Rhodocrosite(d):_MnCOs(s) = Mn®" -10.390 - | Wateq4f (2005) not cited
+CO5”

-11.13 -5.899 | ThermoChimie v.7.b Pearson et al. (1992)

NAGRA/PSI (2001)
-10.0818 - | Data0.YMP.R5 Helgeson et al. (1978)
- - | Thermoddem (2009)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.VR.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MintegA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQA2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16—19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Wateq4f

Ball, J. W., & Nordstrom, D. K. (1991). User's manual for WATEQA4F, with revised thermodynamic data
base and test cases for calculating speciation of major, trace, and redox elements in natural waters.

U.S. GEOLOGICAL SURVEY, Open-File Report 91-183, Revised and reprinted - April, 2001. p. 81-94

Wateq4f (2005)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/WATEQ4F.DAT

Manganese

226




rreeees |'1

BERKELEY LAB

Table 4a. Thermodynamic properties of Manganese Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of

Formation
Mineral AG?,P, . Secondary Reference Primary Reference
Name Formula kJ/gfw'l
Minerals
Mn(l1)
Holdawayite Mn"§(COs3)2(OH)-(CI,OH)
Kutnohorite Ca(Mn",Mg,Fe")(CO3), -1950.58 Garrels et al. (1960)
-1950.6 | La Iglesia and Felix (1994) Garrels et al. (1960)
-1950.6 | Radha and Navrotsky (2013) Woods and Garrels (1987)
predicted -1944.7 £ 1.8 La Iglesia and Felix (1994)
disordered Ca Mn"(COs), -1944.80 + 3.77 Tareen et al. (1992)
Rhodochrosite Mn"CO;4 -841.03 Kelley and Anderson (1935)
precipitate -800.02 Kelley and Anderson (1935)
natural -812.95 | Karpov et al. (1968) Latimer (1952)
precipitate -812.95 | Karapet'yants and Karapet'yants (1970) Latimer (1952)
-817.55 | Latimer (1952) Rossini et al. (1952)?
precipitate -812.95 | Latimer (1952) Rossini et al. (1952)?
-817.97 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
natural Mn"CO;4 -817.55 | Karpov et al. (1968) Rossini et al. (1952)
-817.6 | Woods and Garrels (1987) Rossini et al. (1952)
calculated -804.58 Zhuk (1954)
natural -804.58 | Karpov et al. (1968) Zhuk (1954)
-804.58 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
precipitate -811.28 | Karapet'yants and Karapet'yants (1970) Karapet'yants (1955)
-812.49 + 4.18 | Robie (1962, 1966) Goldsmith and Graff (1957)
-866.09 | Karapet'yants and Karapet'yants (1970) Yatsimirskii (1958)
-818.8 Garrels et al. (1960)
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Table 4a. Thermodynamic properties of Manganese Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of

Formation (Continued)

Mineral AG?,P, . Secondary Reference Primary Reference
Name Formula 1
kJ/gfw
synthetic -814.6 Garrels et al. (1960)
natural -818.81 Garrels et al. (1960)
synthetic -814.62 Garrels et al. (1960)
natural -818.81 | Karpov et al. (1968) Garrels et al. (1960), (reference 359a not
listed)
-818.8 | Woods and Garrels (1987) Garrels et al. (1960)
-818.8 | La lglesia and Felix (1994) Garrels et al. (1960)
-816.05 | Robie (1965), Kelley (1960)
natural -59.83% | Karpov et al. (1968) Kireev (1964)
-58.84 + 1.26" Robie (1965)
-816.047 + 1.381 | Robie et al. (1979) Robie (1965), Garrels et al. (1960)
-816.05 £+ 1.38 | Radha and Navrotsky (2013) Robie (1965), Robie et al. (1978)
natural -816.72 Wagman et al. (1969)
-812.16 £ 0.14 Gamsjager et al. (1970)
-815.5 | Woods and Garrels (1987) Karpov et al. (1971)
-815.5 | Lalglesia and Felix (1994) Karpov et al. (1971)
calculated -816.72 | Naumov et al. (1974) Wagman et al. (1965-1969)
natural -816.7 | Woods and Garrels (1987) Naumov et al. (1974)
-817.8 | La lIglesia and Felix (1994) Naumov et al. (1974)
-811.9 | Dobrydiev et al. (2005) Ryabin et al. (1977)
-816.068 | BSC (2007) Helgeson et al. (1978)
-816.1 | Woods and Garrels (1987) Helgeson et al. (1978)
-816.1 | La lglesia and Felix (1994) Helgeson et al. (1978)
-816.0 | Woods and Garrels (1987) Robie et al. (1978)
natural -816.0 | Lalglesia and Felix (1994) Robie et al. (1979)
-816.7 | Woods and Garrels (1987) Wagman et al. (1982)
-816.7 | Lalglesia and Felix (1994) Wagman et al. (1982)
-815.0 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
-815.0 | La Iglesia and Felix (1994) Sangameshwar and Barnes (1983)
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Table 4a. Thermodynamic properties of Manganese Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of

Formation (Continued)

Mineral AGO Secondary Reference Primary Reference
f.P.T;
Name Formula 1
kJd/gfw
natural (Mn"6.904F€0.00sMJ0.001)CO3 -818.1 | Woods and Garrels (1987) Robie et al. (1984)
-819.1 + 0.6 | Robie and Hemingway (1995), Robie et al. (1984)
-219.68 | Stern (2000) Barin (1989)
Holland and Powell (1990)
-822.170 £ 0.74 Fazeli et al. (1991)
predicted -816.5+ 1.6 La Iglesia and Felix (1994)
-819.1 Robie and Hemingway (1995)
-817.22 Holland and Powell (1998)
-819.548 NAGRA
synthetic -815.324 NAGRA
Mn(I1)
Synthetic Phases
Mn(Il)
cdMn'(COs), cdMn'(COs), -1490.0 + 3.0 Tareen et al. (1995)
disordered
Mn(HCO3), Mn'"(HCO3), -887.01 | Karpov et al. (1968) Latimer (1952)
Mn(lT)
@ Formation from the oxides
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Table 4b. Thermodynamic properties of Manganese Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

Mineral AH? Secondary Reference Primary Reference
f.P.T,
Name Formula "
kd/gfw

Minerals
Mn(I1)
Holdawayite Mn"§(COs3)2(OH)-(CI,OH)
Kutnohorite CaMn'(COs), -2093.46 + 3.77 Tareen et al. (1992)
disordered
Rhodochrosite Mn"CO, -920.1 + 0.4% Roth (1929)

crystalline, at
constant volume

crystalline, at
constant pressure

-916.7 + 0.4%

Roth (1929)

-917.97 Kelley and Anderson (1935)
precipitate -876.55 Kelley and Anderson (1935)
??7? See Roth et al. (1941)
-894.96 | Latimer (1952) Rossini et al. (1952)?
precipitate -887.01 | Latimer (1952) Rossini et al. (1952)?
-894.96 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
-894.96 | Karpov et al. (1968) Rossini et al. (1952)
-895 | Woods and Garrels (1987) Rossini et al. (1952)
-894.1 | Lalglesia and Felix (1994) Wagman et al. (1982)
-888.65 + 3.35 | Robie (1962, 1966) Goldsmith and Graff (1957)
-889.2+1.3 107??
-869.4 Yatsimirskii (1958)
-869.44 | Karpov et al. (1968) Yatsimirskii (1958)
-869.44 | Karapet'yants and Karapet'yants (1970) Yatsimirskii (1958)
-916.7 | Robie (1965), Kelley (1960)
-116.32% | Karpov et al. (1968) Kireev (1964)
-110.54 + 0.63 Robie (1965)
-110.54% | Karpov et al. (1968) Robie (1965)

-889.270 + 1.213

Robie et al. (1979)

Robie (1965), Garrels et al. (1960)

Manganese

230




rreeees |1

BERKELEY LAB

Table 4b. Thermodynamic properties of Manganese Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation
(Continued)

Mineral AH ?,P, . Secondary Reference Primary Reference
Name Formula "
kJ/gfw
-889.27 £ 1.21 | Radha and Navrotsky (2013) Robie (1965), Garrels et al. (1960)
natural -894.12 Wagman et al. (1969)
synthetic -883.24 Wagman et al. (1969)
-894.12 | Naumov et al. (1974) Wagman et al. (1965-1969)
-888.6 | Woods and Garrels (1987) Karpov et al. (1971)
-894.1 | Woods and Garrels (1987) Naumov et al. (1974)
-894.1 | Lalglesia and Felix (1994) Naumov et al. (1974), Sangameshwar and
Barnes (1983)
-916.7 | Dobrydiev et al. (2005) Ryabin et al. (1977)
synthetic
-889.3 | Woods and Garrels (1987) Robie et al. (1978)
-889.3 | Lalglesia and Felix (1994) Robie et al. (1978),
-889.2 | Woods and Garrels (1987) Helgeson et al. (1978)
-889.2 | Lalglesia and Felix (1994) Helgeson et al. (1978)
-894.1 | Woods and Garrels (1987) Wagman et al. (1982)
-889.3 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
(Mn"6.904F€0.00sMJ0.001)CO3 -891.9 | Woods and Garrels (1987) Robie et al. (1984)
-892.9 + 0.5 | Robie and Hemingway (1995), Robie et al. (1984)
-894.10 | Stern (2000) Barin (1989)
-891.38 £ 1.07 Holland and Powell (1990)
-894.382 £ 0.74 Fazeli et al. (1991)
predicted -891.7 £ 2.3 La Iglesia and Felix (1994)
-892.9 Robie and Hemingway (1995)
-891.06 + 0.66 Holland and Powell (1998)
-889.188 BSC (2007)
-890.081 NAGRA
-896.064 NAGRA
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Table 4b. Thermodynamic properties of Manganese Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

(Continued)

Mineral AH? Secondary Reference Primary Reference
f,P. T
Name Formula "
kJ/gfw
Mn(I1)
Synthetic Phases
Mn(l1)
cdMn'(COs), cdMn'(COs), -1641.5 + 3.0 Tareen et al. (1995)
disordered
Mn(HCO3), Mn"(HCO3), -1013.36 | Karpov et al. (1968) Rossini et al. (1952)
-1615.02 + 62.76 | Estimated value of fictive compound Wilcox and Bromley (1963)
-1615.02 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)
Mn(ll1)
@ Formation from the oxides
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Table 4c. Thermodynamic properties of Manganese Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral S gr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
Minerals
Mn(11)
Holdawayite Mn"§(COs3)2(OH)-(CI,OH)
Kutnohorite Ca Mn'(COs), Tareen et al. (1992)
disordered
Rhodochrosite Mn"CO, 85.8+1.3 Anderson (1934)
graphical
calculated 84.9 Anderson (1934)
85.77 £1.26 | Kelley and King (1961) Anderson (1934)
100.00 | Karpov et al. (1968) Latimer (1952)
precipitate 99.58 | Karapet'yants and Karapet'yants (1970) Latimer (1952)
85.77 | Latimer (1952) Rossini et al. (1952)?
precipitate 99.58 | Latimer (1952) Rossini et al. (1952)?
85.77 | Karpov et al. (1968) Rossini et al. (1952)
85.77 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
calculated 41.84 Zhuk (1954)
100.00 + 2.1 | Robie (1965), Kelley (1960)
100.00 + 2.09 | Robie (1962, 1966), corrected for Kelley and King (1961)
magnetic contribution
85.77 £1.26 | Karpov et al. (1968) Kelley and King (1961)
112.9 Kostryukov and Kalinkina (1964)
112.9 | Karapet'yants and Karapet'yants (1970) Kostryukov and Kalinkina (1964)
100.0 + 2.09 Robie (1965)
100.0 £ 2.1 | Robie et al. (1979) Robie (1965)
natural 85.77 Wagman et al. (1969)
85.77 | Naumov et al. (1974) Wagman et al. (1965-1969)
85.8 | Woods and Gatrrels (1987) Naumov et al. (1974)
100.0 | Woods and Garrels (1987) Robie et al. (1978)
100.0 | Woods and Garrels (1987) Helgeson et al. (1978)
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4c. Thermodynamic properties of Manganese Carbonate Minerals and Synthetic Solid Carbonates: Entropies (Continued)

Mineral S gr . Secondary Reference Primary Reference
Name Formula 1
Jlgfw.K
85.8 | Woods and Garrels (1987) Wagman et al. (1982)
(Mn"0.604F€0,00sMJo.001) CO3 98.03 | Woods and Garrels (1987) Robie et al. (1984)
98.0 £ 0.1 | Robie and Hemingway (1995), Robie et al. (1984)
85.80 | Stern (2000) Barin (1989)
98.00 Holland and Powell (1990)
98.03 Robie and Hemingway (1995)
98.00 Holland and Powell (1998)
99.998 EQ3/6
NAGRA
NAGRA
Mn(l1)
Synthetic Phases
Mn(ll)
Mn(HCOs), Mn"(HCOs), 160.25 | Karpov et al. (1968) Latimer (1952)
Mn(liI)
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Table 5. Crystallographic Properties of Manganese Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference
Minerals
Mn(I1)
1 | Armangite Mn'"26[Ass(OH)4014][AScO15]2[CO3] Gaines et al. (1997), Moore and Araki (1979)
2 | Armangite Mn'"26[Ase(OH)4014][ASeO15]2[CO3] Gaines et al. (1997)
3 | Charmarite-2H Mn";Al,(CO3)(OH)12+3(H-0) Gaines et al. (1997)
4 | Charmarite-2H Mn'",Aly(COs)(OH)12+3(H.0) Chao and Gault (1997)
5 | Charmarite-3T Mn"4Al(CO3)(OH)123(H20) Gaines et al. (1997)
6 | Charmarite-3T Mn"4Al(CO3)(OH)12+3(H20) Chao and Gault (1997)
7 | Hauckite Mg1aMn"16Zn1sFe"5(SO4)4(COs)2(OH)sy Gaines et al. (1997)
8 | Hauckite (Mg,Mn")24Zn15Fe"3(S04)4(CO3)2(OH)g; Dunn et al. (1980)
9 | Holdawayite Mn"6(CO3)2(OH)-(CI,OH) Gaines et al. (1997), Peacor and Rouse (1988)
10 | Kutnohorite Ca(Mn" osMgosFe"01)(COs). Mineralogy Database (http://webmineral.com/)
Name Cell Constants Space vo*
a0, A bo, A co A o 5o e 7 Group cm?® gfw™*
Minerals
Mn(l)
1 | Armangite 13.491(2) 8.855(1) 1 P-3 840.54
2 Armangite 13.491 8.855 1 P-3 840.54
3 Charmarite-2H 10.985 15.10 4 P6522 237.57
4 | Charmarite-2H 10.985(5) 15.10(2) 4 P6:22 237.57
5 Charmarite-3T 10.9885(7?) 22.63 6 P3,12 or 237.36
P3;12
6 | Charmarite-3T 10.985(3) 22.63(3) 6 P3,12 or 237.36
P3;12
Hauckite 9.17 30.21 1 P6/mmm 1324.9
Hauckite 9.17(4) 30.21(9) 1 | P&/mmm 1324.9
Holdawayite 23.437 3.314 16.618 111.15 4 C2/m 181.24
10 | Kutnohorite 4.85 16.34 3 R-3 66.818
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Name Formula Reference
11 | Kutnohorite CaMn"(COs), Gaines et al. (1997)
12 | Kutnohorite (ord) CaMn"(COs), Peacor et al,. (1987)
13 | Kutnohorite (disord) (CansMgo2)(Mn"s7Ca0.3)(COs)2 Peacor et al,. (1987)
14 | Loseyite (Mn"35ZN3,0Mdo5)(CO3)2(OH)10 Hill (1981)
15 | Loseyite (Mn"6.75ZN0.25)7(CO3)2(OH) 10 Gaines et al. (1997)
16 | Nasledovite PbMn'"3Al,(CO3)4(S04)0s+5(H.0) Gaines et al. (1997)
17 | Rhodochrosite Mn"CO4 Graf (1961)
18 | Rhodochrosite Mn"COs Mineralogy Database (http://webmineral.com/)
19 | Rhodochrosite Mn"CO, Maslen et al. (1995)
20 | Rhodochrosite Mn"CO, Maslen et al. (1995)
21 | Sidorenkite NasMn"(PO4)(CO5) Gaines et al. (1997)
22 | Sidorenkite NasMn"(PO4)(CO5) Kurova et al. (1987)
Name Cell Constants Space vo*
a0, A bo, A o A @ ° B, ° e 7 Group cm?® gfw™*
11 | Kutnohorite 4915 16.639 3 R-3 69.877
12 | Kutnohorite (ord) 4.8732(8) 16.349(6) 3 R-3 67.496
13 | Kutnohorite (disord) 4.894(1) 16.50(2) 3 R-3 68.702
14 | Loseyite 16.408(7) 5.540(3) 15.150(4) 95.48(3) 4 A2/a 206.39
15 | Loseyite 16.23 5.51 14.95 95.37 4 A2/a 200.40
16 | Nasledovite
17 Rhodochrosite 4.7771 15.664 6 R3c 31.071
18 | Rhodochrosite 4777 15.67 6 R3c 31.082
19 | Rhodochrosite 4.773 15.642 6 R3c 30.975
20 | Rhodochrosite 4.772 15.637 6 R3c 30.952
21 Sidorenkite 8.979 6.729 5.150 90.10 2 P21/m 93.693
22 | Sidorenkite 8.997 6.741 5.163 90.16 2 P21/m 94.285
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Name Formula Reference
Mn(lI)
23 | Desautelsite MgsMn"'2(CO3)(OH)16+4(H20) Dunn et al. (1979)
24 | Desautelsite MgsMn"'2(CO3)(OH)16+4(H20) Rmiths ID: R060303.9
Mineralogy Database (http://webmineral.com/)
25 | Desautelsite MgsMn"5(CO3)(OH)16+4(H,0) Gaines et al. (1997)
26 | Gaudefroyite CasMn";5(BO3)s(CO3)02.25(0H)0 75 Gaines et al. (1997)
27 | Gaudefroyite CagMn"s[(BO3)s(CO3)206 Antao and Hassan (2008)
28 | Sailaufite Ca,Mn"50,(As04)2(CO3)*3(H.0) Gaines et al. (1997)
29 | Sailaufite Ca,Mn"50,(As04)2(CO3)*3(H.0) Wildner et al. (2003)
Name Cell Constants Space Vo
a,, A bo, A Co A a, ° B, ° 7,° z Group cm?® gfw™
Mn(I1)
23 | Desautelsite 3.114(1) 23.39(2) 3/8 | R3mor R- 315.44
3m
24 | Desautelsite 3.124(4) 23.54(2) 3/8 hexag 319.51
25 | Desautelsite 6.23 46.78 3 R-3m 315.64
26 | Gaudefroyite 10.589 5.891 2 P63 172.25
27 | Gaudefroyite 10.60791(2) 5.88603(1) 1 P6;m 345.43
28 | Sailaufite 11.253 19.628 8.932 100.05 6 Cm 194.26
29 Sailaufite 11.253 19.628 8.932 100.05 6 Cm 194.26
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Name Formula Reference

Synthetic Phases

Mn(ll)
30 | CaMn(COs), CaMn"(COs), Graf (1961)
Mn(lln)
31
Name Cell Constants Space vo*
3 -1
a0, A be, A o A a B, ° "e 7 Group cm?® gfw
Synthetic Phases
Mn(ll)
30 CaMn(COs3), 4.8797 16.367 3 R3c 67.751
Mn(liI)
31

#Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than 10 wt.% Manganese*

Name Formula Manganese, gfw Thermodynamic
wt.% Data
Est. Meas.
Mn(ll)
Armangite Mn26As" 15050(0OH)4(CO5) 38.55 3704.99 no no
Charmarite-2H Mn"4Al(CO3)(OH)12#3(H20) 37.13 591.86 no no
Charmarite-3T Mn"4Al(CO3)(OH)12#3(H20) 37.13 591.86 no no
Holdawayite Mn"§(CO3)2(OH)-(CI,OH) 54.98 599.54 no no
Kutnohorite Ca(Mn,Mg,Fe")(CO3), 16.01 205.94 no yes
Loseyite (Mn,Zn)7(C0O3)2(OH)10 41.62 692.95 no no
Manganotychite Nag(Mn",Fe",Mg)2(SO4)(COs)s 11.40 578.33 no no
Nakauriite (Mn,Ni,Cu)s(S0O4)4(CO3)(OH)e*48(H20) 11.75 1870.41 no no
Nasledovite PbMn3Al4(CO3)4(S0O4)Os5(H,0) 16.71 986.11 no no
Rhodochrosite MnCO;3; 47.79 114.95 no yes
Sailaufite CayMn30,(As04)2(CO3)*3(H,.0) 23.65 650.52 no no
Sidorenkite NasMn(PO,)(CO3) 19.70 278.89 no no
Mn(li1)
Desautelsite MgeMn"'2(CO3)(OH)16+4(H20) 16.65 659.89 no no
Gaudefroyite CauMn"5.(BO3)5(CO3)(0,0H)s 23.56 582.85 no no

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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MERCURY
Table 1. Association Constants for Aqueous Carbonate Complexes in the System Hg,0/HgO-CO,-H,0O
Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP T,
kJ
Hg(ll)
Hg®" + COs* = HgCOs(aq) 10.65 + 0.20 3 M NacClo, Hietanen and Hogfeldt (1976b)
11.00 - | 3M NaClO, Bilinski et al. (1980) Hietanen and Hogfeldt (1976b)
11.01 £ 0.20 - | 0.5 M NaClO, Bilinski et al. (1980)
11.00 - | 3M NaClO, Clever et al. (1985) Bilinski et al. (1980) after
Hietanen and Hogfeldt (1976b)
11.01 £ 0.20 - | 0.5 M NaClO, Clever et al. (1985) Bilinski et al. (1980)
ng+ + CO5%™ + H,0 = Hg(OH)CO3 + H' 4.40 £0.10 3 M NaClO,4 Hietanen and Hogfeldt (1976b)
4.40 - | 3M NaClO, Bilinski et al. (1980) Hietanen and Hogfeldt (1976b)
4.40 £0.10 - | 0.5 M NaClO, Bilinski et al. (1980)
4.40 - | 3M NaClO, Clever et al. (1985) Bilinski et al. (1980) after
Hietanen and Hogfeldt (1976b)
4.40 £ 0.10 - | 0.5 M NaClO, Clever et al. (1985) Bilinski et al. (1980)
Hg®" + COs* + H' = HgHCO3" 15.05 +0.10 3 M NaClO, Hietanen and Hogfeldt (1976b)
14.72 - | 3M NaClO, Bilinski et al. (1980) Hietanen and Hogfeldt (1976b)
15.08 £ 0.10 - | 0.5 M NaClO, Bilinski et al. (1980)
15.08 £ 0.10 - | 0.5 M NaClO, Clever et al. (1985) Bilinski et al. (1980)
14.72 - | 3M NaClO, Clever et al. (1985) Bilinski et al. (1980) after
Hietanen and Hogfeldt (1976b)
Hg®* + 2C0O4” = Hg(CO4).> 14.00 - | 3M NaClO, Bilinski et al. (1980) Hietanen and Hagfeldt (1976b)
14.50 + 0.20 - | 0.5 M NaClO,4 Bilinski et al. (1980)
14.00 - | 13 M NaClO,4 Clever et al. (1985) Bilinski et al. (1980)
14.50 + 0.20 - | 0.5 M NaClO, Clever et al. (1985) Bilinski et al. (1980)
Hg(OH)z(aq) + CO,(g) = HgCOs(aq) + H.O -0.70 £0.20 - | Recommended. See Note Powell et al. (2005)
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Table 1. Association Constants for AQueous Carbonate Complexes in the System Hg,O/HgO-CO,-H,0O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P.. T,
kJ
Hg(OH)z(aq) + HCO3; = Hg(OH)CO3™ + H,O 0.98 £0.10 Recommended. See Note Powell et al. (2005)
Hg(OH),(aq) + COx(g) + H+ = HgHCO;" + H,0 3.63+0.10 Recommended. See Note Powell et al. (2005)

CHsHg" + COs* = CH3;HgCO3 -

No evidence for complex

Sanz et al. (2002)

CHsHg" + CO4” + OH = CHzHgOHCOZ* -

No evidence for complex

Sanz et al. (2002)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Note: The Log K values presented are from a reevaluation of equilibrium studies at 25°C and 3.0 mol dm™ NaClO, by Hietanen and Hogfeldt (1976a,b), which, although “somewhat
lacking in precision,” are regarded as “more reliable” than those by Bilinski et al. (1980) at 25°C and 0.5 mol dm™. Because extrapolation to zero ionic strength was not possible, the
cited isocoulombic reactions were derived, which should have minimal ionic strength dependence.

Mercury

248




rreeees |'1

BERKELEY LAB

Table 2. Solubility Constants of Solid Carbonates in the System Hg,0O/HgO-CO,-H,0

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P, T,
kJ
Minerals
Hg(l)
Hg(l)
Synthetic Phases
Hg(l)
Hg,CO3
Hg.COs = Hg,** + CO5” -16.06 Brodsky (1929), Immerwahr (1901)
-16.05 25°C Clever et al. (1985) Brodsky (1929) after
Immerwahr (1901)
-16.05 Latimer (1952) Brodsky (1929)
-16.04 Kryukova (1939) Brodsky (1929)
-15.40 Original citation not located. Kryukova (1939) Bennet (1934)
-16.046 Review. No correction for activity Kelley and Anderson (1935)
coefficients
-16.11 Kryukova (1939)
-16.11 25°C, based on solubility Clever et al. (1985) Kryukova (1939)
measurement
-16.96 25°C, Calculated from EMF study | Clever et al. (1985) Saegusa (1950)
and data from Latimer (1952)
-16.05 Zhuk (1954) Goskhimizdat (1952)
-16.44 25°C Clever et al. (1985) Hepler and Olofsson (1975)
-13.37 £ 0.05 25°C, 3 M NaClO4 Hietanen and Hogfeldt
(1976a)
-13.37 £ 0.05 25°C, 3 M NaClO,4 Clever et al. (1985) Hietanen and Hogfeldt
(19764a)
Hg.COs + 2H' = Hg,>" + + CO4(g) + H,0~ -4.19 £ 0.03 25°C, 3 M NaClO4 Hietanen and Hogfeldt

(1976a)
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Table 2. Solubility Constants of Solid Carbonates in the System Hg,O/HgO-CO,-H,0 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P,T,
kJ
Hg(ll)
HaCOs
HgCOs(s) = Hg** + COs» -16,96 Calc. from electrochemical cell Saegusa (1950)
data
-16.05 1=0 Palmer and Van Eldik Smith and Martell (1976)
(1983)
HgCOs.2HgO
HgCOs.2HgO(s) + 4H" = 3Hg> + COs” + 2H,0 -10.36 + 0.33 3 M NaClO, Hietanen and Hogfeldt
(1976a)
HgCO3.2HgO(s) + 6H" = 3Hg® + CO,(g) + 7.26 3 M NaClO,4 Bilinski et al. (1980) Weber (1972)
3H.0
7.20£0.33 3 M NaClO,4 Hietanen and Hogfeldt
(1976a)
7.20 3 M NaClO,4 Bilinski et al. (1980) Hietanen and Hogfeldt
(1976a)
7.12 3 M NaClO, Bilinski et al. (1980) Hietanen and Hogfeldt
(1976b)
7.12-7.26 25°C, 3 M NaClO,4 Clever et al. (1985) Hietanen and Hogfeldt
(19764a,b) and Bilinski et al.
(1980)
5.40 £0.25 0.5 M NaClO, Bilinski et al. (1980)
7.02+£0.25 I=0 Bilinski et al. (1980)
5.40 £0.25 25°C, 0.5 M NaClO, Clever et al. (1985) Bilinski et al. (1980)
7.02 £0.25 25°C,1=0 Clever et al. (1985) Bilinski et al. (1980)
HgCO3.2HgO(s) + 3H,0 = 3Hg(OH)z(aq) + -11.27 +£0.35 Provisional. See Note Powell et al. (2005)

CO2(9)

@) At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Note: the Log K value presented is from a reevaluation of an equilibrium study at 25°C and 3.0 mol dm™® NaClO, by Hietanen and Hogfeldt (1976b). Because extrapolation to zero ionic

strength was not possible, the cited neutral-species reaction was derived, which should have minimal ionic strength dependence.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System Hg,0/HgO-CO,-
H,O extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction Log K® AH? Database Source
RP T,
kJ
Hg(ll)
Hg(OH), + 2H+ + CO3? = HgCOs + 2H,0 - - | Minteq (2009)
18.272 0 | Minteq (2006) NIST46.4, MTQ3.11
- - | Phreeqc (2009)
- - | Wateq4f (2005)

- - | ThermoChimie v.7.b

- - | NAGRA/PSI (2001)

- - | Data0.YMP.R5

Thermoddem (2009)

Hg(OH), + 2H" + 2C0O52 = Hg(COy), 2 + - - | Minteq (2009)
2H,0
21.772 0 | Minteq (2006) NIST46.4, MTQ3.11
- - | Phreeqc (2009)
- - | Wateq4f (2005)

- - | ThermoChimie v.7.b

- - | NAGRA/PSI (2001)

- - | Data0.YMP.R5

Thermoddem (2009)

Hg(OH), + 3H" + CO5? = HgHCO;" + - - | Minteq (2009)
2H,0
22.542 0 | Minteq (2006) NIST46.4, MTQ3.11
- - | Phreeqc (2009)
- - | Wateq4f (2005)

- - | ThermoChimie v.7.b

- - | NAGRA/PSI (2001)

- - | Data0.YMP.R5

Thermoddem (2009)

@) At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3b. Solubility Constants of Solid Phases containing the System Hg,0/HgO-CO,-H,0
extracted from Databases of Distribution-of-Species Codes

Solubility Constant Reaction Log K& AH? Database Source
RP T,
kJ
Hg(ll)
HgCOs
HgCO4(s) + H20 = Hg(OH)2 + COs> + -28.6817 110.58 | Minteq (2009)
2H+
- - | Minteq (2006)
- - | Phreeqc (2009)
- - | Wateq4f (2005)
- - | ThermoChimie v.7.b
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
Thermoddem (2009)
Hg,COs
HgCO; = Hg,”* + COs» -13.9586 0 | Minteq (2009)
-16.05 45.14 | Minteq (2006)
- - | Phreeqc (2009)
- - | Wateq4f (2005)
- - | ThermoChimie v.7.b
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
Thermoddem (2009)
Hg;0,CO3
Hgs;0,CO;3 + 4H,0 = 3Hg(OH), + 2H" + Minteq (2009)
CO;?
-29.682 -0 | Minteq (2006)
- - | Phreeqc (2009)
- - | Wateq4f (2005)
- - | ThermoChimie v.7.b
- - | NAGRA/PSI (2001)
- - | Data0.YMP.R5
Thermoddem (2009)
@) At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.VR.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MintegA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQA2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16—19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Wateq4f

Ball, J. W., & Nordstrom, D. K. (1991). User's manual for WATEQA4F, with revised thermodynamic data
base and test cases for calculating speciation of major, trace, and redox elements in natural waters.

U.S. GEOLOGICAL SURVEY, Open-File Report 91-183, Revised and reprinted - April, 2001. p. 81-94

Wateq4f (2005)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/WATEQ4F.DAT
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Table 4a. Thermodynamic properties of Mercury Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

Mineral AG?,P,,T, Secondary Reference Primary Reference
Name Formula kJ/gfw'l
Minerals
Hg(l)
Hg(Il)
Mosesite Hg",N(C1,S04,M00,4,CO3)+(H.0)
Synthetic Phases
Ho(l)
Hg'>,COs Hg>COs -465.26 Kelley and Anderson (1935)
-468.61 Saegusa (1950)
-442.67 Latimer (1952)
-442.67 | Karpov et al. (1968) Latimer (1952)
-442.67 | Karapet'yants and Karapet'yants (1970) Latimer (1952)
-442.7 | Woods and Garrels (1987) Latimer (1952)
-468.61 | Zhuk (1954) Rossini et al. (1952), Karapet'yants
(1953)
calculated -465.51 Zhuk (1954)
-465.67 | Karpov et al. (1968) Zhuk (1954)
-465.51 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
-468.19 Wagman et al. (1969)
-468.1 | Woods and Garrels (1987) Wagman et al. (1982)
-607.17 | Stern (2000) CRC (1994)
Hg(l)
HgCO3 HgCOs -468.61 | Karpov et al. (1968) Saegusa (1950)
-468.61 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)
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Table 4a. Thermodynamic properties of Mercury Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of
Formation (Continued)

Mineral AGO Secondary Reference Primary Reference
f.P.T,
Name Formula 1
kJd/gfw
-605.42 | Karapet'yants and Karapet'yants (1970) Karapet'yants (1957)
-479.90 | Karpov et al. (1968) Karapet'yants and Karapet'yants (1961)
-608.18 | Stern (2000) Karapet'yants and karapet'yants (1970)
HgCOs.2HgO HgCOs.2HgO
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Table 4b. Thermodynamic properties of Mercury Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

Mineral AH (f),P, . Secondary Reference Primary Reference
Name Formula kJ/gfw’l
Minerals
Hg(l)
Hg(Il)
Mosesite Hg"2N(C1,504,M00,,CO3)+(H,0)
Synthetic Phases
Ho(l)
Hg'>,COs Hg>COs -533.29 Saegusa (1950)
-553.29 | Zhuk (1954) Rossini et al. (1952), Karapet'yants
(1953)
-514.63 £ 62.76 | Estimated value for fictive compound Wilcox and Bromley (1963)
-514.63 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)
-553.54 Wagman et al. (1969)
-553.5 | Woods and Garrels (1987) Wagman et al. (1982)
-553.50 | Stern (2000) CRC (1994)
Hg2(HCOs3), Hg2(HCOs3), -1292.86 + 62.76 | Estimated value for fictive compound Wilcox and Bromley (1963)
-1292.86 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)
Hg(Il)
HgCOs HgCOs -553.29 | Karpov et al. (1968) Saegusa (1950)
-553.29 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)
-493.71+ 62.76 | Estimated value for fictive compound Wilcox and Bromley (1963)
-493.71 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)
-553.29 | Stern (2000) Karapet'yants and karapet'yants (1970)
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Table 4b. Thermodynamic properties of Mercury Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation
(Continued)

Mineral AH? Secondary Reference Primary Reference
f.P.T,
Name Formula "
kJd/gfw
Hg(HCO3), Hg(HCO3), -1271.94 + 62.76 | Estimated value for fictive compound Wilcox and Bromley (1963)

-1271.94 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)

HgCO3.2HgO HgCO3.2HgO
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Table 4c. Thermodynamic properties of Mercury Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral SO Secondary Reference Primary Reference
Pr vTr
Name Formula 1 1
J K™ gfw

Mninerals

Hg(l)

Hg(Il)

Mosesite Hg":N(C1,S04,M004,CO3)*(H.0)

Synthetic Phases

Ho(l)
Hg'>,COs Synthetic Hg',COs 180.10 Saegusa (1950)

184.10 | Zhuk (1954) Rossini et al. (1952), Karapet'yants

(1953)

calculated 173.64 Zhuk (1954)

173.64 | Karpov et al. (1968) Zhuk (1954)

173.64 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)

179.91 Wagman et al. (1969)

180. | Woods and Garrels (1987) Wagman et al. (1982)

180.00 | Stern (2000) CRC (1994)
Hg(l)
HgCOs HgCOs 184.10 | Karpov et al. (1968) Saegusa (1950)

184.10 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)

184.10 | Stern (2000) Karapet'yants and karapet'yants (1970)
HgCO3.2HgO HgCO3.2HgO
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Table 5. Crystallographic Properties of Mercury Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference
Minerals
Ha(l)
1 |Clearcreekite Hg|3(CO3)(OH)'2(H20) Roberts et al. (2001)
2 |Clearcreekite Hg'z,g(Cog)(OH)o,g-Z.1(H20) Mineralogy Database (http://webmineral.com/))
3 |Peterbaylissite Hg|3(CO3)(OH)'2(H20) Roberts et al. (1995), Roberts and Williams (1995)
4 | Peterbaylissite Hg|3(CO3)(OH)'2(H20) Gaines et al. (1997)
5 |Szymanskiite Hg'le(Ni4,lMgl,g)(Hgo)g(Cog)12(OH)12-3(H20) Roberts et al. (1990)
6 |Szymanskiite Hg'le(Ni4,lMgl,g)(Hgo)g(Cog)12(OH)12-3(H20) Szymanski and Roberts (1990)
7 | Szymanskiite Hg'16(Nio.7sMJo.25)6(H30)s(CO3)12(OH)1203(H20) Gaines et al. (1997)
8 |Vasilyevite (Hg'20.806.912.7Br1.5Clos(CO3)0.6S0.1 Gaines et al. (1997)
9 |Vasilyevite (Hg'2)1006l5Br.CI(CO3) Roberts et al. (2003), Cooper and Hawthorne (2003)
Name Cell Constants Space Vo
a,, A bo, A Cor A @, ° B, ° 1 ° 7 Group cm?® gfw™
Minerals
Ha(l)
1 | Clearcreekite 6.760(4) 9.580(4) 10.931(4) 105.53(5) 4 P21/c 102.69
2 Clearcreekite 6.76 9.58 10.931 105.53 4 pP21/c 102.69
3 | Peterbaylissite 11.130(2) 11.139(3) 10.725(3) 8 Pcab 100.09
4 Peterbaylissite 11.130 11.139 10.725 8 Pcab 100.09
5 | Szymanskiite 17.415(5) 6.011(4) 1 P6; 950.77
6 | Szymanskiite 17.3964(7) 6.0078(4) 1 P6; 948.23
7 Szymanskiite 17.415 6.011 1 P63 950.77
8 Vasilyevite 9.344 10.653 18.265 93.262 90.548 115.422 2 P-1 493.30
9 | Vasilyevite 9.344(2) 10.653(2) 18.265(4) 93.262(5) 90.548(4) 115.422(4) | 2 P-1 493.30
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Mercury

Name Formula Reference
Ha(ll
10 |Mosesite Hg"16NCla(SO4)1.5(M0O4)0.5(COs)o.5)8(H20) Switzer et al. (1953)
11 |Mosesite Hg":NClo5(S04)0.3(M0O4)0.1(COs)o.1)*(H20) Gaines et al. (1997)
Synthetic phases
Ho()
12
Hg(ll)
13
Name Cell Constants Space Vo
a., A bo, A Cor A a,° B, ° 7° 7z | Group cm® gfw™
Ha(ll
10 | Mosesite 9.524 (cubic) 520.25
11 | Mosesite 9.524 (cubic) 65.031
Synthetic
phases
Ho(l)
12
Hg(ll)
13
*Calculated from cell constants, this work
260




rreeees |'1

BERKELEY LAB

Table 6. Carbonate Minerals containing greater than 10 wt.% Mercury*

Name Formula Mercury, gfw Thermodynamic
wt.% Data
Est. Meas.
Hg(l)
Clearcreekite Hg|3(CO3)(OH)'2(H20) 83.72 694.86 no no
Peterbaylissite Hg's(CO3)(OH)*2(H.0) 84.19 714.82 no no
Szymanskiite Hg'16(Ni,Mg)s(Hz0)s(COs)1223(H-0) 72.34 4436.34 no no
Vasilyevite (Hg'2)10065CI(CO5) 86.36 4836.00 no no
Hg(ll)
Mosesite Hg2N(CI,SO4,M00,4,CO3)*(H,0) 79.96 501.74 no no

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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Table 1. Association Constants for Aqueous Carbonate Complexes in the System NiO-CO,-H,0
Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.PT,
kJ
Ni** + COs* = NiCO3(aq) 6.87 Estimate Mattigod and Sposito
(2977)
42+0.3 - Baeyens et al. (2003)
40+0.3 - Hummel et al. (2002)
4.00 £ 0.30 - Duro et al. (2006) Hummel et al. (2002)
47+0.8 - | Estimated through correlation Hummel and Curti (2003)
with corresponding Co ag.
species
46+0.8 - | Estimated through correlation Hummel and Curti (2003)
with corresponding Zn ag.
species
Ni** + 2CO5% = Ni(CO3).> 10.11 Estimate Mattigod and Sposito
(2977)
<6. Hummel et al. (2002)
<6. Duro et al. (2006) Hummel et al. (2002)
Ni** + COs% + H" = NiHCO," ~11.3* Hummel et al. (2002)
11.33* Duro et al. (2006) Hummel et al. (2002)
<12.3* Baeyens et al. (2003)
<12.3* Estimated using correlation plots Hummel and Curti (2003)
Ni?* + HCO3 = NiHCO;" 2.14 Estimate Mattigod and Sposito
(1977)
NiCOs(aq) + COs> = Ni(CO3),” <2. Baeyens et al. (2003)
<2.-<35 Estimated using correlation plots Hummel and Curti (2003)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

* Corrected using bicarbonate dissociation equation from PHREEQC
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Table 2. Solubility Constants of Solid Carbonates in the System NiO-CO,-H,O

Solubility Constant Reaction Log K® AH g . Comments Secondary Reference Primary Reference
kJ
Minerals
Ni(l1)
Gaspeite
NiCOs(s) = Ni*" + CO5>
-6.87 estimated Latimer (1952) Ageno and Valla (1911)
-6.87 - Zhuk (1954) Goskhimizdat (1952)
-6.87 -1 1=0 Palmer and Van Eldik Smith and Martell (1976)
(1983)
-11.2+0.3 - Grauer (1999) Reiterer (1980)
-11.2+0.3 - Hummel and Curti (2003) Grauer (1999)
-11.20 £ 0.30 Duro et al. (2006) Hummel et al. (2002)
-11.03 £ 0.18 - Hummel and Curti (2003) Wallner et al. (2002),
Reiterer (1980)
4.687 + | Based on Sverjensky et al. (1997) Duro et al. (2006)
6.491 | approach
NiCOs(s) + 2H+ = Ni** + CO, + H,0 11.28 25°C, | = 0. Note: value appears Gamsjager (1974) Kelley and Anderson (1935)
to be incorrectly transcribed.
6.99 +0.12 - Gamsjager et al. (1998) Reiterer (1980), Gamsjager
et al. (1982)
7.22+0.10 50°C, 1 M NaClOy, Gamsjager (1985) Reiterer (1980)
7.12+£0.18 - Wallner et al. (2002) Gamsjager et al. (1982)
NiCO3(s) + CO,(g) + H.0 = Ni* + 2HCO4 -4.38 Naumov et al. (1974) Ageno and Valla (1911),
Sillen and Martell (1964)
Hellyerite
NiCO3+6(H,0)(s) = Ni** + CO3> + 6H,0 -7.51+£0.10 - Hummel and Curti (2003) Wallner et al. (2002),

Gamsjager et al. (2001)
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Table 2. Solubility Constants of Solid Carbonates in the System NiO-CO,-H,O (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P,T,
kJ
NiCO3+6(H,0)(s) + 2H+ = Ni*" + CO, + 7H,0 10.54 £ 0.10 T assumed to be 25°C. Re- Wallner et al. (2002) Ageno and Valla (1911),
interpretation of solubility Mueller and Luber (1930)
measurements assumed to be of
hellyerite instead of NiCOs.
10.64 +0.10 Wallner et al. (2002) Wallner et al. (2002),
Gamsjager et al. (2001)
Takovite
NiA"(CO3)o5(OH)e*(H20) + 6H" = 2Mg*" + AI** 19.37 | = 0, corrected using the Davies Johnson and Glasser
+0.5C0O5” + TH,0 19.71 +0.34 equation. | =6.5 mM and 12.8 (2003)
20.37 mM. Equilibration up to 147 days
20.34 £ 0.52
Nio_59A|0_31(OH)z(CO3)o_16'O.37gH20) +2H" = 2.24 Calculated from thermochemical Allada et al. (2006)
0.69Ni** + 0.31AI*" +0.16CO;” + 2.37H,0 data.
Nio 67Alg 53(OH)2(CO3)0.165°0.505(H,0) + 2H" = 4.20 Calculated from estimated AG? Peltier et al. (2006)

0.67Ni*" + 0.33A*" +0.33C0O5> + 2.505H,0

for compound

Ni(l11)

Synthetic Phases

Ni(l1)

Ni(I11)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System NiO-CO,-H,0

extracted from Databases of Distribution-of-Species Codes

- . o AHS PT
Association Constant Reaction Log K k.Y] e Database Source
Ni(l1)
Ni** + COs* = NiCO3(aq) 6.87 Minteq (2009)
45718 Minteq (2006) NIST46.4; MTQ3.11
- - | Phreeqc (2009)
6.87 - | Wateqg4f (2005)
4.2 - | ThermoChimie v.9
4.000 - | NAGRA/PSI (2001)
- - | Data0.com.V8.R6+
- - | Data0.YMP.R5
- - | Thermoddem (2009)
Ni** + 2CO5% = Ni(CO3).> 10.11 0 | Minteq (2009)
- - | Minteq (2006)
- - | Phreeqc (2009)
10.11 - | Wateqg4f (2005)
6.2 - | ThermoChimie v.9
6.000 - | NAGRA/PSI (2001)
- - | Data0.com.V8.R6+
- - | Data0.YMP.R5
- - | Thermoddem (2009)
Ni*" + COs¥ + H" = NiHCO," 12.47 0 | Minteq (2009)
12.4199 0 | Minteq (2006) NIST46.4; MTQ3.11
- - | Phreeqc (2009)
11.73 - | ThermoChimie v.9
Ni?* + HCO5> = NiHCO3' 2.14 - | Wateq4f (2005)
1.000 - | NAGRA/PSI (2001)

Data0.com.V8.R6+

Data0.YMP.R5

Thermoddem (2009)

Ni(I11)

No entries

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3b. Solubility Constants of Solid Carbonates in the System NiO-CO,-H,O extracted from
Databases of Distribution-of-Species Codes

AH?

RP.T,
kJ

Solubility Constant Reaction Log K® Database Source

Gaspeite
NiCOs(s) = Ni** + COs* -6.84 -9.94 | Minteq (2009)
-6.87 -41.589 | Minteq (2006)
- - | Phreeqc (2009)
-6.840 -9.940 | Wateq4f (2005)

- - | ThermoChimie v.9
-11.200 - | NAGRA/PSI (2001)
NiCO4(s) + H" = Ni** + CO5” 3.5118 - | Data0.com.V8.R6+
2.5700 - | Data0.YMP.R5 95Bar/Pla; 99Bin/Mil

- - | Thermoddem (2009)

Hellyerite

NiCOg¢5.5(H,0)(s) = Ni*" + COs> + - - | Minteq (2009)
5.5H,0

- - | Minteq (2006)

- - | Phreeqc (2009)

- - | Wateq4f (2005)
-7.52 - | ThermoChimie v.9

- - | NAGRA/PSI (2001)

- - | Data0.com.V8.R6+

- - | Data0.YMP.R5

- - | Thermoddem (2009)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.V8.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.
USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-

Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical
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Table 4a. Thermodynamic Properties of Nickel Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

Mineral Name Formula AG?,P, . Secondary Reference Primary Reference
kd/gfw *
Minerals
Ni(l1)
Gaspeite NiCO3 -615.05 | Latimer (1952) Ageno and Valla (1911)
-615.05 | Karpov et al. (1968) Latimer (1952)
-615.05 | Karapet'yants and Karapet'yants (1970) Latimer (1952)
-615.0 | Woods and Garrels (1987) Latimer (1952)
-613.79 | Zhuk (1954) Rossini et al. (1952), Karapet'yants
(1953)
calculated -613.75 Zhuk (1954)
-613.75 | Karpov et al. (1968) Zhuk (1954)
-613.75 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
10.46% | Karpov et al. (1968) Kireev (1964)
-612.12 | Naumov et al. (1974) Ageno and Valla (1911), Sillen and
Martell (1964)
-612.54 Wagman et al. (1969)
-612.1 | Woods and Garrels (1987) Naumov et al. (1974)
-612.5 | Woods and Garrels (1987) Wagman et al. (1982)
-628.359 + 1.24 Tareen et al. (1991)
-636.5 + 1.4 | Gamsjager et al. (2001), Gamsjager et al. (1998)
Wallner et al. (2002)
Hellyerite NiCO36(H;0) -2039.2+1.1 Gamsjager et al. (2001),
Wallner et al. (2002)
Takovite
CO5(2:1), synthesized Nio 64Alo.36(OH)2[(CO3)0.15]*0.46H,0 -862.0 Peltier et al. (2006)
CO5(2:1,h), synthesized | Nig.gsAlo.3a(OH)2[(CO3)0.17]°0.42(H-0) -851.4 | - Peltier et al. (2006)
CO5(5:1), synthesized Nio.67Al0.33(OH)2[(CO3)0.17]#0.41(H,0) -828.7 | - Peltier et al. (2006)
CO5(2:1,h,Si), Nio 65Al0.35(OH)2[(CO3)0.10(H3Si04)0.15]* -925.4 | - Peltier et al. (2006)

synthesized

0.08(H0)
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Table 4a. Thermodynamic Properties of Nickel Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation
(Continued)

Mineral Name Formula AGO Secondary Reference Primary Reference
f.P.T,
kd/gfw ™
estimated Ni0.67A|0.33(OH)z[(COg)O.].zs]'o.505(H2 -856.5 - Peltier et al. (2006)
0)
Zaratite Niz(CO3)[?] -720.24 | Stern (2000) Barin (1989)

Synthetic Phases

Ni(l1)

@ Formation from the oxides
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Table 4b. Thermodynamic properties of Nickel Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

Mineral Name Formula AH ?,P, . Secondary Reference Primary Reference
kd/gfw™
Minerals
Ni(l1)
Gaspeite NiCO3 -685.34 | Karpov et al. (1968) Kelley and Anderson (1935)
-685.34 | Karapet'yants and Karapet'yants (1970) Kelley and Anderson (1935)
-664.00 Latimer (1952)
-664.00 | Karpov et al. (1968) Latimer (1952)
-664.00 | Karapet'yants and Karapet'yants (1970) Latimer (1952)
-664.0 | Woods and Garrels (1987) Latimer (1952)
-689.10 | Zhuk (1954) Rossini et al. (1952), Karapet'yants
(1953)
-689.10 | Karpov et al. (1968) Karapet'yants (1955)
-689.10 | Karapet'yants and Karapet'yants (1970) Karapent'yants (1955)
-711+8 Yatsimirskii (1958)
-711.28 | Reznitskii (1961) Yatsimirskii (1958)
-711.28 | Karpov et al. (1968) Yatsimirskii (1958)
-38.91% | Karpov et al. (1968) Kireev (1964)
-711.28 | Karapet'yants and Karapet'yants (1970) Yatsimirskii (1958)
calculated -711.28 Reznitskii (1961)
-711.28 | Karapet'yants and Karapet'yants (1970) Reznitskii (1961)
-689.10 | Naumov et al. (1974) Ageno and Valla (1911), Sillen and
Martell (1964)
-689.1 | Woods and Garrels (1987) Naumov et al. (1974)
-703.380 + 1.24 Tareen et al. (1991)
-713.4+ 1.6 Gamsjager et al. (2001),
Wallner et al. (2002)
Hellyerite NiCO3+6(H,0) -2456.7 £ 3.1 Gamsjager et al. (2001),
Wallner et al. (2002)
Takovite. synthesized | NipgoAlo31(OH)2(C0O3)0.16°0.37(H,0) -918.42 £ 1.21 Allada et al. (2006)
synthesized Nio.esAlo.3a(OH)2(CO3)0.17°0.42(H,0) -904.031 £ 0.93 Allada et al. (2006)
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Table 4b. Thermodynamic properties of Nickel Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

(Continued)

Mineral Name Formula AH ?,P, . Secondary Reference Primary Reference
kd/gfw™*

synthesized Nig 77Alg 23(OH)2(C0O3)0.1220.33(H.0) -838.18 £ 1.26 Allada et al. (2006)
synthesized Nio.67Al0.33(OH)2(CO3)0.170.41(H,0) -908.42 + 2.06 Allada et al. (2006)
synthesized Nio.64Al0.36(0OH)2(CO3)0.18°0.46(H,0) -942.41 + 1.53 Allada et al. (2006)
COg3(2:1), synthesized | NiggsAlg.36(OH)2[(CO3)0.15]°0.46(H.0) -987.30 £ 1.53 | Peltier et al. (2006) Allada et al. (2006)
COs(2:1,h), Nio.ssAlo 24(OH)2[(COs)0.17]°0.42(H,0) -95057 £ 0.93 | Peltier et al. (2006) Allada et al. (2006)
synthesized

CO5(5:1), synthesized | Nige7Alo.33(OH)2[(CO3)0.17]0.41(H,0) -930.47 £ 2.06 | Peltier et al. (2006) Allada et al. (2006)

CO5(2:1,h,Si),

Ni0.65A|0.35(OH)2[(CO3)0.10(H38i04)0.15].0-

-1132.27+ 1.37

Peltier et al. (2006)

synthesized 08(H20)

Zaratite Niz(COs)[?] -694.19 | Stern (2000) Barin (1989)

Synthetic Phases

Ni(l1)

Ni(HCOs3), Ni(HCO3), -1447.66 + 62.76 | Estimated value for fictive compound Wilcox and Bromley (1963)
Ni(HCO3), Ni(HCOs), -1447.66 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)

@ Formation from the oxides
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Table 4c. Thermodynamic Properties of Nickel Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral Sgr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
Minerals
Ni(l1)
Gaspeite NiCO3 91.63 Latimer (1952)
estimated
91.63 | Karpov et al. (1968) Latimer (1952)
91.6 | Woods and Garrels (1987) Latimer (1952)
90.37 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
calculated 90.79 Zhuk (1954)
90.79 | Karpov et al. (1968) Zhuk (1954)
90.79 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
90.37 | Karpov et al. (1968) Karapet'yants (1955)
91.63 | Karapet'yants and Karapet'yants (1970) Latimer (1952)
90.37 | Karapet'yants and Karapet'yants (1970) Karapet'yants (1953)
85.4 Kostryukov and Kalinkina (1964)
85.52 £ 1.67 | Naumov et al. (1974) Kostryukov and Kalinkina (1964)
85.4 + 2.0 | Robie and Hemingway (1995) Kostryukov and Kalinkina (1964)
85.5 | Woods and Garrels (1987) Naumov et al. (1974)
Hellyerite NiCO3;.6(H,0) 343 + 10. Gamsjager et al. (2001),
Wallner et al. (2002)
Zaratite Niz(CO3)[?] 86.19 | Stern (2000) Barin (1989)

Synthetic Phases

Ni(ll)
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Table 5. Crystallographic Properties of Nickel Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference
Minerals
Ni(ll)
1 |Carrboydite Nis 50CU0.40Al1.80(SO4)2.30(CO3)0.48(OH)21.69°3.67(H,0) Nickel and Clarke (1976)
2 |Carrboydite Ni13Cu;Alg(SO4)4(CO3)2(OH)43¢7(H,0), assumed Gaines et al. (1997)
3 | Carrboydite Ni1oCu4Alg(SO4)4(CO3)2(OH)43¢7(H20) Mineralogy Database (http://webmineral.com/)
4 | Comblainite Ni"sC0"2(CO3)(OH)16*4(H-0) Gaines et al. (1997)
5 |Comblainite Ni"sC0"2(CO3)(OH)1604(H20) Piret and Deliens(1980)
6 |Gaspeite NiCO3 Graf (1961)
7 |Gaspeite NiCO3 Pertlik (1986)
8 |Gaspeite Nio.sMgo.sFe'o.1(COs) Gaines et al. (1997)
9 |Glaukosphaerite | (Cu;sNigs)(CO3z)(OH), Gaines et al. (1997)
10 |Glaukosphaerite |(CuysNigs)(COs)(OH), Mineralogy Database (http://webmineral.com/)
Name Cell Constants Space Group vo*
a, A bo, A Co, A o, ° B,° y,° z cm?® gfw™
Minerals
Ni(ll)
1 Carrboydite 9.14 10.34 1 hex 450.05
2 Carrboydite 9.14 10.34 1/2 hex 901.00
3 Carrboydite 18.28 20.68 4 hex 901.00
4 Comblainite 6.08 45.58 3 R-3m, 292.92
5 Comblainite 3.038 22.79 3/8 R-3m, R3m, R32, R- 292.53
3,0rR3
6 Gaspeite 4.5975 14.723 6 R3c 27.050
7 Gaspeite 4.6117(5) 14.735(2) 6 R3c 27.240
8 Gaspeite 4.621 14.93 6 R3c 27.712
9 Glaukosphaerite 9.35 11.97 3.13 96 4 P2,/a 52.451
10 Glaukosphaerite 9.34 11.93 3.07 90.0 4 P2i/a 51.501
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Name Formula Reference
11 |Glaukosphaerite |(CussNigs)(CO3s)(OH), Perchiazzi and Merlino (2006)
12 |Hellyerite NiCO36(H20) Gaines et al. (1997), after Threadgold (1963)?
13 |Kambaldaite NaNis(CO3)3(OH)3#3(H20) Engelhardt et al. (1985), Nickel and Robinson (1985)
14 |Nullaginite Niz(CO3)(OH), Gaines et al. (1997), Nickel and Berry (1981)
15 |Omsite (Niz1CUo.7Mgo 2)Fe" (OH)e[Sb(OH)s Mills et al. (2012)
16 |Otwayite Niz(CO3)(OH),#(H.0) Gaines et al. (1997), Nickel et al. (1977)

17 |Paraotwayite

Ni(OH)1.5(S04)0.125(CO3)0.125

Gaines et al. (1997)

18 |Reevesite

NisFe">(COs3)(OH)16°4(H20)

Gaines et al. (1997), de Waal and Viljoen (1971)

19 |Szymanskiite

Hglle(Nil.sM90.5)(H3O)8(CO3)12'3(H20)

Gaines et al. (1997)

20 |Takovite NigAlx(OH);16(CO3,0H)+4(H,0) Gaines et al. (1997)
Name Cell Constants Space Group Vo

a, A bo, A Co, A o, ° B,° y,° z cm?® gfw™
11 |Glaukosphaerite 12.0613(4)| 9.3653(4) 3.1361(1) 90.085(5) 4 P2,/a 53.333
12 Hellyerite 10.770 7.30 19.68 94.0 8 C2/c 116.19
13 |Kambaldaite 10.340(3) 6.097(2) 1 P6-3 169.98
14 |Nullaginite 9.236(3)| 12.001(6) 3.091(2) 90.48(7) 4 P2./m or P2, 51.580
15 |Omsite 5.3506(8) 19.5802(15) 2 P-3 146.18
16 Otwayite 10.18 27.4 3.22 8 Orthorh 67.611
17 Paraotwayite 7.89 2.96 13.63 91.1 6 Pm 319.44
18  |Reevesite 6.614(3) 45.54(2) 3 R-3m 346.32
19  |Szymanskiite 17.3964(7) 6.0078(4) 1 P63 948.23
20 Takovite 6.04 45.16 3 R-3m 286.41
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Name Formula Reference
21 |Takovite NisAlx(OH);16(CO3,0H)+4(H,0) Bish and Brindley (1977)
22 |Takovite NigAl2(OH)16(CO3,0H)*4(H,0) Mills et al. (2012)
23 |Widgiemoolthalite |(Nis.sMdo.4)(CO3)a(OH),#5(H-0) Gaines et al. (1997), Nickel et al. (1993)
24 | Zaratite* Ni3(CO3)(OH)4*4(H;0) Mineralogy Database (http://webmineral.com/)

Synthetic Phases

Ni(ll)
25
Name Cell Constants Space Group vo*
a0, A bo, A co A a° B, ° e 7 cm?® gfw™

21  |Takovite 3.0250(1) 22.595(3) 3/8 hex 287.55
22 Takovite 3.0290(2) 22.5995(15) 3/8 R-3m 288.37
23 |Widgiemoolthalite 10.06(17) 8.75(5) 8.32(4) 114.3(8) 2 P2,/c 200.99
24 Zaratite* 6.16 1 Isomet 140.76

Synthetic Phases

Ni(ll)
25

*See Garcia-Guinea et al. (2014) regarding the validity of this mineral

#Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than 10 wt.% Nickel*

Name Formula Nickel, wt.% gfw Thermodynamic
Data

Est. Meas.
Carrboydite (Ni,Cu)14Alg(SO4,CO3)6(OH)4327(H20) 24.00 2445.61 No No
Comblainite Ni"sC0"5(CO3)(OH)16+4(H20) 40.28 874.19 No No
Gaspeite (Ni,Mg,Fe"YCO; 32.58 108.10 No yes
Glaukosphaerite (Cu,Ni)z(CO3)(0OH), 13.42 218.69 No No
Hellyerite NiCO36(H20) 25.88 226.79 No yes
Kambaldaite NaNis(COs3)s(OH)3*3(H-0) 43.25 542.85 No No
Nullaginite Niz(CO3)(OH). 55.52 211.40 No No
Otwayite Niz(CO3)(OH).+(H-0) 51.16 229.42 No No
Paraotwayite Ni(OH)2x(S0O4,CO3)0.5¢ X =.5 56.59 103.71 No No
Reevesite NigFe"2(COs)(OH)¢04(H,0) 40.57 868.02 No No
Takovite NisAl,(OH)16(CO3,0H)*4(H,0) 44.04 799.54 yes yes
Widgiemoolthalite (Ni,Mg)s(CO3)4(OH)2*4-5(H,0) 34.41 596.99 No No

Zaratite Niz(CO3)(OH)4*4(H-0) 46.81 376.17 No Yes?

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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THALLIUM
Table 1. Association Constants for AQueous Carbonate Complexes in the System TI,O/TIO/T1,03-CO,-H,0
Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference

R,P, T,
kJ

TI()

T + CO5” = TICO4(aq) 2.16 Xiong (2007)

T + COs* + H' = TIHCO;" 11.23 Xiong (2007)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 2. Solubility Constants of Solid Carbonates in the System TI,O/TIO/T1,03-CO,-H,0

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP,.T,
kJ
Minerals
TI(I)
TI(IT)
TI(IT)

Synthetic phases

TI(I)
TI(IT)
TI(IT)
T1,COs
TIL,CO; = 2TI" + CO~ -2.658 - | Calculated from solubility. No correction for Kelley and Anderson (1935)
activity coefficients. after Lamy (not cited)
-3.89 - | From electrochemical cell data Saegusa (1950)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3a. Association Constants of Aqueous Carbonate Complexes the System TI,O/TIO/TI,05-
CO,-H,0 extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction Log K® AH g o1 Reference Comments
kJ

TI(I)
No data No data

TI(I)
No data No data

TI(I)
No data No data

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Table 3b. Solubility Constants of Solid Carbonates in the System T1,0/T1,03-CO,-H,0 extracted

from Databases of Distribution-of-Species Codes

Solubility Constant Reaction Log K& AH? Database Source
RP.T,
kJ
TI(I)
T1L.CO;
TI,CO; = 2TI" + CO* -3.8482 33.56 | Minteq (2009)
-3.8367 35.49 | Minteq (2006)
- - | Phreeqc (2009)
Wateq4f (2005)
ThermoChimie v.7.b
- - | NAGRA/PSI (2001)
Data0.YMP.R5
Thermoddem (2009)
TI(I)
No data No data
TI(n)
No data No data

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Thallium

286




=

BERKELEY LAB

Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.V8.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://mwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MintegA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQAZ2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://mwwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16-19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Wateq4f

Ball, J. W., & Nordstrom, D. K. (1991). User's manual for WATEQA4F, with revised thermodynamic data
base and test cases for calculating speciation of major, trace, and redox elements in natural waters.

U.S. GEOLOGICAL SURVEY, Open-File Report 91-183, Revised and reprinted - April, 2001. p. 81-94

Wateq4f (2005)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/WATEQ4F.DAT
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Table 4a. Thermodynamic Properties of Thallium Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

Mineral AG?,P,,T, Secondary Reference Primary Reference
Name Formula 1
kJ/gfw

Minerals

TI(N)

TI(I)

TI(I)

Synthetic phases

TI(I)

TICu(OH)COs TICU(OH)COs

TI,Cu(COs), TI,Cu(COs),

TIC"(CO3), TIC(CO3),

TI,Cr'(CO3)s TI,Cr'(CO3)s

Tl;V(CO3)s Tl;V(CO3)s

TI(I)

TI(I)

TI,CO3 TI,CO3
-615.05 Saegusa (1950)
-615.05 | Karpov et al. (1968) Saegusa (1950)
-615.05 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)
-624.25 | Karpov et al. (1968) Karapet'yantz (1957)
-624.25 | Karapet'yants and Karapet'yants (1970) Karapet'yantz (1957)
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Table 4b. Thermodynamic properties of Thallium Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

Mineral AH (f),P, . Secondary Reference Primary Reference
Name Formula "
kJ/gfw
Minerals
TI(N)
TI(I)
TI(I)
Synthetic phases
TI(I)
TI,CO3 TI,CO3 -699.44 De Forcrand (1927)
-699.85 Saegusa (1950)
-699.85 | Karpov et al. (1968) Saegusa (1950)
-699.849 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)
-703.33 £ 7.11 Gattow (1958)
-703.33 | Karapet'yants and Karapet'yants (1970) Gattow (1958)
-703.33 | Karpov et al. (1968) Karapet'yantz and Karapet'yantz (1961)
-700.0 | Stern (2000) Tompkins (1976)
TIHCO; TIHCO; -736.38 £ 62.76 | Estimated value for fictive compound Wilcox and Bromley (1963)
-736.38 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)
TICu(OH)COs TICU(OH)COs
TI,Cu(COs), TI,Cu(COs),
TICr(COs), TICr(COs),
TIsCr(CO3)s TIsCr(COs)3
TIV(COg3)s TIV(COg3)s
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Table 4c. Thermodynamic properties of Thallium Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral Sgr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw

Minerals

TI(N)

TI(I)

TI(I)

Synthetic phases

TI(I)

TI,CO3 TI,CO3 158.57 + 10.46 Saegusa (1950)
158.57 | Karpov et al. (1968) Saegusa (1950)
158.57 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)
143,51 Gattow (1958)
143.51 | Karapet'yants and Karapet'yants (1970) Gattow (1958)
143.51 | Karpov et al. (1968) Karapet'yantz and Karapet'yantz (1961)

155.2 | Stern (2000) Tompkins (1976)

TICu(OH)COs TICu(OH)COs

TI,Cu(COs), TI,Cu(COs),

TICr(COs), TICr(COs),

TIsCr(CO3)s TIsCr(COs)3

TIV(COg3)s TIV(COg3)s
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Table 5. Crystallographic Properties of Thallium Carbonate Minerals and Synthetic Solid Carbonates

Name

Formula

Reference

Minerals

TI(1)

TI(I)

TIQ)

Name

Cell Constants

ao, A

bo, A

Co, A

a,

o

Space
Group

Vo'
cm?® gfw™

Minerals

TI()

TIQN

TIC)

291




rreeees |'1

BERKELEY LAB

Name Formula Reference

Synthetic

phases

TI(T)
4 TICu(OH)CO4 TICu(OH)CO4 Adam and Zheng (1994)
5 | TlCu(COs), TI,Cu(COs), Ehrhardt et al. (1981)
6 | TICr"(CO3), TICr"(COs), Ehrhardt et al. (1981)
7 | TI,Cr"(COs)s TI;Cr'(COs)s Ehrhardt et al. (1981)
8 | TIV"(COs)s TIV"(COs)s Ehrhardt et al. (1981)

TI(1)
9

TI()
10

Name Cell Constants Space Vot
a,, A bo, A Co, A a,® B, ° 7,° 7 Group cm?® gfw™

Synthetic

phases

TI()
4 | TICU(OH)COs 10.849(1) 6.118(1) 6 P63/m 62.592
5 | TI,Cu(COs). 7.583(1) 9.799(1) 9.119(1) 111.51(1) 4 P2,/c 94.911
6 | TICr(COs). 19.917(7) 8.605(3) | 19.138(5) 104.79(3) 24 P2,/c 79.576
7 | TIsCr(COs)s
8 | TILV(COs)s

TI(1)
9

TI(N)
10

#Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than 10 wt.% Thallium

Name Formula gfw Thermodynamic Data

Est. Meas.

No entries
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/U03-CO,-H,0
Association Constant Reaction Log K& AH? Comments Secondary Reference Primary Reference
RP.T,
kJ
u(v)
U™ + 5CO5” = U(CO3)s™ - - | Evidence for the existence of, Krishnamurty et al. (1970) Rosenheim and Kelmy
preparative (1932)
- - | Evidence for the existence of, Krishnamurty et al. (1970) McClaine et al. (1956)
solubility
- - | Evidence for the existence of, Krishnamurty et al. (1970) Golovnya et al. (1960)
spectrophotometry
- - | Evidence for the existence of, Krishnamurty et al. (1970) Stabrovskii (1960)
preparative, excess HCO; and COz”
-20 £ 4 | 25°C, 3 M (Na,H)ClO, Grenthe et al. (1984b)
31.29 Rai et al. (1998)
323+14 Recalculation Guillaumont et al. (2003) Rai et al. (1998)
341+1 20+ 4 Duro et al. (2006) Hummel et al. (2002),
Grenthe et al. (1992)
34.0+£0.9 Duro et al. (2006) Guillaumont et al. (2003)
U* + 2C03% + 20H = U(OH)»(CO3),> 41.33 Rai et al. (1998)
42.2 Recalculation Guillaumont et al. (2003) Rai et al. (1998)
U™ + 4C0O5% + 20H = U(OH),(CO3),~ - - | Evidence for the existence of, Krishnamurty et al. (1970) Rosenheim and Kelmy
preparative, excess COs> (1932)
U™ + 4C0O5% = U(CO3)s* - - | Evidence for the existence of, Krishnamurty et al. (1970) Golovnya et al. (1960)
preparative, excess COs”
35.22 +£1.03 Duro et al. (2006) Hummel et al. (2002),
Grenthe et al. (1992)
35.12 +0.93 Duro et al. (2006) Guillaumont et al. (2003)
U(CO3),* + CO5% = U(CO3)s™ -1.12+0.25 - | 25°C,1=0 Bruno et al. (1989)
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P,.T,
kJ
U(CO3)s® + 0.504(g) + H20 = UO,(CO3)s" -170+ 8 | 25°C, 3 M (Na,H)CIO, Grenthe et al. (1984b)
+2HCO3
u(v)
UO," + 3C0O5” = UO,(CO3)s™ 13.3+0.4 25°C, 3.0 M CIO, Ferri et al. (1983)
6.95 +0.36 Capdevila and Vitorge Capdevila and Vitorge
(1999) (1990) and Capdevila
(1992)
2UY0,(C0O3);~ + 4HCO;3 = UY'0,(CO,)s* + 4.98 +0.07 25°C, 3.0 M CIO, Ferri et al. (1983)
UY(CO,)s® + 2 COs% + 2H,0
(U'0,)(COs)," + e = (UV0,)(CO3),~ - - | Polarography in 3 M NaClO,4 Ferri et al. (1983)
(UY'0,)(CO5)," + e = (UV0,)(CO3),~ - - | Polarography and spectrophotometry Mizuguchi et al. (1993)
0.01 M Nay[UO,(COs),] and 1 M
Na,COs
U(vI)
UO,*" + CO5* = UO,CO4(aq) 9.87 25°C, 1=0 Sergeeva et al. (1972a)
10.18 50°C,1=0 Sergeeva et al. (1972a)
9.87 I=0 Kramer-Schnabel et al. Sergeeva et al. (1972a)
(1992)
2.78 I =0.22-0.36 Palmer and Van Eldik Almagro et al. (1973)
(1983)
2.23 | = 0.40-0.53 Palmer and Van Eldik Almagro et al. (1973)
(1983)
10.09 25°C, | = 3 x 10™. pH-metric and soly. Pirozhkov and Nikolaeva
methods (1976)
10.09 25°C, 1 =3 x10* Kramer-Schnabel et al. Pirozhkov and Nikolaeva
(1992) (1976)
9.87 Palmer and Van Eldik Babinets et al. (1977)
(1983)
9.0 0.1 M NaNO3 Kramer-Schnabel et al. Scanlan (1977)
(1992)
10.1 25°C, 1=07? Langmuir (1978)
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K& AH? Comments Secondary Reference Primary Reference
RP.T,
kJ
9.14 +0.23 Ciavatta et al. (1979)
9.02 1=3 Palmer and Van Eldik Ciavatta et al. (1979)
(1983)
9.02 3 M NaClO, Kramer-Schnabel et al. Ciavatta et al. (1979)
(1992)
10.1+x0.4 25°C,1=0 Lemire and Tremaine
(1980)
10.2+0.5 60°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
entropy extrapolation (1980)
10.6 £ 0.7 100°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
entropy extrapolation (1980)
12+1 150°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
entropy extrapolation (1980)
13+1 200°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
entropy extrapolation (1980)
9.5+0.2 I=0 Grenthe et al. (1984a)
8.3 0.5 M NaClO,4 Kramer-Schnabel et al. Grenthe et al. (1984a)
(1992)
8.3 3 M NaClO, Kramer-Schnabel et al. Grenthe et al. (1984a)
(1992)
9.94 25°C Gotz et al. (2011) Grenthe et al. (1992)
9.63 25°C, 1=0 Kimura et al. (1992) Grenthe et al. (1992)?
8.70 £ 0.04 25°C, P(CO) = 1.0, 0.1 NaClO, Kramer-Schnabel et al.
(1992)
9.23+0.04 25°C, 0.1 M NaClO, Meinrath and Kimura
(1993a)
9.65 £ 0.08 Meinrath et al. (1996a)
9.97 £ 0.05 22 + 2°C. Recalculation Guillaumont et al. (2003) Pashalidis et al. (1997)
10.27 £ 0.05 25°C, 1=0 Nitzsche et al. (2000) Meinrath et al. (1999)
9.67 +0.05 Duro et al. (2006) Hummel et al. (2002),
Grenthe et al. (1992)
9.94 £ 0.03 Duro et al. (2006) Guillaumont et al. (2003)
9.94 25°C, 1=0 Berto et al. (2012) Guillaumont et al. (2003)
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P. T,
kJ
9.89 10°C, calculated value Gotz et al. (2011)
9.98 40°C, calculated value Gotz et al. (2011)
10.05 60°C, calculated value Gotz et al. (2011)
UO,* + COy(g) +H,0(l) = UO,COs(aq) + 9.02 +0.03 EMF, 3 M NaClO,4 Ciavatta et al. (1979)
2H*
10.042 Lemire and Tremaine
(1980)
9.67 £ 0.05 As revised in Appendix D Silva et al. (1995) Grenthe et al. (1992)
10.122 Redkin and Wood (2007)
UO,%" +1C0O5% = (UO,CO3) t = 1-3 9.5+0.2 =0 Grenthe et al. (1984a)
UO,*" + 2C0O4% + 2H,0 = 14.60 =0 McClaine et al. (1956)
[UO3(COs)a(H20):]*
UO,* + 2C0O5" = UO,(CO3),” 14.6 =0 Palmer and Van Eldik McClaine et al. (1956)
(1983)
14.6 I=0 Kramer-Schnabel et al. McClaine et al. (1956)
(1992)
15.57 1=0.2 Palmer and Van Eldik Babko et al. (1960)
(1983)
15.57 0.2 M NH;NO3 Kramer-Schnabel et al. Babko et al. (1960)
(1992)
14.57 Sol., 1=0.2 M. Krishnamurty et al. (1970) Babko and Kodenskaya
(1960),
16.16 25°C,1=0.1 Langmuir (1978) Tsymball (1969)
17.6 Corrected, 25°C, 1=0 Langmuir (1978) Tsymball (1969)
16.16 1=0.1 Palmer and Van Eldik Tsymball (1969)
(1983)
16.16 0.1 M NaClO,4 Kramer-Schnabel et al. Tsymball (1969)
(1992)
16.7 25°C,1=0 Kramer-Schnabel et al. Sergeeva et al. (1972a)

(1992)
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K& AH? Comments Secondary Reference Primary Reference
RP.T,
kJ
16.95 50°C,1=0 Sergeeva et al. (1972a)
16.7 1=0 Kramer-Schnabel et al. Sergeeva et al. (1972a)
(1992)
4.03 I =0.03-0.18 Palmer and Van Eldik Almagro et al. (1973)
(1983)
14.7; 16.7 Palmer and Van Eldik Babinets et al. (1977)
(1983)
16.22 20°C, Solv. Extn, 0.1 M NaNO3 Scanlan (1977)
16.22 20°C, 1=0.1 Langmuir (1978) Scanlan (1977)
171 Corrected, 1 =0 Langmuir (1978) Scanlan (1977)
16.2 20°C,1=0.1 Palmer and Van Eldik Scanlan (1977)
(1983)
16.22 0.1 M NaNO3 Kramer-Schnabel et al. Scanlan (1977)
(1992)
17.1+04 25°C,1=0 Lemire and Tremaine
(1980)
174 + 60°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
0.4 entropy extrapolation (1980)
18+1 100°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
entropy extrapolation (1980)
18+1 150°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
entropy extrapolation (1980)
19+2 200°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
entropy extrapolation (1980)
16.15 0.1 M NaClO,4 Kramer-Schnabel et al. Maya (1982)
(1992)
16.6 £ 0.2 I=0 Grenthe et al. (1984a)
15.36 0.5 M NaClO,4 Kramer-Schnabel et al. Grenthe et al. (1984a)
(1992)
16.2 3 M NaClO, Kramer-Schnabel et al. Grenthe et al. (1984a)
(1992)
16.94 + 0.12 Grenthe et al. (1992)
17.0 25°C, 1=0 Kimura et al. (1992) Grenthe et al. (1992)?

Uranium

299




rreeees |'1

BERKELEY LAB

Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K® AH g . Comments Secondary Reference Primary Reference
kJ
16.61 25°C Gotz et al. (2011) Grenthe et al. (1992)
16.33 £ 0.07 25°C, P(CO,) = 1.0, 1 = 0.1 NaClO, Kramer-Schnabel et al.
(1992)
15.38 £ 0.17 25°C, 0.1 M NaClO, Meinrath and Kimura
(1993a)
16.3+0.8 Meinrath et al. (1996a)
16.5+0.2 22 + 2°C, Recalculation Guillaumont et al. (2003) Pashalidis et al. (1997)
16.7+0.4 25°C, =0 Nitzsche et al. (2000) Meinrath et al. (1999)
16.9£0.12 Duro et al. (2006) Hummel et al. (2002),
Grenthe et al. (1992)
16.61 + 0.09 Duro et al. (2006) Guillaumont et al. (2003)
16.61 25°C, 1=0 Berto et al. (2012) Guillaumont et al. (2003)
16.681 Redkin and Wood (2007)
16.44 - | 10°C, calculated value Gotz et al. (2011)
16.77 - | 40°C, calculated value Gotz et al. (2011)
17.04 - | 60°C, calculated value Gotz et al. (2011)
UO%" + 2C0O4% = 1/3(U0)5(CO3)s™ -20.5+0.9 | 25°C, 3 M (Na,H)CIO,4 Grenthe et al. (1984b)
UO,(CO3),> = 1/3(UO,)5(CO3)e™ -35.1 | 25°C, 3 M (Na,H)CIO,4 Grenthe et al. (1984b)
UO,%" + 3CO5% = UO,(CO3)s* 18.3 - | Thermodynamic data Cinnéide et al. (1975) Bullwinkel (1954)
18.30 1=0 McClaine et al. (1956)
18.3 Palmer and Van Eldik Bullwinkel (1954), McClaine
(1983) et al. (1956)
18.3 I=0 Kramer-Schnabel et al. McClaine et al. (1956)
(1992)
22.77 - | 1.0 M NH,CI Cinnéide et al. (1975) Klygin and Smirnova (1959)
22.77 - | 1M NH.CI Kramer-Schnabel et al. Klygin and Smirnova (1959)

(1992)
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P,T,
kJ
22.8 =1 Palmer and Van Eldik Klygin et al. (1959)
(1983)
20.7 Babko and Kondenskaya
(1960)
20.7 0.2 M NH4NO3 Cinnéide et al. (1975) Babko and Kondenskaya
(1960)
20.7 0.2 M NHsNO3 Kramer-Schnabel et al. Babko and Kondenskaya
(1992) (1960)
20.7 Sol., 1=0.2 M. Krishnamurty et al. (1970) Babko and Kodenskaya
(1960)
20.7 1=0.2 Palmer and Van Eldik Babko and Kondenskaya
(1983) (1960)
23.0 0.5 M NaNOs Cinnéide et al. (1975) Paramonova and Nikolaeva
(1962)
23.0 =05 Palmer and Van Eldik Paramonova and Nikolaeva
(1983) (1962)
21.57 25°C,1=0.1 Langmuir (1978) Tsymball (1969)
21.57 1=0.1 Palmer and Van Eldik Tsymball (1970)
(1983)
21.57 0.1 M NaClO,4 Kramer-Schnabel et al. Tsymball (1970)
(1992)
21.4 25°C,1=0 Langmuir (1978) Sergeyeva et al. (1972)
7.71 I =0.1-0.29 Palmer and Van Eldik Almagro et al. (1973)
(1983)

21.54 £0.03 20°C, Solv. Extn., | =0.1 M NaNO3 Cinnéide et al. (1975)
21.54 25°C,1=0.1 Langmuir (1978) Cinnéide et al. (1975)
21.54 1=0.1 Palmer and Van Eldik Cinnéide et al. (1975)

(1983)
21.54 20°C, 0.1 M NaNOs Kramer-Schnabel et al. Cinnéide et al. (1975)
(1992)
21.7 20°C,1=0.1 Langmuir (1978) Scanlan (1977)
214 Corrected, 25°C, 1 =0 Langmuir (1978) Cinnéide et al. (1975),

Tsymball (1969), Scanlan
(1977),
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP.T,
kJ
21.4 Palmer and Van Eldik Babinets et al. (1977)
(1983)
-40.3 | 25°C,1=0 Lemire and Tremaine Devina et al. (1977),
(1980) Langmuir (1978)
21.70 0.1 M NaNOs3 Kramer-Schnabel et al. Scanlan (1977)
(1992)
21.4+04 25°C,1=0 Lemire and Tremaine
(1980)
21.0+0.3 60°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
entropy extrapolation (1980)
21.3+£0.3 100°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
entropy extrapolation (1980)
224+0.3 150°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
entropy extrapolation (1980)
24.0+04 200°C, | = 0, modified Crlss-Cobble Lemire and Tremaine
entropy extrapolation (1980)
22.81 0.1 M NaClO,4 Kramer-Schnabel et al. Maya (1982)
(1992)
22.6+0.1 25°C, 3.0 M NaClO,4 Ferri et al. (1983)
21.3+0.2 I=0 Grenthe et al. (1984a)
21.46 0.5 M NaClO,4 Kramer-Schnabel et al. Grenthe et al. (1984a)
(1992)
22.61 1 M NaClO, Kramer-Schnabel et al. Grenthe et al. (1984a)
(1992)
-35.9+ 0.8 | 25°C, 3 M (Na,H)CIO, Grenthe et al. (1984b)
21.60 + 0.05 Grenthe et al. (1992)
21.63 25°C, 1=0 Kimura et al. (1992) Grenthe et al. (1992)?
21.84 25°C Gotz et al. (2011) Grenthe et al. (1992)
23.92 +0.03 25°C, P(CO) = 1.0, 0.1 NaClO, Kramer-Schnabel et al.
(1992)
21.86 £ 0.05 25°C, 0.1 M NaClO, Meinrath and Kimura

(1993a)
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP.T,
kJ
21.74+£0.44 Meinrath et al. (1996a)
21.6+0.3 22 + 2°C. Recalculation Guillaumont et al. (2003) Pashalidis et al. (1997)
21.57£0.70 Using laser inducedphotoacoustic Geipel et al. (1998a)
spectroscopy (LIPAS)
229+0.3 25°C, 1=0 Nitzsche et al. (2000) Meinrath et al. (1999)
21.6 £0.05 Duro et al. (2006) Hummel et al. (2002),
Grenthe et al. (1992)
21.84 £ 0.04 Duro et al. (2006) Guillaumont et al. (2003)
21.84 25°C, =0 Berto et al. (2012) Guillaumont et al. (2003)
21.326 Redkin and Wood (2007)
21.95 10°C, calculated value Gotz et al. (2011)
21.29 40°C, calculated value Gotz et al. (2011)
30.75 60°C, calculated value Gotz et al. (2011)
UO,(CO3)(aq) + HCO5 = UO,(CO3),” + H* 1.4 | = 0. Stoichiometry of reaction in Palmer and Van Eldik McClaine et al. (1956)
Palmer and Van Eldik (1983) not (1983)
balanced. Source reference refers to
dissolution of solid phase, See Table
2.
[UO,(CO3)2(H20)2]* + 2HCO; = 181 =0 McClaine et al. (1956)
[UOz(CO3)3]47 + COz(g) +3H,0
UO,(COs),* + HCO5 = UO,(CO3)s* + H* 1.8 | = 0. Stoichiometry of reaction in Palmer and Van Eldik McClaine et al. (1956)
Palmer and Van Eldik (1983) not (1983)
balanced
UO,%" + CO3% + H,0 = UO,(OH)(CO3), + 4.1 I = 0.1. Stoichiometry of reaction in Palmer and Van Eldik Tsymball (1970)
H* Palmer and Van Eldik (1983) not (1983)
balanced
3UO,*" + CO4” + 30H = (UO,)sCO3(CH)s" 16.34 1=3 Palmer and Van Eldik Ciavatta et al. (1979)
(1983)
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P,.T,
kJ
(UO)3(OH)s™ + 9CO5> + 5H" = 80.4 Stoichiometry of reaction in Palmer Palmer and Van Eldik Cleveland (1970)
3U0O,(CO35)s" + 5H,0 and Van Eldik (1983) not balanced (1983)
(UO,)35(CO3)s™ + 3CO;, + 3H,0 = -41.5+0.1 | = 3. Stoichiometry of reaction in Palmer and Van Eldik Ferri et al. (1981)
3UO,(COs5)s" + 6H" Palmer and Van Eldik (1983) not (1983)
balanced
(UO2)3(CO3)s” + BHCO3 = 3UO,(CO5)s" + 6.4+£0.1 | = 3. Stoichiometry of reaction in Palmer and Van Eldik Ciavatta et al. (1981)
3CO; + + 3H,0 Palmer and Van Eldik (1983) not (1983)
balanced
3UO,(CO3)s”" = (UO,)5(COs)s™ + 3CO:7 -11.3+0.1 25°C, 3 M NaClO, Grenthe et al. (1996)
2UO,(CO3)s" + UOL(COs)s* = (UO,)5(CO3)s™ -11.3+0.1 25°C, 3 M NaClO, Grenthe et al. (1996)
+3CO5”
UO,(CO3),” + COs> = UO,(CO3)s* 3.77 Palmer and Van Eldik Bullwinkel (1954)
(1983)
3.5 =2 Palmer and Van Eldik Blake et al. (1956)
(1983)
5.48 20°C, Spec., 0.1 M NaNOs, Scanlan (1977)
5.48 =01 Palmer and Van Eldik Scanlan (1977)
(1983)
6.20£0.11 recalculated Bidoglio et al. (1991) Grenthe et al. (1984a),
Grenthe et al. (1992)
4.49 Sergeyeva et al. (1989)
6.35 £ 0.05 25°C, 0.5 M NaClOy, Bidoglio et al. (1991)
- Ligand exchange kinetics at variable Briicher et al. (1991)
T using *C NMR in 1 M NaClO,
UO,(CO3)s* + 3H" = (UO,)5(COs)s™ + 12.4+0.7 Allen et al. (1995)

3HCOs
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P..T,
kJ
3UO,(CO4)s" + BH" = (UO,)5(CO5)s” + -41.5 3 M NaClo, Kramer-Schnabel et al. Hietanen and Sillen (1959)
3CO,(g) + 3H,0 (1992)
3UO,% + 6C0O5” = (UO2)5(CO3)s™ 53.4+0.8 =0 Grenthe et al. (1984a)
53.91 Grenthe et al. (1992)
53.88 Redkin and Wood (2007) Grenthe et al. (1992) and
Shock et al. (1997)
55.6 £0.5 Allen et al. (1995)
54+1 Duro et al. (2006) Hummel et al. (2002),
Grenthe et al. (1992)
UO,(OH)s + 3HCO3 = UOy(CO3)s" + 3H,0 7.2+05 Geipel et al. (1998b)
UO*" + COy(g) + 2H,0(l) = -8.71 £ 0.05 25°C, 0.50 M NaClO4 Grenthe and Lagerman
UO,CO,(OH),(aq) + 2H" (1991)
Uo> + 3CO04(g) + 6H,0(l) = -29.45 £ 0.08 25°C, 0.50 M NaClO4 Grenthe and Lagerman
UO,(CO,)5(OH)s" +6H" (1991)
11UO* + 6CO4(g) + 24H,0(l) = -72.48 £ 0.31 25°C, 0.50 M NaClO,4 Grenthe and Lagerman
(U02)11(CO2)6(OH)24 +24H" (1991)
2U0,% + COs% + 3H,0(l) = -0.86 + 0.5 Duro et al. (2006) Hummel et al. (2002),
(UO,)2CO5(OH)s + 3H" Grenthe et al. (1992)
2UO,% + COy(g) + 4H,0(l) = -18.63 0.1 M NaClO,4 Kramer-Schnabel et al. Maya (1982)
(UO,),CO4(OH)5 + 5H" (1992)
-19.0 25°C, 1=0 Kimura et al. (1992) Grenthe et al. (1992)?
-189+1.0 Not corrected to standard state Geipel et al. (1998c)
conditions (I < 10 M). Erroneous
reaction stoichiometry in source.
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P..T,
kJ
2UO,% + CO,(g) + 5H,0() = -19.40 £ 0.11 25°C, 0.50 M NaClO4 Grenthe and Lagerman
(UO,),CO,(OH)s + 5H" (1991)
Uo + 2CO04(g) + 4H0(l) = -19.57 £ 0.30 25°C, 0.50 M NaClO4 Grenthe and Lagerman
UO,(CO,),(OH)4> + 4H" (1991)
- - | The structure and ligand exchange Szabo and Grenthe (2000)

dynamics of four potential isomers, A.

B. C and D of (UO,),(COs)(OH)s were

investigated by EXAFS and NMR.

80% of C, and 5 and 15%

of A and B, respectively were found
3U0,% + COs¥ +3H,0(l) = 0.68+0.5 - Duro et al. (2006) Hummel et al. (2002),
(UO2)sCO3(0OH);" + 3H" Grenthe et al. (1992)
3UO" + CO,(g) +4H,0(l) = -16.34 + 0.06 - | EMF, 3 M NaClo, Ciavatta et al. (1979)
(UO,)sCO3(0OH);" + 5H*

-16.34 - | 3M NaClO, Kramer-Schnabel et al. Ciavatta et al. (1979)
(1992)

3UO,% + 6CO,(g) +12H,0(l) = -49.68 + 0.17 25°C, 0.50 M NaClO4 Grenthe and Lagerman
(UO2)5(CO2)6(OH)1.> + 12H" (1991)
UO,% + COs¥ + 20H = (UO,)CO3(OH),* <22.6 Not corrected to standard state Yamamura et al. (1998)

conditions (I = 0.5 -5 M)
UO,> + 2CO4% + 20H = - - | Pol., Na;COj3 soln Krishnamurty et al. (1970) Stabrovskii (1960)
(UO2)(COs)2(OH)*

<23.5 Not corrected to standard state Yamamura et al. (1998)

conditions (I = 0.5 -5 M)

11U0,*" + 6CO,(g) +18H,0(l) = -72.06 +0.11 - | EMF, 3 M NaClO, Ciavatta et al. (1979)

(UO2)12(COs)s(OH)12” + 24H"
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Table 1a. Association Constants Aqueous Carbonate Complexes in the System UO,/U,05/UO3-C0O,-H,0O (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P,T,
kJ
-72.0 3 M NaClO, Kramer-Schnabel et al. Ciavatta et al. (1979)
(1992)
3U0,(COs)s" + 3CO,(g) + 3H,0 = -6.43 + 0.08 EMF, 3 M NaClO,4 Ciavatta et al. (1981)
(UO2)5(CO3)s™ + BHCO5'
) -6.43 3 M NaClO, Kramer-Schnabel et al. Ciavatta et al. (1981)
(1992)
3U0,(CO5)s" + 6H" = (UO2)3(COs)s” + 415+0.1 25°C, EMF, 3 M NaClO,4 Ferri et al. (1981)
3CO,(g) + 3H,0
UO,(CO3)5* + H,0, = (UO,)(CO3)2(HO,)* + -2.00+£0.13 | = 0.4, Spectrophotometry and Komarov (1959)
HCO3 cryoscopy
-2.20+£0.13 | = 0.0, Spectrophotometry and Komarov (1959)
cryoscopy
-10.60 Spectrophotometry Komarov et al. (1959)

(UO2)(CO5)2(HO2)* = (UO,)(COs)(0)* +
H*

Artificial seawater

Djogi¢ and Branica (1991)

(U'0,)(CO3)x(HOR)® + e =
(UY02)(CO3)2(02)*

Normal pulse polarography (NPP)
and spectrophotometry in artificial
seawater at pH =8

Djogi¢ and Branica (1991)

(uVoz)(coa)ngoz)“' +2e +H' =
(UY0,)(CO3),* + 20H

Normal pulse polarography (NPP)
and spectrophotometry in artificial
seawater at pH =8

Djogi¢ and Branica (1991)
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Table 1b. Association Constants for Ternary Aqueous Complexes in the System UO;-CO,-H,O with MO (M = Mg, Ca, Sr or Ba), or with F

Association Constant Reaction Log K® AH? Comments Secondary Reference Reference
R,P,.T,
kJ
Mg + UO,* + 3CO5% = MgUO,(COs5)s> 26.11 + 0.04 Dong and Brooks (2006)
Ca® + UO,®" + 3C0O5% = CaU0,(COs)s* 25.6 +0.25 Bernhard et al. (2001)
25.4 Kelly et al. (2007) Bernhard et al. (2001)
27.18 £ 0.06 Dong and Brooks (2006)
27.18 Kelly et al. (2007) Dong and Brooks (2006)
Sr** + UO,%" + 3C0O5” = SrtUO,(COs)s” 26.86 + 0.04 Dong and Brooks (2006)
Ba®" + UO,?" + 3CO5* = BaUO,(COs)s™ 26.68 + 0.04 Dong and Brooks (2006)
2Ca”" + UO,* + 3C0O5* = Ca,U0,(COs)s(aq) 29.41+0.7 Bernhard et al. (1996)
26.3 1=0.1 Geipel et al. (1997)
25.7+0.7 Bernhard et al. (1998)
26.5+0.3 Geipel et al. (1999)
29.8+£0.7 Kalmykov and Choppin
(2000)
30.79+£0.24 Bernhard et al. (2001)
30.55 Kelly et al. (2007) Bernhard et al. (2001)
30.70 £ 0.05 Dong and Brooks (2006)
30.70 Kelly et al. (2007) Dong and Brooks (2006)
2Ba" + UO,*" + 3CO5” = Ba,UO,(COs)s(aq) 29.75 + 0.07 Dong and Brooks (2006)
UO” + CO¥ + F = UO,(CO3)F 13.75+0.09 Corrected to standard state by Aas et al. (1998)
Guillaumont et al. (2003)
UO%" + COs¥ + 2F = UO,(CO4)F” 15.57 + 0.14 Corrected to standard state by Aas et al. (1998)
Guillaumont et al. (2003)

Uranium 308



rreeees |1

BERKELEY LAB

Table 1b. Association Constants for Ternary Aqueous Complexes in the System UO3-CO,-H,0 with M (M = Mg, Ca, Sr or Ba) or with F
(Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Reference
R.PT,
kJ
UO,* + COZ” + 3F = UO,(COs)F5° 16.38 £ 0.11 Corrected to standard state by Aas et al. (1998)
Guillaumont et al. (2003)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 2. Solubility Constants of Solid Carbonates in the Sub-system UO;-CO,-H,0

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P, T,
kJ
Minerals
Andersonite
Na,Ca(UO,)(COs):*6(H.0) = 2Na" +Ca** + -37.5+4.2 Calculated from reported Gorman-Lewis et al. (2008) | Alwan and Williams (1980)
UO,** +3C05> + 6H,0 standard state Gibbs free energy
of formation
Bayleyite
Mg2(UQ,)(CO3)3#18(H20) = 2Mg*" + UO,* -36.9+2.1 Alwan and Williams (1980)
+3C0O;” + 18H,0
-36.6+1.4 Calculated from reported Gorman-Lewis et al. (2008) | Alwan and Williams (1980)
standard state Gibbs free energy
of formation
Cejkaite
NasUO,(COs)s(s) = 4Na* + UO,* + 3COs” -27.1760 (errata and corrigenda) Grenthe et al. (1992)
-27.18 Guillaumont et al. (2003)
NayUO,(COs)s(s) = 4Na* + UO,(COs)s" 2.8 26°C, Sol. Blake et al. (1956)
Grimselite
NaKsUO,(COs)s*(H,0)(cr) = Na* +3K" + UO,*" 29.91 5.6°C,1=0 O’Brien and Williams
+3C05” + H,0 (1983)
29.84 9.9°C, =0 O’Brien and Williams
(1983)
29.83 10.6°C, 1=0 O’'Brien and Williams
(1983)
29.76 14.8°C,1=0 O’Brien and Williams
(1983)
29.76 14.8°C,1=0 O’'Brien and Williams
(1983)
29.67 20.1°C,1=0 O’'Brien and Williams
(1983)
29.59 25.0°C, 1=0 O’Brien and Williams

(1983)
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Table 2. Solubility Constants of Solid Carbonates in the Sub-system

UO;-C0O,-H,0 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RPT,
kJ
-37.1+0.3 Calculated from reported Gorman-Lewis et al. (2008) | O’Brien and Williams
standard state Gibbs free energy (1983)
of formation
Liebigite
Cay(UO,)(COs5)s*11(H,0) = 2Ca*" + UO,*" -36.9+2.1 Calculated from reported Gorman-Lewis et al. (2008) | Alwan and Williams (1980)
+3C0O4” + 11H,0 standard state Gibbs free energy
of formation
Hemingway (1982)
Solubility of liebigite at pH 8.0 Amayri et al. (1998), Amayri
was determined to be 9.9 + 0.5 et al. (1999)
g/L
-34.36 Liu et al. (2002)
Rabbittite
CagMg3(U02)2£CO3)6(OH)4'18(H20) = 3(:32+ + Hemingway (1982)
3Mg®" + 2U0,*" +6C0O5> + 18H,0
Rutherfordine*
UO,COs(cr) = UO* + CO~ -14.26 25°C, =0 Sergeeva et al. (1972a)
-14.55 50°C, =0 Sergeeva et al. (1972a)
-14.26 Kramer-Schnabel et al. Sergeeva et al. (1972a)
(1992)
-14.25 25+ 0.5°C, P(CO,) =1.0, I = Hala and Navratil (2001) Sergeyeva et al. (1972b)
<0.02 NaClO4
-14.15 + 0.08 250C Nikolaeva (1976)
-16.14 + 0.04 125°C Nikolaeva (1976)
-14.15 Kramer-Schnabel et al. Pirozhkov and Nikolaeva
(1992) (1976)
-14.05 + 0.08 25+ 0.1°C, P(CO,) = 1.1-1.2, | = | Hala and Navratil (2001) Pirozhkov and Nikolaeva
0 (1976)
-14.2+0.2 25°C,1=0 Lemire and Tremaine

(1980)
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Table 2. Solubility Constants of Solid Carbonates in the Sub-system UO;-C0O,-H,O (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RPT,
kJ
-14.7+0.6 60°C, | = 0, modified Crlss- Lemire and Tremaine
Cobble entropy extrapolation (1980)
151 100°C, | = 0, modified Crlss- Lemire and Tremaine
Cobble entropy extrapolation (1980)
172 150°C, | = 0, modified Crlss- Lemire and Tremaine
Cobble entropy extrapolation (1980)
-18+2 200°C, | = 0, modified Crlss- Lemire and Tremaine
Cobble entropy extrapolation (1980)
-14.4+0.1 25+2°C,1=0 Grenthe et al. (1984a)
-14.4+0.1 25 + 2°C, P(CO) = 0.09-0.98, | = | Hala and Navratil (2001) Grenthe et al. (1984a)
0
-13.21 0.5 M NaClO,4 Kramer-Schnabel et al. Grenthe et al. (1984a)
(1992)
-13.21 £ 0.06 0.5 NaClO, Hala and Navratil (2001) Grenthe et al. (1984a)
-13.94 3 M NaClO, Kramer-Schnabel et al. Grenthe et al. (1984a)
(1992)
-13.94 + 0.06 3 NaClOg4 Hala and Navratil (2001) Grenthe et al. (1984a)
-14.456 £ 0.04 Grenthe et al. (1992)
-14.439 25°C,1=0 Kimura et al. (1992) Grenthe et al. (1992)?
-14.49 £ 0.04 As revised in Appendix D Silva et al. (1995) Grenthe et al. (1992)
-14.445 Redkin and Wood (2007) Grenthe et al. (1992) and
Shock et al. (1997)
-13.29 £ 0.01 25°C, P(CO,) =1.0,1=0.1 Kramer-Schnabel et al.
NaClO4 (1992)
-13.29+0.11 25°C, P(CO,) =1.0,1=0.1 Hala and Navratil (2001) Kramer-Schnabel et al.
NaClO, (1992)
-13.29+£0.01 1=0.1 Gorman-Lewis et al. (2008) | Kramer-Schnabel et al.
(1992)
-13.89 £ 0.11 24 +2°C, 0.1 M NaClO4 Meinrath and Kimura
(1993b)
-14.75+0.12 1=0 Meinrath et al. (1996b) Meinrath and Kimura
(1993b)
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Table 2. Solubility Constants of Solid Carbonates in the Sub-system UO;-CO,-H,O (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP,T,
kJ
-13.89+0.11 24 +2°C, P(COy) =1.0,1=0.1 Hala and Navratil (2001) Meinrath and Kimura
NaClO4 (1993b)
-13.89 £ 0.11 1 =0.1, under 100% CO; Gorman-Lewis et al. (2008) | Meinrath and Kimura
(1993b)
-14.18 + 0.03 25°C, 0.1 M NaClO, Meinrath and Kimura
(1993a)
-14.96 £ 0.15 1=0 Meinrath et al. (1996b) Meinrath and Kimura
(1993a)
-14.18 + 0.03 25+ 0.1°C, P(CO,) =1.0,1=0.1 Hala and Navratil (2001) Meinrath and Kimura
NaClO,4 (1993a)
-13.89 +0.11 24 + 2°C, 0.1 M NaClO, Meinrath et al. (1993)
-14.39+0.14 Pashalidis et al. (1993)
-13.35+0.14 22 +£1°C,P(COz) =1.0,1=0.1 Hala and Navratil (2001) Pashalidis et al. (1993)
NaClO,4
-14.21 £ 0.14 1=0 Hala and Navratil (2001) Pashalidis et al. (1993)
-14.34 £ 0.22 Meinrath et al. (1996a)
-14.05 + 0.09 25 + 2°C, P(CO,) =0.08,1=0.1 Hala and Navratil (2001) Meinrath et al. (1996b)
NaClO,4
-1491+0.1 1=0 Hala and Navratil (2001) Meinrath et al. (1996b)
-14.91 +£0.10 1 =0, under 100% CO, Meinrath et al. (1996b)
-14.91 +£0.10 1 =0, under 100% CO, Gorman-Lewis et al. (2008) | Meinrath et al. (1996b)
-14.94 +0.14 Kato et al. (1996)
-15.04 £ 0.04 1=0 Meinrath et al. (1996b) Kato et al. (1996)
-14.1+0.14 225+ 1°C, P(CO;) =1.0,1=0.1 Hala and Navratil (2001) Kato et al. (1996)
NaClO,4
-14.39 £ 0.14 22 + 2°C. Recalculation Guillaumont et al. (2003) Pashalidis et al. (1997)
-14.46 Liu et al. (2002)
-14.49 + 0.04 Duro et al. (2006) Hummel et al. (2002),
Grenthe et al. (1992)
-14.76 £ 0.04 Duro et al. (2006) Guillaumont et al. (2003)
UO,(COs)(s) + 2H' = UO,*" + H,0 + CO,(g) 3.90 25°C, at pH 3.2-4.4 Sergeeva et al. (1972a)
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Table 2. Solubility Constants of Solid Carbonates in the Sub-system UO;-CO,-H,O (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P, T,
kJ
3.65 50°C
UO,(CO3)(s) = UO,(COs)(aq) -4.39 25°C, at pH 4.4-5.3 Sergeeva et al. (1972a)
-4.34 50°C. Also -4.35, -4.34, -4.21 at

100, 150 and 200°C,

respectively.
UO,(CO3)(s) + H,0 + COy(g) = UOy(CO3),2" + -15.66 25°C, at pH 5.3-6.3 Sergeeva et al. (1972a)
2H"

-16.00 50°C
[UO,(CO3)(s) + 2HCO3 + H,0 = 1.42 I=0 McClaine et al. (1956)
[UO(COs)2(H20)2]* + CO(g)
Schréckeringerite
NaCazUO,(CO3)3:SO4F+10(H,0)(cr) = Na* + Hemingway (1982)
3Ca®" + UO,* +3C0O5~ +S04% + F + 10H,0
-38.81£0.19 25°C, 1 = 0, average of 4 readings O’Brien and Williams
(1983)
-85.5+1.5 Calculated from reported Gorman-Lewis et al. (2008) | O’Brien and Williams

standard state Gibbs free energy (1983)

of formation
Swartzite
CaMg(UO,)(COgz)3*12(H.0) = ca* + Mgz* + -36.9+2.1 Alwan and Williams (1980)
UO,*" +3C0O5" + 12H,0

-37.9+1.4 Calculated from reported Gorman-Lewis et al. (2008) | Alwan and Williams (1980)

standard state Gibbs free energy
of formation

Hemingway (1982)

Voglite

Ca,Cu(UO,)(COs)4*6(H,0) = 2Ca*" + Cu** +
UO,** +4C05” + 6H,0

Hemingway (1982)
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Table 2. Solubility Constants of Solid Carbonates in the Sub-system UO;-CO,-H,O (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
RP,T,
kJ
Zellerite
Ca(U0,)(COs5)2*5(H,0) = Ca?* + UO,*" +2C0O5~ -23.94 Liu et al. (2002)
+ 5H,0

Synthetic Phases
UO3+2(H,0)
UO3+2(H20) + CO,(g) + [UO,(CO3)](s) + 2H,0 4.0 1=0 McClaine et al. (1956)

UO,CO5(H,0)(cr)
UO,CO5+(H,0)(cr) = UO,* + COs”

Hemingway (1982)

UO,(HCO3),#(H,0)(cr)
UO,(HCO3),2(H20)(cr) = UO,> + 2CO5% + 2H* Cordfunke and O’Hare
+H0 (1978)

Fuger (1983)

Morss (1986)
Surface Adsorption on Calcite Carroll and Bruno (1991)
UO,* + CaCOs(cr) = >U0,CO; _ Ca* 5.12 £ 0.53 -

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

"Recent spectroscopic data (Frost and Cejka., 2009) have revealed the presence of H,O and (OH) groups in natural samples of rutherfordine (UO,CO3), thus forming limited solid
solutions UO,(CO3);-x(OH).x.yH,O, where x, y = 0.
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Table 3a. Association Constants of Aqueous Complexes in the System UO,/U,05/UO3-CO,-H,O
extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction Log K& AH? Database Source
RP.T,
kJ
u(Iv)
U* + 4C0O3% = U(COs),* - - | Minteq (2009)
- - | Minteq (2006)
32.9 - | Wateqaf (2005)
35.12 - | ThermoChimie v.7.b Grenthe et al. (1992)
35.220 - | NAGRA/PSI (2001) Hummel et al. (2002)
35.0541 - | Data0.YMP.R5 Grenthe et al. (1992)
U* + 5C0O5% = U(CO3)s™ - - | Minteq (2009)
- - | Minteq (2006)
34.0 83.68 | Wateq4f (2005)
34. -20. | ThermoChimie v.7.b Guillaumont et al. (2003)
34.100 20.000 | NAGRA/PSI (2001) Hummel et al. (2002)
33.8913 - | Data0.YMP.R5 Grenthe et al. (1992)
uv)
UO," +3C0O5% + = UO,(COs)s° - - | Minteq (2009)
- - | Minteq (2006)
7.43 13.93 | Wateq4f (2005)
6.95 - | ThermoChimie v.7.b Guillaumont et al. (2003)
7.410 - | NAGRA/PSI (2001) Hummel et al. (2002)
7.3619 - | Data0.YMP.R5 Grenthe et al. (1992)
u(VvI)
UO.*" + CO5* = UO,CO4(aq) 10.071 3.51 | Minteq (2009)
9.6 4. | Minteq (2006) Smith et al. (1997);
NIST46.3
9.63 5.02 | Wateq4f (2005)
9.94 5. | ThermoChimie v.7.b Guillaumont et al. (2003)
9.670 5.000 | NAGRA/PSI (2001) Hummel et al. (2002)
9.6450 - | Data0.YMP.R5 Silva et al. (1995)
UO* + 2C04% = UO,(CO3),” 17.008 14.56 | Minteq (2009)
16.9 16. | Minteq (2006) Smith et al. (1997)
NIST46.3
17.0 18.49 | Wateq4f (2005)
16.61 18.5 | ThermoChimie v.7.b Grenthe et al. (1992)
16.940 18.500 | NAGRA/PSI (2001) Hummel et al. (2002)
16.8999 - | Data0.YMP.R5 Grenthe et al. (1992)
UO*" + 3C0O5” = UO,(CO3)s* 21.384 -36.74 | Minteq (2009)
21.6 -40. | Minteq (2006) Smith et al. (1997)

NIST46.3
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Table 3a. Association Constants of Aqueous Complexes in the System UO,/U,05/UO3-CO,-H,0O

extracted from Databases of Distribution-of-Species Codes (Continued)

Association Constant Reaction

Log K®

AH g,Pr T
kJ

Database

Source

21.63

-38.20

Wateq4f (2005)

21.84

-39.2

ThermoChimie v.7.b

Guillaumont et al. (2003)

21.600

-39.200

NAGRA/PSI (2001)

Hummel et al. (2002)

21.5453

Data0.YMP.R5

Grenthe et al. (1992)

COs% + 2U0;%" + 3H,0 =
(UO2),CO3(0OH)5 + 3H"

Minteq (2009)

Minteq (2006)

Wateq4f (2005)

-0.86

ThermoChimie v.7.b

Grenthe et al. (1992)

NAGRA/PSI (2001)

-0.9160

Data0.YMP.R5

Grenthe et al. (1992)

3U0,% + COs% + 3H,0 =
(UO2)3(CO3)(OH);" + 3H"

Minteq (2009)

Minteq (2006)

Wateq4f (2005)

0.66

ThermoChimie v.7.b

Grenthe et al. (1992)

NAGRA/PSI (2001)

COs%* + 3UO,%" + 3H,0 =
(UO2)s0(0OH)»(HCO5)" + 3H*

0.5831

Data0.YMP.R5

Grenthe et al. (1992)

3U0;*" + 6CO5” = (UOZ)3(CO3)s™

Minteq (2009)

Minteq (2006)

54.

Wateq4f (2005)

54.

ThermoChimie v.7.b

Grenthe et al. (1992)

NAGRA/PSI (2001)

53.8798

Data0.YMP.R5

Grenthe et al. (1992)

11UO*" + 6CO5% + 12H,0 =
(U02)11(CO3)s(OH)1,” + 12H"

Minteq (2009)

Minteq (2006)

Wateq4f (2005)

36.43

ThermoChimie v.7.b

Grenthe et al. (1992)

NAGRA/PSI (2001)

36.1179

Data0.YMP.R5

Grenthe et al. (1992)

6CO5% + 2U0,%" + Puo,* =
(UO2)5(PUO,)(CO3)s™

Minteq (2009)

Minteq (2006)

Wateq4f (2005)

ThermoChimie v.7.b

NAGRA/PSI (2001)

52.5907

Data0.YMP.R5

Lemire (2001)

Uranium

317




rreeees |'1

BERKELEY LAB

Table 3a. Association Constants of Aqueous Complexes in the System UO,/U,05/UO3-CO,-H,0O
extracted from Databases of Distribution-of-Species Codes (Continued)

Association Constant Reaction Log K® 0 Database Source
AH RP.T,
kJ
6CO5” + 2U0,%" + NpO,* = - - | Minteq (2009)
(UO2)2(NpO2)(CO2)s”

- - | Minteq (2006)

- - | Wateq4f (2005)

- - | ThermoChimie v.7.b

- - | NAGRA/PSI (2001)

53.4763 - | Data0.YMP.R5 Lemire (2001)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
Note: Neither the PHREEQ-C (2009) nor the THERMODDEM (2009) databases contain data on agueous uranium species.

Note: Data0.YMP.R5 writes all equations in terms of HCO4 basis species. These are corrected to be written in terms of the COz”
basis species using the respective translation equation and association constant given in Table 6.
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Table 3b. Solubility Constants of Solid Carbonates in the Sub-system UO;-CO,-H,0 extracted from

Databases of Distribution-of-Species Codes

AH]
Solubility Constant Reaction Log K& E\‘JP’ T Database Source
Nas,UO,(COs)s(s)
NayUO,(COs)s(s) = 4Na* + UO,* + - - | Minteq (2009)
3C0O5”
- - | Minteq (2006)
-16.290 - | Wateq4f (2005)
-27.18 - | ThermoChimie v.7.b Guillaumont et al. (2003)
- - | NAGRA/PSI (2001)
-27.1760 - | Data0.YMP.R5 Grenthe et al. (1992)
(errata and corrigenda)
Mg,UO,(CO3)3218(H,0)(s)
Mg,UO,(CO3)3#18(H,0) = +2Mg** + - - | Minteq (2009)
UO,* + 3CO5” +18H,0
- - | Minteq (2006)
- - | Wateqg4f (2005)
-29.01 40.57 | ThermoChimie v.7.b [not cited]
- - | NAGRA/PSI (2001)
- | Data0.YMP.R5
Rutherfordine
UO,CO4(cr) = UO,* + CO» -14.439 -6.02 | Minteq (2009)
-14.5 -3.03 | Minteq (2006)
-14.450 -6.025 | Wateq4f (2005)
-14.76 -2.929 | ThermoChimie v.7.b Guillaumont et al. (2003)
-14.490 - | NAGRA/PSI (2001) Hummel et al. (2002)
-14.4646 - | Data0.YMP.R5 Silva et al. (1995)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

Note: Neither the PHREEQ-C (2009) nor the THERMODDEM (2009) databases contain data on uranium minerals.

Note: Data0.YMP.R5 writes all equations in terms of HCOj3 basis species. These equations are corrected to be written in terms of
the CO4” basis species using the respective translation equation and association constant given in ThermoTable_HCOs.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.V8.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://mwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MintegA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQAZ2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://mwwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16-19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Wateq4f

Ball, J. W., & Nordstrom, D. K. (1991). User's manual for WATEQA4F, with revised thermodynamic data
base and test cases for calculating speciation of major, trace, and redox elements in natural waters.

U.S. GEOLOGICAL SURVEY, Open-File Report 91-183, Revised and reprinted - April, 2001. p. 81-94

Wateq4f (2005)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/WATEQ4F.DAT
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Table 4a. Thermodynamic properties of Uranium Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

Mineral AG?,P,,T, Secondary Reference Primary Reference
Name Formula 1
kJd/gfw
Minerals
Andersonite Na,CaUO,(C0O3)3*6(H,0) -5651.0 £ 24.0 Alwan and Williams (1980)
-5651.000 + 24.000 | Hemingway (1982) Alwan and Williams (1980)
-5651.0 £ 24 | Kubatko et al. (2005) Alwan and Williams (1980)
corrected -5251.0 £ 24.0 | O’Brien and Williams (1983) Alwan and Williams (1980)
Andersonite Na,CaUO,(COs3)s -3902.0 £ 10.0 Van Genderen and Van der Weijden
(1984)
Bayleyite MgoUO,(C0O3)3218(H20) -7924.0 £ 10.0 Alwan and Williams (1980)
-7924.000 £ 10.000 | Hemingway (1982) Alwan and Williams (1980)
Bayleyite Mg.UO,(COs); -3665.0 £ 10.0 Van Genderen and Van der Weijden
(1984)
Fontanite Ca[(U0,)3(C0O3)4]*3(H20) -6523.1 | Finch (1997) Deliens and Piret (1992)
-6524.7 Chen et al. (1999)
Grimselite NaK3UO,(CO3)s¢(H.0) -4051.3+1.8 O’Brien and Williams (1983)
-4051.3 £ 1.8 | Kubatko et al. (2005) O’Brien and Williams (1983)
Grimselite NaK3UO,(CO3)3 -3869.0 £ 10.0 Van Genderen and Van der Weijden
(1984)
Joliotite UO,CO3¢(H20)1-2 -2043.3 | Finch (1997) Nickel and Nichols (1992)
Liebigite CayU0,(C0O3)3210(H20) -6226.0 £ 12.0 Alwan and Williams (1980)
-6226.000 + 12.000 | Hemingway (1982) Alwan and Williams (1980)
-6226.0 £ 12.0 | O’Brien and Williams (1983) Alwan and Williams (1980)
-6226.0 £ 12.0 | Finch (1997) Alwan and Williams (1980)
Liebigite CaU0(CO3)3 -3844.0 £ 10.0 Van Genderen and Van der Weijden
(1984)
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Table 4a. Thermodynamic properties of Uranium Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of

Formation (Continued)

Mineral AG?,P,,T, Secondary Reference Primary Reference
Name Formula 1
kJd/gfw

Liebigite Ca,U0,(CO3)3¢11(H20) -6468.6 Finch (1997)

-6446.4 Chen et al. (1999)
Rabbittite CasMgz(UO,)2(CO3)s(OH)418(H-0) -13525.000 + 30.000 Hemingway (1982)
estimated
Rabbittite CasMgs(UO,)(COs)6 (?) -8730.0 £ 20.0 Van Genderen and Van der Weijden

(1984)

Rutherfordine* UO,CO;3 -1577.4 | Woods and Gatrrels (1987) Bullwinkel (1954)
-1577. McClaine et al. (1956)
estimated -1577.8 Garrels (1957)
-1577.79 | Karpov et al. (1968) Garrels (1960)
-1569. Sergeyeva et al. (1972a)
-1562.3 | Woods and Gatrrels (1987) Sergeyeva et al. (1972b)
-1563.1 | Finch (1997) Sergeyeva et al. (1972b)
-1570.26 Naumov et al. (1974)
-1570.2 | Woods and Garrels (1987) Naumov et al. (1974)
-1561.9 £ 3.3 Cordfunke and O’Hare (1978)
-1561.9 £ 3.3 | Kubatko et al. (2005) Cordfunke and O’Hare (1978)
-1563.1 Langmuir (1978)
-1563.1 £ 3.4 | Kubatko et al. (2005) Langmuir (1978)
-1561 + 2 Lemire and Tremaine (1980)
estimated -1577.000 + 2.100 Hemingway (1982)
-1577.0 £ 2.1 | Kubatko et al. (2005) Hemingway (1982)
-1562.6 | Woods and Garrels (1987) Wagman et al. (1982)
-1563.0 Chen et al. (1999)
-1564.7 £ 1.8 Guillaumont et al. (2003)
-1564.7 £ 1.8 | Kubatko et al. (2005) Guillaumont et al. (2003)
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Table 4a. Thermodynamic properties of Uranium Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of
Formation (Continued)

Mineral AGU Secondary Reference Primary Reference
f.PT,
Name Formula 1
kJd/gfw
Schrockingerite NaCas(UO,)(COs3)3(SO4)F10(H-0) -8094.000 + 30.000 Hemingway (1982)
estimated
8077.3+ 8.7 O’Brien and Williams (1983)
Sharpite UO,CO3+(H.0) -1800.400 + 4.000 Hemingway (1982)
Sharpite Ca[(U0,)s(CO3)s(0OH)4]*6(H20) -11601.1 | Finch (1997) Nickel and Nichols (1992)
-11607.6 Chen et al. (1999)
Swartzite CaMgUO,(C03)3*12(H,0) -6607.0 £ 10.0 Alwan and Williams (1980)
-6607.000 + 10.000 | Hemingway (1982) Alwan and Williams (1980)
Swartzite CaMgUO,(C0O3)3 -3754.0 £ 10.0 Van Genderen and Van der Weijden,
(1984)
Urancalcarite Cay[(UO2)3(CO3)(OH)6]*3(H20) -6037.0 | Finch (1997) Nickel and Nichols (1992)
6036.7 Chen et al. (1999)
Voglite CazCu(U0O,)(CO3)4*6(H-0) -5791.4 £ 35.0 Hemingway (1982)
Voglite CazCu(UO)(CO3)4 -4469.0 £ 15.0 Van Genderen and Van der Weijden
(1984)
Widenmannite Pb,(UO2)(CO3)s -2818.0 £ 10.0 Van Genderen and Van der Weijden
(1984)
Zellerite Cay(UO,)2(C0Os), -2703.0£ 7.0 Van Genderen and Van der Weijden
(1984)
Zellerite Cay(UO,)2(C0O3),#3(H20) -3892.1 | Finch (1997) Nickel and Nichols (1992)
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Table 4a. Thermodynamic properties of Uranium Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of
Formation (Continued)

Mineral AG?,P,,T, Secondary Reference Primary Reference
Name Formula 1
kJd/gfw
Synthetic Phases
UO,(HCOs),#(H20) UO;(HCO3).+(H20)
NayUO,(CO3)3 Na,UO,(CO3)s -3720.0 £ 9.7 O’Brien and Williams (1983)
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Table 4b. Thermodynamic properties of Uranium Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

Mineral AH ?,P, . Secondary Reference Primary Reference
Name Formula 1
kJ/gfw
Minerals
Andersonite Na,CaUO,(C0O3)3°6(H,0) -5916 + 36 Alwan and Williams (1980)
-5916 + 36 | O’'Brien and Williams (1983) Alwan and Williams (1980)
-5916 + 36 | Kubatko et al. (2005) Alwan and Williams (1980)
Na,CaUO,(COs)3*5(H-0) -5593.6 £ 9.1 Kubatko (2005)
-5593.6 £ 9.1 Kubatko et al. (2005)
-5593.6 £ 9.1 | Shvareva et al. (2012) Kubatko et al. (2005)
Andersonite Na,CaUO,(COs3)3 -4199.0 Van Genderen and Van der Weijden
(1984)
Bayleite MgoUO(COs)3¢18(H.0)
Bayleite MgoUO,(COs)s -3950.0 Van Genderen and Van der Weijden
(1984)
Fontanite Ca[(UO,)3(CO3)4]*3(H20)
Grimselite NaK3UO,(CO3)s¢(H.0) -4359.9+1.8 O’Brien and Williams (1983)
-4359.9 + 1.8 | Kubatko et al. (2005) O’Brien and Williams (1983)
-4431.6 £15.3 Kubatko (2005)
-4431.6 £15.3 Kubatko et al. (2005)
-4431.6 £ 15.3 | Shvareva et al. (2012) Kubatko et al. (2005)
Grimselite NaK3UO,(COg)3 -4182.0 Van Genderen and Van der Weijden
(1984)
Joliotite UO,CO3¢(H20)1-2
Liebigite Ca,UO,(C0O3)3210(H,.0) -7037 £ 24 O’Brien and Williams (1983)
Liebigite Ca,UO,(CO3)3 -4130.0 E/an G)enderen and Van der Weijden
1984
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Table 4b. Thermodynamic properties of Uranium Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation
(Continued)

Mineral AH ?,P, . Secondary Reference Primary Reference
Name Formula 1
kJ/gfw
Rabbittite CazMgs3(UO2)2(CO3)s(OH)418(
H,0)
Rabbittite CazMgs(UO2)(CO3)6 (?) -9265.0 Van Genderen and Van der Weijden
(1984)
Rutherfordine* UO,CO; -1698.7 Sergeyeva et al. (1972a)
-1695.4 | Woods and Gatrrels (1987) Sergeyeva et al. (1972b)
-1696.19 Naumov et al. (1974)
-1696.2 | Woods and Garrels (1987) Naumov et al. (1974)
-1686.1 £ 4.2 Cordfunke and O’Hare (1978)
-1686.1 £ 4.2 | Kubatko et al. (2005) Cordfunke and O’Hare (1978)
-1689.9 Langmuir (1978)
-1689.9 £ 4 | Kubatko et al. (2005) Langmuir (1978)
-1704.1 £ 2.0 Hemingway (1982)
-1704.1 £ 2.0 | Kubatko et al. (2005) Hemingway (1982)
-1691.2 | Woods and Gatrrels (1987) Wagman et al. (1982)
Calc. using sources -1691.3 + 1.8 | Kubatko et al. (2005) Guillaumont et al. (2003), Gurevich et al.
(1987)
-1716.4 £ 4.2 Kubatko (2005)
-1716.4 £ 4.2 Kubatko et al. (2005)
-1716.4 £ 4.2 | Shvareva et al. (2012) Kubatko et al. (2005)

Schréckingerite

NaCaz(UO)(CO3)3(SO.).
F+10(H:0)

Sharpite UO,CO3z¢(H,0) -1982.300 + 12.000 Hemingway (1982)
estimated
Sharpite Ca[(UO,)s(CO3)5(OH)4]*6(H.0)
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Table 4b. Thermodynamic properties of Uranium Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

(Continued)

Mineral AH? Secondary Reference Primary Reference
f.P.T,
Name Formula 1
kJ/gfw
Swartzite CaMgUO,(C0O3)3*12(H,0)
Swartzite CaMgUO,(COs3)s -4039.0 Van Genderen and Van der Weijden,
(1984)
Urancalcarite Ca,[(UO,)3(CO3)(OH)g]*3(H-0)
Voglite Ca3CU(U02)(CO3)4'6(H20)
Voglite CazCu(UO,)(CO3)4 -4830.0 Van Genderen and Van der Weijden
(1984)
Widenmannite Pb,(UO,)(CO3); -3102.0 Van Genderen and Van der Weijden
(1984)
Zellerite Caz(U02)2(003)2-3(H20)
Zellerite Ca,(U0,),(CO3)2 -2908.0 Van Genderen and Van der Weijden
(1984)
Synthetic Phases
UO2(HCO3),2(H20) UO2(HCO3),+(H20)
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Table 4c. Thermodynamic properties of Uranium Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral SO Secondary Reference Primary Reference
Pr vTr
Name Formula 1 1
J K™ gfw

Minerals

Andersonite Na,CaUO,(C0O3)3*6(H,0)

Andersonite Na,CaUO,(COs3)s3 343. Van Genderen and Van der Weijden
(1984)

Bayleyite M92U02(CO3)3'18(H20)

Bayleyite MgoUO,(COs); 305. Van Genderen and Van der Weijden
(1984)

Fontanite Ca[(U0,)3(C0O3)4]*3(H20)

Grimselite NaK3UO,(CO3)s¢(H.0)

Grimselite NaK3UO,(CO3)3 390. Van Genderen and Van der Weijden
(1984)

Joliotite UOzco:g'(HzO)Lz

Lleblglte C32UOZ(CO3)3'10(H20)

Liebigite Ca,UO,(COs); 318. Van Genderen and Van der Weijden
(1984)

Liebigite Ca,UO,(CO3)3211(H20) Van Genderen and Van der Weijden
(1984)

Rabbittite Ca3Mg3(U02)2(CO3)e(OH)4'18(H2

0)

Rabbittite CasMgs(U0,),(CO3)s (?) 565. Van Genderen and Van der Weijden

(1984)
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Table 4c. Thermodynamic properties of Uranium Carbonate Minerals and Synthetic Solid Carbonates: Entropies (Continued)

Mineral S Sr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
Rutherfordine* UO,CO3 (142.3# Sergeyeva et al. (1972a)
Rutherfordine* UO,CO;3 121. | Woods and Garrels (1987) Sergeyeva et al. (1972b)
146.44 + 12. Naumov et al. (1974)
146.4 | Woods and Garrels (1987) Naumov et al. (1974)
139 Cordfunke and O'Hare (1978)
139 | Kubatko et al. (2005) Cordfunke and O'Hare (1978)
142.7 Langmuir (1978)
142.7 | Kubatko et al. (2005) Langmuir (1978)
194 £ 25 Lemire and Tremaine (1980)
estimated 142.7+2.0 Hemingway (1982)
142.7 + 2.0 | Kubatko et al. (2005) Hemingway (1982)
138.1 | Woods and Garrels (1987) Wagman et al. (1982)
144.2 +0.3 Gurevich et al. (1987)
144.2 + 0.3 | Kubatko et al. (2005) Gurevich et al. (1987)
Schrockingerite NaCaz(UO,)(CO3z)3(SOy).
F+10(H,0)
Sharpite UO,CO3+(H,0) 192. +10. Hemingway (1982)
estimated
Sharpite Ca[(U0,)s(CO3)s(0OH)4]*6(H20)
Swartzite CaMgUO,(COs3)3*12(H,0)
Swartzite CaMgUO,(CO3)3 314. Van Genderen and Van der Weijden
(1984)
Urancalcarite Ca,[(UO2)3(CO3)(OH)g]*3(H20)
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Table 4c. Thermodynamic properties of Uranium Carbonate Minerals and Synthetic Solid Carbonates: Entropies (Continued)

Mineral SO Secondary Reference Primary Reference
Pr vTr
Name Formula 1 1
J K™ gfw

Voglite CazCu(U0,)(C0O3)426(H20)

Voglite CazCu(UO,)(CO3)4 414. Van Genderen and Van der Weijden
(1984)

Widenmannite Pb,(UO,)(CO3)3 372. Van Genderen and Van der Weijden
(1984)

Zellerite Cay(UO2)2(C0O3),#3(H20)

Zellerite Cay(UO,)2(CO3). 230. Van Genderen and Van der Weijden
(1984)

Synthetic Phases

UO2(HCO3),+(H20) UO(HCO3)2+(H20)

*Recent spectroscopic data (Frost and Cejka, 2009) have revealed the presence of H,O and (OH) groups in natural samples of rutherfordine (UO,CO3), thus forming limited solid solutions
UOz(CO:;)LX(OH)zX'y(HzO), where X,y >0.

# Entropy of formation?
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Table 5. Crystallographic Properties of Uranium Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference
Minerals

1 | Albrechtschraufite CaysMg(U0,),(COz)F2217(H20) Gaines et al. (1997), Ondrus et al. (1997)

2 | Andersonite Na,CaUO,(C0O3)3°6(H,0) Gaines et al. (1997)

3 | Andersonite Na,CaUO0,(C0O3)3°6(H,0) Coda et al. (1981)

4 | Astrocyanite-(Ce) Cu,(Ce,Nd,La)2(UO2)(CO3)s(OH)2*1.5(H,0) Gaines et al. (1997), Deliens and Piret (1990)

5 | Bayleyite Mg,UO,(CO3)3°18(H,0) Gaines et al. (1997)

6 | Bayleyite Mg,UO,(CO3)3+18(H.0) Mayer and Mereiter (1986)

7 | Bijvoetite-(Y) (Y,REE),03(U0O3)4(CO,)42=14(H,0) Gaines et al. (1997), Deliens and Piret (1982)

8 | Bijvoetite-(Y) (Y,REE)s(H20)25(U0O2)1605(0OH)s(CO3)16°14(H20) | Li et al. (2000)

9 | Blatonite UO,CO3z¢(H,0) Vochten and Deliens (1998)

10 | Cejkaite Nay,UO,(CO3)3 Mineralogy Database (http://webmineral.com/)

11 | Cejkaite Nay,UO,(CO3)3 Ondrus et al. (2003)

Name Cell Constants Space Group vo*
ao, A be, A Co, A o, ° B,° y,° z cm?® gfw™
Minerals

1 | Albrechtschraufite 13.562(3) | 13.406(3) 11.636(3) | 115.75(2) | 107.66(2) 92.86(2) 2 P 1 534.36

2 Andersonite 18.009 23.838 18 R-3 224.01

3 Andersonite 17.902 23.734 18 R-3m 220.39

4 Astrocyanite-(Ce) 14.96 26.86 12 P 6/mmm 261.26

5 | Bayleyite 26.65 15.3 6.53 93.1 4 P2/c

6 | Bayleyite 26.650 15.256 6.505 92.90 4 P2;/a 397.67

7 | Bijvoetite-(Y) 21.22(3) 45.30(7) 13.38(2) 16 C2ma, Cm2b or 484.10

Cmma
8 | Bijvoetite-(Y) 21.2343) | 12.958(2) 44.911(7) 90.00(2) 4 B1211 (pseudo 1860.43
orthorh)
9 | Blatonite 15.79 23.93(3) 36 Hex - unk 96.434
10 | Cejkaite 9.28 9.295 12.864 90.293 91.124 119.548 4 P1 or 145.29
P-1
11 | Cejkaite 9.291 9.292 12.895 90.73 90.82 120.00 4 P-1 145.10
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Name Formula Reference

12 | Fontanite Ca[(UO,)3(CO3)4*(H20)3 Gaines et al. (1997),

13 | Fontanite Ca[(UO,)3(C0O3),0,6(H.0) Hughes and Burns (2003)

14 | Fontanite Ca[(UO,)3(C0O3)426(H.0) Kubatko (2005)

15 | Grimselite NaK3UO,(CO3)s¢(H.0) Gaines et al. (1997)

16 | Grimselite NaK3UO,(CO3)s¢(H,0) Li and Burns (2001)

17 | Joliotite (UO,)(CO3)*n(H,0),(n=27) Gaines et al. (1997), Walenta (1976)

18 | Lepersonnite-(Gd) Ca0Gd;03(U03)24(C0O,)s(Si02)4#60(H.0) Gaines et al. (1997), Deliens and Piret (1982)

19 | Liebigite CaU0O,(C0O3)3210(H,0) Gaines et al. (1997)

20 | Liebigite CaUO,(C0O3)3210(H,0) Gaines et al. (1997), Mereiter (1982)

21 | Metazellerite Ca(U0,)(CO3),#3(H20) Coleman et al. (1966)

Name Cell Constants Space Group vo*
ao, A be, A Co, A o, ° B,° y,° cm?® gfw™

12 | Fontanite 15.337 17.051 6.931 Pmnm, Pmn2; or 272.88
P2;nm

13 | Fontanite 6.968(3) | 17.276(7) 15.377(6) 90.064(6) 4 P2:/n 278.69

14 | Fontanite 6.968(3) | 17.276(7) 15.377(6) 90.064(6) 4 P2,/n 278.69

15 | Grimselite 9.30 8.26 2 P-62c 186.93

16 | Grimselite 9.302 8.260 2 P-62c 186.37

17 | Joliotite 8.16 10.35 6.32 4 P222, Pmm2 or 80.360
Pmmm

18 | Lepersonnite-(Gd) 16.23(3) 38.74(9) 11.73(3) 2 Pnnm,, Pnnn or 2220.74
Pnn2

19 | Liebigite 16.703 17.513 13.741 Bba2 302.58

20 | Liebigite 16.699 17.5567 13.697 Bba2 302.29

21 | Metazellerite 9.718 18.226 4.965 Pbn2; or Pbnm 132.40
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Name Formula Reference

22 | Oswaldpeetersite (UO,),CO3(0OH)2*4(H,0) Vochten et al. (2001)

23 | Rabbittite CazMgs(UO2)2(CO3)s(OH)418(H20) Gaines et al. (1997)

24 | Roubaultite Cuz(UO,)5(C0O3),0,(0OH)2*4(H,0) Gaines et al. (1997), Ginderow and Cesbron (1985)

25 | Roubaultite Cuz(UO,)5(C0O3),0,(0OH)2+4(H,0) RRUFF ID: R080131.9, Mineralogy Database (http://webmineral.com/)

26 | Rutherfordine* UO,CO; Gaines et al. (1997), Christ et al. (1955)

27 | Rutherfordine* UO,CO; Finch et al. (1999)

28 | Schrockingerite NaCas(UO,)(CO3)3(SO4)F+10(H,0) Mineralogy Database (http://webmineral.com/)

29 | Schrockingerite NaCas(UO,)(CO3)3(SO,)F+10(H.0) Gaines et al. (1997), Mereiter (1986b)

30 | Sharpite Ca[(UO,)s(CO3)5(0H)4]*6(H-0) Gaines et al. (1997), Céjka et al. (1984)

31 | Swartzite CaMgUO,(CO3)3*12(H,0) Gaines et al. (1997)

32 | Swartzite CaMgUO,(CO3)3*12(H,0) Mereiter (1986a)

Name Cell Constants Space Group vo*

a0, A b, A Cor A e B, ° e z cm’ gw*

22 | Oswaldpeetersite 4.1425(6) | 14.098(3) 18.374(5) 103.62(1) 4 P2/c 157.01

23 | Rabbittite 32.6 23.8 9.45 90. 8 mono 551.93

24 | Roubaultite 7.767 6.942 7.850 92.16 90.89 93.48 1 P-1 254.20

25 | Roubaultite 7.765(2) 6.915(2) 7.840(2) 92.31(2) 90.89(2) 93.48(2) 1 triclin 252.80

26 | Rutherfordine* 4.845(10) | 9.205(10) 4.296(6) 2 Pm2;n or Pmmn 57.690

27 | Rutherfordine* 4.840 9.273 4.298 2 Imm2 58.084

28 | Schrockingerite 9.69 16.83 14.26 4 Cmmm 350.12

29 | Schrockingerite 9.634(1) | 9.635(1) 14.391(2) | 91.41(1) 92.33(1) | 120.26(1) 2 P-1 346.67

30 | Sharpite 21.99(2) | 15.63(2) 4.487(4) 2 Ortho 464.37

31 | Swartzite 11.12 14.72 6.47 99.5 2 P2;/m 314.58

32 | Swartzite 11.080 14.634 6.439 99.43 2 P2;/m 310.12
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Uranium

Name Formula Reference

33 | Urancalcarite Ca,[(UO,)3(CO3)(OH)g]*3(H20) Gaines et al. (1997), Deliens and Piret (1984)

34 | Voglite CazCu(U0,)(CO3)4+6(H.0) Gaines et al. (1997), Piret (1979)

35 | Widenmannite Pb,(UO,)(COs3); Gaines et al. (1997)

36 | Widenmannite Pb,(UO,)(CO3); Plasil et al. (2010)

37 | Wyartite CazU(IV)(UO,)s(CO3)2(OH)1523-5(H.0) Gaines et al. (1997)

38 | Wyartite CaU(V)(UO,)2(CO3)04(0OH)*7(H20) Burns and Finch (1999)

39 | Wyartite, dehydrated | CaU(V)(UO,)>(CO3)O4(OH)*3(H.0) Hawthorne and Finch (2006)

(ideal)

40 | Zellerite Ca,(UO,)(CO3).#5(H-0) Gaines et al. (1997), Coleman et al. (1966)

41 | Znucalite Cazny2(UO2)(COs)3(OH)2204(H20) Gaines et al. (1997), Ondrus et al. (1990), Jambor and Puziewicz (1991)

42 | Znucalite Cazny1(UO2)(CO3s)3(OH)2004(H20) Chiappero and Sarp (1993), Jambor et al. (1994)

Name Cell Constants Space Group vo*

ao, A be, A Co, A o, ° B,° y,° cm?® gfw™

33 | Urancalcarite 15.42(3) 16.08(4) 6.970(6) 4 Pbnm or Pbn21 260.19

34 | Voglite 25.97 24.50 10.70 104. 16 P2, or P2y/m 248.63

35 | Widenmannite 8.99 9.36 4.95 2 Pnnm, Pnm2; or 125.42

P22,2;
36 | Widenmannite 8.964(4) 9.378(6) 5.007(4) 2 Pnnm, Pnm2, or 126.74
P22,2,

37 | Wyartite 11.25 7.08 20.98 P2:2,2; 503.17

38 | Wyartite 11.2706(8) | 7.1055(5) 20.807(1) P2,2,2, 250.87

39 | Wyartite, dehydrated | 11.2610(6) | 7.0870(4) | 16.8359(10) Pmcn 202.29

(ideal)

40 | Zellerite 11.220 19.252 4.933 Pbnm or Pbn21 160.42

41 | Znucalite 12.692(4) | 25.096(6) 11.685(5) | 89.08(2) 91.79(2) 90.37(3) P1orp-1 559.99

42 | Znucalite 10.72(1) | 25.16(1) 6.324(4) ortho 513.59
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Name Formula Reference
Synthetic Phases
43 | bright yellow ppt. Ba[UO,(O0)CO3+2(H,0)] Gurevich and Polozenskaya (1963)
44 Ba,[UO,(O0)(COs3);] *x(H.0) Gurevich and Polozenskaya (1963)
45 Ba,[(UO,),(00)3;CO3¢ 4(H0)] Gurevich and Polozenskaya (1963)
46 (CN3Hg)[UO,(O0)(CO3)z]*2(H20) Mikhailov et al. (1981)
47 | bright-yellow am. ppt. | K;[UO,(OO)CO3(H20).]*3(H20) Gurevich and Polozenskaya (1963)
48 K2Cas(UO2)2(CO3)s*5(H20) Kubatko (2005)
49 | red-orange ? am. ppt. | Kg[UO3(OOH)(COgz),#(H20)] Gurevich and Polozenskaya (1963)
50 |red-orange ? am. ppt. | K4J[UO2(OO0)(COs3),] Gurevich and Polozenskaya (1963)
51 Ka[(UO2)(02)(CO3)2]*3(H20) Kubatko (2005)
Name Cell Constants Space Group vo*
a0, A b, A Cor A e B, ° e z cm’ gw*
Synthetic Phases
43 | bright yellow ppt.
44
45
46 15.883(1) 8.788(2) 16.155(1) 4 Orthorh 339.48
Pca2l
47 | bright-yellow am.
ppt.
48 17.015(2) | 18.048(2) 18.394(2) 8 Pnnm 425.20
49 | red-orange am.
ppt.?
50 | red-orange am. ppt.
?
51 6.9038(4) | 9.2157(5) | 21.8144(13) 91.061(1) 4 P21/n 330.98
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Name Formula Reference
54 | orange am. ppt. K4[(UO2)2(00)3CO3(H20)4]*(H-0) Gurevich and Polozenskaya (1963)
55 | am. at 420-640°C K4[(UO,)2(0)sCO3) Gurevich and Polozenskaya (1963)
56 | dark-orange xtline ppt. | Kg[(UO2)2(O0)(CO3)s]*3(H.0) Gurevich and Polozenskaya (1963)
57 Kg[(UO2)(02)(COs)2]2#3(H-0) Kubatko (2005)
58 Nay(UO2)(COs)s Li et al. (2001)
59 Rb,(UO,)(CO3)3°5(H.0) Kubatko (2005)
60 RbsNaz[(UO2)(COs)s]z+(H-0) Kubatko (2005)
Name Cell Constants Space Group Vo
20, A b, A Cor A e B, ° e z cm’ gw*

54 | orange am. ppt.
55 | am. at 420-640°C

56 | dark-orange xtline

ppL.,
57 6.938(1) | 9.225(2) | 20.006(3) | 83.612(3) | 89.914(3) | 89.632(3) | 2 P-1 383.15
58 9.3417(6) 2.824(1) 4 P-3cl 145.91
59 10.774(4) | 9.334(3) |  12.483(4) 94.845(8) 8 c2lc 188.32
60 9.4316(7) 8.3595(8) 1 P-62c 387.82

Note discrepant formulas for Zellerite: Ca(UO,)(COs3)*5(H,0), Fontanite: Ca[(UO;)3(C0O3),0,]*6(H-0), Urancalcarite: Ca[(UO,)3(CO3)(OH)e]*3(H-0)

*Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than 10 wt.% Uranium*

Name Formula Uranium, ofw Thermodynamic
wt.% Data
Est. Meas.
Albrechtschraufite CaysMg(U0,),(COz)F2+17(H20) 33.31 1428.98 no no
Andersonite Na,Ca(UO,)(COz)3*6(H-0) 36.95 644.20 yes yes
Astrocyanite-(Ce) Cuy(Ce,Nd,La),(UO,)(CO3)s(OH),#1.5(H.0) 25.02 951.38 no no
Bayleyite Mg2(UO,)(CO3)3218(H-0) 28.92 822.94 yes yes
Bijvoetite-(Y) (Y,REE)g(H20)25(U02)1605(OH)s(CO3)16°14(H,0) 53.88 7068.68 no no
Blatonite UO,CO3¢(H,0) 68.39 348.05 yes? yes?
Cejkaite Nay(UO)(CO3)3 44.87 546.35 no yes
Fontanite Ca[(UO,)3(C0O3),0,]*6(H-0) 64.32 1110.27 yes no
Grimselite K3Na(UO,)(COs)s*(H-0) 39.13 608.36 yes yes
Joliotite (UO,)(CO3z)*n(H20),(n=27) 65.02 366.07 yes no
Kamotoite-(Y) (Y,Nd,Gd)U(V1)4(CO3)3012214.5(H;0) 53.19 1790.08 no no
Lepersonnite-(Gd) CaGdz(UO3)24(CO3)s(Si04)404460(H,0) 63.99 8909.01 no no
Liebigite Ca,(UO,)(CO3)3#11(H-0) 32.68 728.38 yes yes
Metazellerite Ca(U0,)(CO3)223(H.0) 49.16 484.17 no no
Oswaldpeetersite (UO,).CO3(0OH)2*4(H,0) 67.42 706.14 no no
Rabbittite CazMgs(UO,)2(CO3)s(OH)418(H,0) 32.05 1485.56 yes yes
Roubaultite Cuz(UO,)5(C0O3),02(0OH)2*4(H,0) 59.74 1195.27 no no
Rutherfordine UO,(COs) 72.12 330.04 - yes
Schréckingerite NaCas(UO,)(CO3)3(SO4)F+10(H,0) 26.79 888.49 yes yes
Shabaite-(Nd) Ca(Nd,Sm,Y)2(UO,)(CO3)4(OH).*6(H20) 24.54 969.96 no no
Sharpite Ca(U0,)s(CO3)s5(OH)4*6(H,0) 66.85 2136.41 yes yes
Swartzite CaMg(UO;)(COg3)3*12(H,0) 32.58 730.62 yes yes
Urancalcarite Ca(U0,)3(CO3)(OH)s*3(H20) 66.97 1066.26 yes no
Voglite Ca,Cu(UO,)(CO3)4+6(H.0) 31.24 761.86 yes yes
Widenmannite Pb2(UO2)(COs)s 27.54 864.46 no no
Wyartite CasU(IV)(UO,)6(CO3)2(OH)1523-5(H20) 67.77 2458.63 ? ?
Zellerite Ca(U0,)(CO3)225(H.0) 45.76 520.20 yes no
Znucalite Cazn;1(UO,)(CO3)3(OH)2004(H,0) 14.68 1621.63 no no

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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ZINC
Table 1. Association Constants for Aqueous Carbonate Complexes in the System ZnO-CO,-H,0O
Association Constant Reaction Log K® AHg o Comments Secondary Reference Primary Reference
kJ
Zn*" + COs” = ZnCO4(aq) 4.80 - | Data not found in source Fouillac and Criaud (1984) Schindler et al. (1968)?
reference
5.3 -1 1=0 Palmer and Van Eldik (1983) Zirino and Yamamoto (1972)
5.3 - | Estimate Zirino and Yamamoto (1972)
6.3 -1 1=0.0 Bilinski et al. (1976) Zirino and Yamamoto (1972)
5.3 - Long and Angino (1977) Zirino and Yamamoto (1972)
~3.5 - | DPP, 0.0001 M KNOs Bilinski et al. (1976)
3.9 - Zachara et al. (1989) Bilinski et al. (1976)
6.63 Estimate Mattigod and Sposito (1977)
4.80 -0.38 | Estimate Fouillac and Criaud (1984)
4.35 - Millero and Hawke (1992) Stanley and Byrne (1990)
Zn* + 2C05% = Zn(CO3),* 9.63 Estimate Mattigod and Sposito (1977)
6.9+0.1 - | EMF, 3 M NaClO4 Ferri et al. (1987)
7.25 - Millero and Hawke (1992) Stanley and Byrne (1990)
Zn*" + CO5> + H' = ZnHCO;" 12.4 - | Estimate Zitino and Yamamoto (1972)
12.4* - Zachara et al. (1989) Zirino and Yamamoto (1972)
11.73 £ 0.02* - | EMF Ryan and Bauman (1978)
12.53* -10.59* | Estimate Fouillac and Criaud (1984)
11.13+£0.2* - | EMF, 1=0.0 Ferri et al. (1985)
12.07* - Millero and Hawke (1992) Stanley and Byrne (1990)
Zn*" + HCO5 = ZnHCO;' 2.1 - Long and Angino (1977) Zirino and Yamamoto (1972)
2.1 -1 1=0 Palmer and Van Eldik (1983) Zirino and Yamamoto (1972)
1.4 - Palmer and Van Eldik (1983) Bauman et al. (1975)
2.07 Estimate Mattigod and Sposito (1977)
1.400 + 0.020 3.57 | 25°C,1=0 Ryan and Bauman (1978)
7.3 Palmer and Van Eldik (1983) Ryan and Bauman (1978)
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Table 1. Association Constants for Aqueous

Carbonate Complexes in the System Zn0O-CO,-H,0 (Continued)

Association Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P, T,
kJ
1.4 3.5 Palmer and Van Eldik (1983) Ryan and Bauman (1978)
1.4 - Palmer and Van Eldik (1983) Bauman (1981)
Zn® + H,0 + CO,(g) = ZNHCOs" + H' -7.70 £ 0.05 - | EMF, 3 M NacClo, Ferri et al. (1985)
Zn*" + CO5* +20H = ZnCO5(OH),* 12.2 +0.07 - | EMF, 3 M NacClo, Ferri et al. (1987)
2Zn*" + H20 + CO,(g) = Zn,COs™" + 2H" -13.47 £ 0.05 - | EMF, 3 M NaClO, Ferri et al. (1985)
2Zn*" + CO4* = Zn,COs™ 51+0.2 - | EMF,1=0 Ferri et al. (1985)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.

* Corrected using bicarbonate dissociation equation from PHREEQC
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Table 2. Solubility Constants of Solid Carbonates in the System ZnO-CO,-H,0
Solubility Constant Reaction Log K® AHg . Comments Secondary Reference Primary Reference
kJ
Minerals
Aurichalcite
Zn;73CU2 27(CO3)o(OH)s = 2.73Zn"" + -90.1 - Alwan et al. (1980)
2.27CU*" +2C05” + 60H
Hydrozincite
Zns(CO3)2(OH)s + 6H" = 5Zn*" + 2C0O57 + 9.65 Zachara et al. (1989) Schindler et al. (1969)
6H,0
12.94 Zachara et al. (1989) Sangameshwar and Barnes
(1983)
6.41 +£0.51 Natural specimen. 22 - 25°C Zachara et al. (1989)
8.30 Estimated Yoder and Rowand (2006)
2.95 Estimated Yoder et al. (2010)
Zns(CO3)2(OH)s = 5Zn*" + 2CO5> + 60H" -73.50 Sol., I =0.2 (NaClO,) Clever et al. (1992) Schindler et al. (1969) citing
Sahli (1952)
-75.8+0.8 - | Sol. Takahashi (1960)
-74.25 -1 1=03M Mercy et al. (1998) Schindler et al. (1969)
-70.05 -1 1=02M Palmer and Van Eldik (1983) Ryan and Bauman (1978)
-74.30 - =0 Palmer and Van Eldik (1983) Ryan and Bauman (1978)
-745+0.5 - Alwan and Williams (1979)
-74.65 £ 0.25 - | 22°C Savenko and Shatalov (1999)
Zns(CO3)2(OH)s + 10H" = 5Zn*" + 2C0O,(g) + 49.00 - Grauer and Feitnecht (1967)
8H,0
45.99 £ 0.25 - Schindler et al. (1969)
45.0+0.5 - Preis and Gamsjager (2001a)
45.00 -256.5 Preis and Gamsjager (2001b)
Rosasite
Zinc 350



http://webmineral.com/data/Azurite.shtml
http://webmineral.com/data/Malachite.shtml

BERKELEY LAB

Table 2. Solubility Constants of Solid Carbonates in the System ZnO-CO»-H,O (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P.. T,
kJ
Cuy.16ZN084CO3(0OH), = 1.16Cu*" + 0.84zZn*" -36.4 - Alwan et al. (1980)
+ COs” + 20H
Smithsonite
ZnCOs(s) = Zn** + CO4” -10.68 Latimer (1952) Ageno and Valla (1911)
-9.060 25°C,1=0 Clever et al. (1992) Ageno and Valla (1911)
-10.68 - | Uncorrected for complex Smith (1918)
speciation and lonic strength
-10.678 25°C,1=0 Clever et al. (1992) Smith (1918)
-10.796 25°C,1=0 Clever et al. (1992), Smith (1918)
recalculated from the data of
Smith
-10.90 + 0.04 - Grauer (1999) Smith (1918)
18°C. Solubility = 0.07% and Haehnel (1924)
0.084% at P(CO,) = 1 and 56
atm., respectively
-9.70 25°C, thermodynamic Latimer (1952) Kelley and Anderson (1935)
calculations
-10.001 25°C,1=0 Clever et al. (1992) Kelley and Anderson (1935)
-10.780 25°C,1=0 Clever et al. (1992) Kelley and Anderson (1935),
recalculated from the data of
Smith (1918)
-9.86 - | From thermochemical data. Grauer (1999) Kelley and Anderson (1935)
-10.149 25°C,1=0 Clever et al. (1992) Saegusa (1950)
-9.699 25°C, thermodynamic Clever et al. (1992) Latimer (1952)
calculations
-10.84 - Sillen and Martell (1964) Sahli (1952)
-10.839 20°C Clever et al. (1992) Sabhli (1952), cited in Schindler
et al. (1969) as a dissertation,
Bern, 1952
-9.924 25°C, thermodynamic Clever et al. (1992). Wagman et al. (1982)
calculations Calculated from Gibbs energy
data in Wagman et al. (1982).
-10.00 - Zhuk (1954) Goskhimizdat (1952)
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Table 2. Solubility Constants of Solid Carbonates in the System ZnO-CO»,-H,O (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P.. T,
kJ
-10.82 - Zachara et al. (1989) Bjerrum et al. (1957)
-10.68 - Zachara et al. (1989) Bjerrum et al. (1957)
-7.585 25°C, thermodynamic Clever et al. (1992). Egorov and Titova (1962)
calculations Calculated from equation in
Egorov and Titova (1962).
Authors report 2.1 x 10™°,
which may be a printing error.
-10.109 50°C, thermodynamic Clever et al. (1992). Egorov and Titova (1962)
calculations Calculated from equation in
Egorov and Titova (1962).
-10.180 60°C, thermodynamic Clever et al. (1992). Egorov and Titova (1962)
calculations Calculated from equation in
Egorov and Titova (1962).
-10.415 100°C, thermodynamic Clever et al. (1992). Egorov and Titova (1962)
calculations Calculated from equation in
Egorov and Titova (1962).
-9.82 - | Natural specimen Zachara et al. (1989) Crockett and Winchester
(1966)
-9.72 18.49 | Thermodynamic calculations Helgeson (1969)
-9.721 25°C, thermodynamic Clever et al. (1992) Helgeson (1969)
calculations
-10.050 50°C, thermodynamic Clever et al. (1992) Helgeson (1969)
calculations
-10.190 60°C, thermodynamic Clever et al. (1992) Helgeson (1969)
calculations
-10.886 100°C, thermodynamic Clever et al. (1992) Helgeson (1969)
calculations
-10.8 - Zachara et al. (1989) Schindler et al. (1969)
-9.367 25°C Clever et al. (1992). Schindler et al. (1969),

Recalculation from data in
Schindler et al.(1969) and
Wagman et al. (1982) to

obtain A(F BT for ZnCO4(s),

which was used to calculate
Ks.

Wagman et al. (1982)
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Table 2. Solubility Constants of Solid Carbonates in the System ZnO-CO»-H,O (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P.. T,
kJ
-10.793 25°C, 1 = 0.2 (NaClO,) Clever et al. (1992), who were | Schindler et al.(1969)
unable to duplicate this value
from data in Schindler et al.
(1969)
-10.79 £ 0.04 - Grauer (1999) Schindler et al. (1969)
-7.585 25°C, 1 = 0.057 Clever et al. (1992) Zhukova and Rachinskii
(Na,CO3.NaNOs) (1972)
-10.00 I=0 Palmer and Van Eldik (1983) Smith and Martell (1976)
-10.347 25°C, thermodynamic Clever et al. (1992) Krestov et al. (1977)
calculations
-9.84 I=0 Palmer and Van Eldik (1983) Balko et al. (1981)
-10.79 1=0.3 Palmer and Van Eldik (1983) Balko et al. (1981)
-9.87 - Zachara et al. (1989) Sangameshwar and Barnes
(1983)
-10.53£0.10 - | Natural specimen. 22 - 25°C Zachara et al. (1989)
-9.836 25°C, | = 0. Tentative value Clever et al. (1992)
based on linear regression of
data by Latimer (1952), Egorov
and Titova (1962) and Helgeson
(1969)
-10.80 £ 0.10 - | Recommended value Grauer (1999)
-10.52 Estimated Yoder et al. (2010)
ZnCOs(cr) + 2H+ = Zn*" + CO,(g) + H,0 7.95 - Grauer and Feitnecht (1967)
8.17 + 0.05 - | 25°C, 0.2 M NaClOy, Schindler (1967)
7.95 +0.05 - | 25°C, | =0, Thermodynamic Schindler (1967)
cycle
7.92 £0.05 - | 25°C, | =0, Davies Egn. Schindler (1967)
7.35+0.04 - Schindler et al. (1969)
7.35 - | 25°C, 1=0, Gamsjager (1974) Schindler et al. (1969)
7.68 £ 0.04 50°C, 1 M NaClOy, Gamsjager (1985) Reiterer (1980)
7.52 -13.8 Preis and Gamsjager (2001b)
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Table 2. Solubility Constants of Solid Carbonates in the System ZnO-CO»-H,O (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P.T,
kJ
Zaccagnaite, synthesized
Zn,Al"(CO35)o.5(OH)ge(H20) + 6H" = 2Zn*" + 21.95 + 0.46 | = 0, corrected using the Davies | - Johnson and Glasser (2003)
AP* +0.5CO5” + 7H,0 21.09 + 1.21 equation. | = 6.5 mM and 12.8
20.30 + 0.88 mM. Equilibration up to 147
B days
19.85 + 0.02
Zno_eyAIo_gg(OH)z(Cog)o_17-0.SOgHZO) +2H" = 3.73 Calculated from thermochemical | - Allada et al. (2006)
0.67Zn*" + 0.33A°" +0.17C0O;” + 2.30H,0 data.
Synthetic Phases
an5(003[g(OH)32
Zny5(CO3)o(OH)s, = 25Zn** + 9CO4” + 320H -360.5 Sillen and Martell (1964) Sahli (1952)
Zn,CO5(0OH),
Zn,CO3(OH), + 2H" = 2Zn*" + CO5> + 2H,0 -2.52 Estimated Yoder et al. (2010)
Zn3003(OH)4
ZnsCO3(0OH), + 4H" = 3Zn*" + CO5> + 4H,0 5.48 Estimated Yoder et al. (2010)
Zn4003(OH)8
Zn4CO3(OH)s + 6H" = 4Zn*" + CO5> + 6H,0 13.48 Estimated Yoder et al. (2010)
Zn5003(OH23
ZnsCO3(OH)g + 8H" = 5Zn" + CO5> + 8H,0 21.48 Estimated Yoder et al. (2010)
Zn3(C0O3),(0OH),
Zn3(CO3),(OH), + 2H" = 3Zn* + 2CO4” + -13.05 Estimated Yoder et al. (2010)
H>
@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3a. Association Constants of Aqueous Carbonate Complexes in the System ZnO-CO,-H,O

extracted from Databases of Distribution-of-Species Codes

Association Constant Reaction

Log K®

AH S,P, T
kJ

Database

Source

Zn*" + CO5* = ZnCO4(aq)

MintegA2

Wateqg4f

V8.R6+

+5.9

Minteq (2009)

Not cited

+4.76

Minteq (2006)

NIST46.4, MTQ3.11

+5.3

Phreeqgc (2009)

Not cited

+5.3

Wateq4f (2005)

Not cited

ThermoChimie v.7.b

NAGRA/PSI (2001)

+3.9000

Data0.YMP.R5

89zac/kit

Thermoddem (2009)

Zn* + 2C05> = Zn(COs)*

MintegA2

Wateqg4f

V8.R6+

+9.63

Minteq (2009)

Not cited

+11.829

Minteq (2006)

NIST46.4, MTQ3.11

+9.63

Phreeqgc (2009)

Not cited

+9.63

Wateq4f (2005)

Not cited

ThermoChimie v.7.b

NAGRA/PSI (2001)

Data0.YMP.R5

Thermoddem (2009)

Zn* + CO5% + H' = ZnHCO;"

MintegA2

Wateqg4f

V8.R6+

+12.4

Minteq (2009)

Not cited

Minteq (2006)

+12.43

Phreeqgc (2009)

Not cited

+12.43

Wateq4f (2005)

Not cited

ThermoChimie v.7.b

NAGRA/PSI (2001)

+11.7488

Data0.YMP.R5

87bou/bar

Thermoddem (2009)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3b. Solubility Constants of Solid Carbonates in the System ZnO-CO,-H,0 extracted from
Databases of Distribution-of-Species Codes

Solubility Constant Reaction

Log K®

AH®

RP.T,
kJ

Database

Source

Smithsonite

ZnCOs(s) = Zn*" + COs”

MintegA2

Wateqg4f

V8.R6+

-18.24

Minteq (2009)

Not cited

-15.84

Minteq (2006)

Not cited

-18.24

Phreeqc (2009)

Not cited

-18.24

Wateq4f (2005)

Not cited

ThermoChimie v.7.b

NAGRA/PSI (2001)

Data0.YMP.R5

78hel/del

Thermoddem (2009)

78hel/del

Hydrozincite

Zns(CO3)(OH)s + 6H' = 5Zn* +
2C0O4” + 6H,0

MintegA2

Wateqg4f

V8.R6+

Minteq (2009)

Minteq (2006)

Phreeqgc (2009)

Wateq4f (2005)

ThermoChimie v.7.b

NAGRA/PSI (2001)

+9.6500

Data0.YMP.R5

69sch/rei

Thermoddem (2009)

ZnCO3+(H,0)

ZnCO4+(H,0) = Zn*? + H,0 + CO42

-10.26

Minteq (2009)

Not cited

-10.26

Minteq (2006)

Not cited

Phreeqc (2009)

-10.260

Wateq4f (2005)

Not cited

ThermoChimie v.7.b

NAGRA/PSI (2001)

-10.1890

Data0.YMP.R5

82wag/eva

Thermoddem (2009)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 3c. Distribution-of-Species Codes: Database References

Database

Reference

Data0.com.VR.R6+

Wolery, T.J. (1994). EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-
129749. Lawrence Livermore National Laboratory, Livermore, California.

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/LLNL.DAT

Data0.YMP.R5

BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical Modeling
of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las Vegas, Nevada:
Bechtel SAIC Company.DOC.20070619.0007.

MintegA2

HydroGeoLogic, Inc. and Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, A
Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version
4.0, Appendix A: thermodynamic database for MINTEQA2 V4.0, p. 44-74.

Minteq (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/MINTEQ.DAT

Minteq (2006)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-2.18.3/Database/minteq.v4.dat

NAGRA/PSI (2001)

Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565 p.

Phreeqc (2009)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

ThermoChimie v.7.b

Duro, L., Grivém M. and Giffaut, E. (2010). ThermoChimie, the ANDRA thermodynamic database In
Buckau G, Kienzler B, Duro L, Grivé M, Montoya V (eds). 2nd Annual Workshop Proceedings of the
Collaborative Project “Redox Phenomena Controlling Systems” (7th EC FP CP Recosy) Larnaca
(Cyprus) 16—19 March 2010. Karlsruhe: KIT Scientific Publishing, 275-283.

Thermoddem (2009)

Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste minerals.
BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Wateq4f

Ball, J. W., & Nordstrom, D. K. (1991). User's manual for WATEQA4F, with revised thermodynamic data
base and test cases for calculating speciation of major, trace, and redox elements in natural waters.

U.S. GEOLOGICAL SURVEY, Open-File Report 91-183, Revised and reprinted - April, 2001. p. 81-94

Wateq4f (2005)

USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/WATEQ4F.DAT
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Table 4a. Thermodynamic properties of Zinc Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation

Mineral AGO Secondary Reference Primary Reference
f,P.T,
Name Formula 1
kJd/gfw
Minerals
Aurichalcite (Zn,Cu)s(C0O3),(OH)s -2765.8 Alwan et al. (1980)
Hydrozincite Zns(CO3)2(OH)6 -3168.5 + 4. Takahashi (1960)
-3159.8 £ 0.5 Schindler et al. (1969)
-3161.5 | Mercy et al. (1998). Calculated from Alwan and Williams (1979)
hydrozincite solubility product of by:
-3141.2 | Woods and Gatrrels (1987) Sangameshwar and Barnes (1983)
-3163.3 £ 4. Mercy et al. (1998)
-3164.6 £ 3.0 Preis and Gamjager (2001a)
Rosasite (Cu,Zn)(COs)(OH), -1100.5 Alwan et al. (1980)
Sclarite (Zn,Mg,Mn++),Zn3(CO3)2(OH)
10
Smithsonite ZnCOs3 -7332.87 | Naumov et al. (1974) Roth and Chall (1928)
-732.48 | Karpov et al. (1968) Saegusa (1950)
-732.480 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)
-731.36 | Latimer (1952) Rossini et al. (1952)?
-731.36 | Zhuk (1954) Rossini et al. (1952), Karapet'yantz
(1953)
-731.28 £ 4.18 | Robie (1962, 1966) Rossini et al. (1952)
-731.36 | Karpov et al. (1968) Rossini et al. (1952)
-731.4 | Woods and Garrels (1987) Rossini et al. (1952)
calculated -732.37 Zhuk (1954)
-732.37 | Karpov et al. (1968) Zhuk (1954)
-732.37 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
-733.87 | Karpov et al. (1968) Karaptet'yantz (1957)
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Table 4a. Thermodynamic properties of Zinc Carbonate Minerals and Synthetic Solid Carbonates: Gibbs Free Energies of Formation
(Continued)

Mineral AG?,P, . Secondary Reference Primary Reference
Name Formula 1
kJd/gfw
-733.87 | Karapet'yants and Karapet'yants (1970) Karaptet'yantz (1957)
-736.8 £0.17 Schindler et al. (1969)
-731.480 + 2.970 | Robie et al. (1979) Parker et al. (1971)
-731.48 £ 2.97 | Radha and Navrotsky (2013) Parker et al. (1971), Robie et al. (1978)
-733.9 | Woods and Garrels (1987) Naumov et al. (1974)
-731.6 | Woods and Garrels (1987) Helgeson et al. (1978)
-731.5 | Woods and Garrels (1987) Robie et al. (1978)
-731.5 | Woods and Garrels (1987) Wagman et al. (1982)
-735.3 £ 3.1 | Robie and Hemingway (1995) Haselton and Goldsmith (1987)
-731.5 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
-735.3 Robie and Hemingway (1995)
-837.35 | Stern (2000) Barin et al. (1993)
-737.3 Dobrydiev et al. (2005)
Zaccagnaite, 3R1 ZN13Aly5(OH)2(CO3)ye*4/6(H, -38.66" Costa et al. (2010)
polytype 0)
calculated
Synthetic Phases
Zn,(CO3)(OH)2+(H-0) Zny(CO3)(OH)2+(H20)
Zn4(CO3)3(0OH)2*4(H20) | Zn4(COz)3(OH)2*4(H.0)
CdZn(COs),
Cdzn(CO0Os), CdzZn(COs), -1406.7 £ 1.1 Tareen et al. (1995)
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Table 4b. Thermodynamic properties of Zinc Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

Mineral AH ?,P, . Secondary Reference Primary Reference
Name Formula 1
kd/gfw
Minerals
Aurichalcite (Zn,Cu)s(C0O3),(OH)s
Hydrozincite Zns(CO3)2(OH)6 -3465.4 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
-3584. + 15. Preis and Gamjager (2001a)
Rosasite (Cu,Zn),(CO3)(OH),
Smithsonite ZnCOs3 -815.04 | Naumov et al. (1974) Roth and Chall (1928)
-810.74 | Karpov et al. (1968) Saegusa (1950)
-810.742 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)
-812.53 | Latimer (1952) Rossini et al. (1952)?
-812.53 | Zhuk (1954) Rossini et al. (1952), Karapet'yantz
(1953)
-812.53 £ 2.93 | Robie (1962, 1966) Rossini et al. (1952)
-812.53 | Karpov et al. (1968) Rossini et al. (1952)
812.5 | Woods and Garrels (1987) Rossini et al. (1952)
-811.95 | Karpov et al. (1968) Gerasimov (1960)
-810.86 | Karpov et al. (1968) Karapet'yantz and Karapet'yants (1961)
-812.780 + 2.930 | Robie et al. (1979) Parker et al. (1971)
-812.78 £ 2.93 | Radha and Navrotsky (2013) Parker et al. (1971), Robie et al. (1979)
-815.0 | Woods and Garrels (1987) Naumov et al. (1974)
-812.8 | Woods and Garrels (1987) Robie et al. (1978)
-812.8 | Woods and Garrels (1987) Helgeson et al. (1978)
-812.8 | Woods and Garrels (1987) Wagman et al. (1982)
-812.8 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
-817.0 + 3.1 | Robie and Hemingway (1995) Haselton and Goldsmith (1987)
-812.78 | Stern (2000) Barin et al. (1993)
-817.0 Robie and Hemingway (1995)
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Table 4b. Thermodynamic properties of Zinc Carbonate Minerals and Synthetic Solid Carbonates: Enthalpies of Formation

(Continued)

Mineral AH ?,P, . Secondary Reference Primary Reference
Name Formula 1
kJ/gfw
-818.6 Dobrydiev et al. (2005)

Zaccagnaite, Zno 67Alo.33(OH)2(C0O3)0.1720.30( -993.04 + 0.96 Allada et al. (2006)
synthesized H,0)

3R1 polytype Zny3Al13(OH)2(CO3)1/6°4/6(H2 -45.31 + 0.92" | Costa et al. (2010) Allada et al. (2006)
experimental 0)

calculated -42.09Y Costa et al. (2010)

Synthetic Phases

Zn(HCOs3), Zn(HCOg3), -1543.90 + 62.76 | Estimated value for fictive compound Wilcox and Bromley (1963)
-1543.90 | Karapet'yants and Karapet'yants (1970) Wilcox and Bromley (1963)
Cdzn(CO0Os), CdzZn(COs), -1566.3 £ 1.1 Tareen et al. (1995)
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Table 4c. Thermodynamic properties of Zinc Carbonate Minerals and Synthetic Solid Carbonates: Entropies

Mineral Sgr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
Minerals
Aurichalcite (Zn,Cu)s(C0O3),(OH)s
Hydrozincite Zns(CO3),(OH)s +436. £ 50 Preis and Gamjager (2001a)
Rosasite (Cu,Zn)z(CO3)(OH),
Sclarite (Zn,Mg,Mn++)4Zn3(CO3),(OH)
10
Smithsonite ZnCO;3 82.4+1.3 Anderson (1934),
graphical
calculated 82.0 Anderson (1934)
82.42 +1.26 | Kelley and King (1961) Anderson (1934)
82.42 £ 1.3 | Naumov et al. (1974) Anderson (1934)
82.42 £1.26 | Karpov et al. (1968) Britske et al. (1949)
92.47 | Karpov et al. (1968) Saegusa (1950)
92.47 | Karapet'yants and Karapet'yants (1970) Saegusa (1950)
82.42 | Latimer (1952) Rossini et al. (1952)?
82.42 | Zhuk (1954) Rossini et al. (1952), Karapet'yants
(1953)
82.42 | Karpov et al. (1968) Rossini et al. (1952)
82.4 | Woods and Garrels (1987) Rossini et al. (1952)
calculated 86.19 Zhuk (1954)
86.19 | Karpov et al. (1968) Zhuk (1954)
86.19 | Karapet'yants and Karapet'yants (1970) Zhuk (1954)
82.42 +1.26 | Robie (1962, 1966) Kelley and King (1961)
82.42 +1.25 | Robie et al. (1979) Kelley and King (1961)
79.71 | Karapet'yants and Karapet'yants (1970) Kelley and King (1961)
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Table 4c. Thermodynamic properties of Zinc Carbonate Minerals and Synthetic Solid Carbonates: Entropies (Continued)

Mineral Sgr . Secondary Reference Primary Reference
Name Formula 1 1
J K™ gfw
82.4 | Woods and Garrels (1987) Naumov et al. (1974)
82.4 | Woods and Garrels (1987) Helgeson et al. (1978)
82.4 | Woods and Garrels (1987) Robie et al. (1978)
82.4 | Woods and Garrels (1987) Wagman et al. (1982)
82.40 | Stern (2000) Barin et al. (1993)
81.2+0.2 | Robie and Hemingway (1995) Robie et al. (1989)
81.19 Robie and Hemingway (1995)

Synthetic Phases
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Table 5. Crystallographic Properties of Zinc Carbonate Minerals and Synthetic Solid Carbonates

Name Formula Reference
Minerals

1 Aurichalcite Zn373CU2.27(C0O3)2(OH)s Gaines et al. (1997)

2 Aurichalcite Zn373CU2.27(C0O3)2(OH)s Harding et al. (1994)

3 Aurichalcite ZnN3.33CU2.62(CO3)2(OH)s Giester and Rieck. (2014

4 Brianyoungite ZNn3(C03)0.75(SO4)0.25(0OH)4 Gaines et al. (1997), Livingstone and Champness (1993)

5 Claraite (Cu,Zn)3(CO3)(OH)4#4(H20) Gaines et al. (1997)

6 Claraite CuzZn(CO3)(OH)4#4(H20) Mineralogy Database (http://webmineral.com/)

7 Claraite (Cuz2.,6ZNg 4)(CO3)(OH)4#4(H20) Walenta and Dunn (1982), Walenta (1999)

8 Hauckite Mg1aMn?*16Zn15Fe 5(S04)4(CO3)2(OH)er Gaines et al. (1997)

9 Hauckite Fes1Alp.4MQg135MNg 9ZN15 2(SO4)3.8(CO3)2(OH)so 8 Dunn et al. (1980)

10 Hydrozincite Zns(CO3)2(OH)s Gaines et al. (1997)

Name Cell Constants Space Vo
a, A bo, A Cor A a,° B,° y,° z Group cm?® gfw™
Minerals

1 Aurichalcite 13.82 6.419 5.29 101.04 2 P2;/m 138.69

2 Aurichalcite 13.82 6.419 5.29 101.04 2 P2:/m 138.69

3 | Aurichalcite 13.790(2) 6.414(2) 5.266(1) 100.99(1) 2 P2,/m

4 Brianyoungite 15.724 6.256 5.472 90 4 Ortho or 81.040

mono, C2/m

5 Claraite 26.22 21.56 66 P1orP-1 117.13

6 Claraite 14.28 8.03 7.27 79.16 107.9 99.68 4 P1orP-1 116.48

7 Claraite 14.28 8.03 7.27 79.16 107.9 99.68 4 P1or P-1 116.54

8 Hauckite 9.17 30.21 1 P6/mmm 1324.9

9 | Hauckite 9.17(4) 30.21(9) 1 P6/mmm 1324.9

10 Hydrozincite 13.58 6.28 5.41 95.51 2 C2/m 138.28
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Name Formula Reference

11 Hydrozincite Zns(CO3)2(OH)6 Mineralogy Database (http://webmineral.com/)

12 Hydrozincite Zns(CO3)2(OH)s Ghose (1964)

13 Hydrozincite Zns(CO3)2(OH)s Jambor (1964)

14 Loseyite (Mng 75ZNg 25)7(CO3)2(OH)10 Gaines et al. (1997)

15 Loseyite (Mn35Zn30MQo 5)(CO3)2(OH)10 Hill (1981)

16 Minrecordite Cazn(CO0s), Gaines et al. (1997)

17 Minrecordite Cazn(CO0s), Garavelli et al. (1983)

18 Rosasite Cu1.16ZN0 84CO3(0OH), Gaines et al. (1997)

19 Rosasite Cu1.16ZN0 84CO3(0OH), Mineralogy Database (http://webmineral.com/)

20 Rosasite Cu1.16ZN0.84CO3(0OH), (assumed) Perchiazzi (2006)

Name Cell Constants Space Vo

a0, A be, A Co, A o, ° B,° 7° 7 Group cm?® gfw™

11 Hydrozincite 13.479 6.32 5.368 95.6 2 C2/m 137.04

12 Hydrozincite 13.479 6.32 5.368 95.6 2 C2/m 137.04

13 Hydrozincite 13.53 6.30 5.41 95.85 2 138.13

14 Loseyite 16.23 5.51 14.95 95.37 4 A 2/a 200.39

15 | Loseyite 16.408(7) 5.540(3) 15.150(4) 95.48(3) 4 A2/a 206.39

16 Minrecordite 4.8183 16.0295 3 R-3 64.695

17 | Minrecordite 4.8183(4) 16.0295(10) 3 R-3 64.695

18 Rosasite 9.366 12.116 3.127 90.06 4 P2;/m or 53.423

P2,
19 Rosasite 12.873 9.354 3.156 110.36 4 P2,/a 53.641
20 | Rosasite 12.8976(3) | 9.3705(1) 3.1623(1) 110.262(3) 4 P2./a 53.980
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Name Formula Reference

21 Sclarite (Zn,Mg,Mn++),ZNn3(C0O3),(OH)10 Grice and Dunn (1989)

22 Sclarite ZN2.4Mg1.2Mn?*6.4ZNn3(CO3)2(OH) 10 Gaines et al. (1997)

23 Skorpionite CazZn,(P0O4),CO3(0OH),*(H.0) Krause et al. (2008)

24 Smithsonite ZnCOs3 Graf (1961)

25 Smithsonite ZnCOs3 Gaines et al. (1997)

26 Undescribed Zns(CO3)2(OH)e*(H20) Jambor (1964)

27 Zaccagnaite Zn,Alx(OH)12(C0O3)*3(H.0) Gaines et al. (1997), Merlino and Orlandi (2001)

28 Zincrosasite (Zn)1.25(Cu)o.75(CO3)(OH). Mineralogy Database (http://webmineral.com/)

29 Schulenbergite (Zn,Cu)7(S04)15(CO3)0.5(0OH)10°3(H20) Gaines et al. (1997)

30 Zn-Schulenbergite ZNn5CU2(S04)1.5(CO3)05(0OH)10°3(H20) Mineralogy Database (http://webmineral.com/)

Name Cell Constants Space Vo

a0, A bo, A e A . ° B e 7 Group cm?® gfw™*

21 | Sclarite 16.110(7) 5.432(1) 15.041(10) 95.490(4) 4 A2/a 197.25

22 | Sclarite 16.11 5.432 15.041 95.49 4 A2/a 197.25

23 | Skorpionite 19.045 9.32 6.525 92.73 4 C2lc 174.17

24 | Smithsonite 4.6528 15.025 6 R3c 28.273

25 | Smithsonite 4.653 15.028 6 R3c 28.281

26 | Undescribed 13.76 6.35 5.38 96.00 2? mono 140.77

27 | Zaccagnaite 3.0725 15.1135 1/3 P6s/mmc 223.25

28 | Zincrosasite - - - - - - - | P24/a(mono) -

29 Schulenbergite 8.249 7.183 1 P3 or P-3 254.91

30 | Zn-Schulenbergite 8.292 7.271 1 hex 260.73
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Name Formula Reference
31 Zn-Schulenbergite ZNns5CU2(S04)1.5(CO3)05(0OH)10°3(H20) Ohnishi et al. (2007)
32 Znucalite CazZn;5(UO,)(CO3)3(OH),204(H,.0) Ondrus et al. (1990), Jambor and Puziewicz (1991)
33 Znucalite CazZn;1(UO,)(CO3)3(OH)20*4(H,0) Chiappero and Sarp (1993), Jambor et al. (1994)
Synthetic Phases
34 Zny(CO3)(OH),#(H.0) Zny(CO3)(OH),#(H,0) Feitknecht and Oswald (1966)
35 Zn4(CO3)3(OH),+4(H,0) Zn4(CO3)3(OH)2*4(H,0) Feitknecht and Oswald (1966)
Name Cell Constants Space Vo
a0 A bo, A o A @ ° B, ° e 7 Group cm?® gfw™
31 | Zn-Schulenbergite 8.292 7.271 1 hex 260.73
32 | Znucalite 12.692(4) | 25.096(6) 11.685(5) | 89.08(2) 91.79(2) | 90.37(3) 4 P1orp-1 559.99
33 | Znucalite 10.72(1) 25.16(1) 6.324(4) 2 orthorh 513.59
Synthetic Phases
34 | Zny(COz)(OH)*(H20) 9.36g 3.13 6.06¢ 1? Orthorh. 106.92
35 | Zn4(COs)3(OH)2#4(H.0) 13.32 7.53 1/3? Hex. 2090.5

*Calculated from cell constants, this work
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Table 6. Carbonate Minerals containing greater than 10 wt.% Zinc*

Name Formula Lead, wt.% gfw Thermodynamic
Data

Est. Meas.
Aurichalcite (Zn,Cu)s(C0O3),(OH)s 44.85 546.71 no no
Brianyoungite Zn3(C03,S0,4)(OH), 58.87 333.22 no no
Claraite (Cu,Zn)3(CO3)(OH)4*4(H,0) 16.66 392.58 no no
Hauckite (Mg, Mn")24Zn15Fe"'3(S04)4(CO3)2(OH)sy 29.47 3993.55 no no
Hydrozincite Zns(CO3)2(OH)s 59.55 549.01 no yes
Loseyite (Mn,Zn)7(C0O3)2(OH)10 16.51 692.95 no no
Minrecordite Cazn(CO0s), 29.00 225.49 no no
Rosasite (Cu,Zn),(CO3)(OH), 14.72 222.04 no yes
Schulenbergite (Cu,Zn)7(SO4,CO3)2(OH)10°3(H.0) 15.45 846.73 no no
Sclarite (Zn,Mg,Mn++)4Zn3(C0O3),(OH)10 50.85 694.34 no yes
Skorpionite CazZn,(P0O,4),CO3(0OH).+(H,0) 23.21 552.09 no no
Smithsonite ZnCO; 52.15 125.4 no yes
Zaccagnaite Zn,4Alx(OH)12(C0O3)+3(H,0) 40.49 629.83 no yes
Zincrosasite (Zn,Cu)2(CO3)(OH), 36.58 223.42 no no
Znucalite CazZn;1(UO,)(CO3)3(OH)2004(H,0) 44.36 1621.63 no no
Zn-Schulenbergite (Zn,Cu)7(S04,C03),(0OH)10°3(H20) 38.36 852.26 no no

*Data taken primarily from a compilation given by the Mineralogy Database (http://webmineral.com).
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Supplementary Data
ALKALI AND ALKALI EARTH METALS

Table 1. Solubility Constants of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0

Solubility Constant Reaction Log KW AHg . Comments Secondary Reference Primary Reference
kJ
Minerals
Aragoniite
-8.16 calculated Latimer (1952)
CaCO; = Ca*" + COs> -8.336 £ 0.020 - Plummer and Busenberg
(1982)
-8.34 - Palmer and Van Eldik (1983) | Plummer and Busenberg
(1982)
Burkeite
NasCO3(S04), = 6Na” + COs” + 250,” Bialik et al. (2008), Picot et

al. (2012). See also
Frederick et al. (2004)

Artinite
MgCOs.Mg(OH)*3(H20) = Mg + CO4* + -17.2 - | 25°C, based on soly Langmuir (1965) Kazakov et al. (1959)
20H equilibrium with brucite
Calcite
CaCO; = Ca*" + COs* -7.90 16°C Stieglitz (1908)
-7.90 McCoy and Smith (1911) Stieglitz (1908)
-8.03 - McCoy and Smith (1911)
Not computed - | Solubility measurements under Haehnel (1924a)
P(CO,) =to 65 atm, T 18 to
65°C
-8.32 Latimer (1952) Frear and Johnston (1929)
-8.31 - Zhuk (1954) Goskhimizdat (1952)
-8.33 calculated Latimer (1952)
-8.33 Not reported Jensen et al. (2002) Latimer (1952)
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Table 1. Solubility Constants of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-C0O,-H,0 (Continued)

supersaturated solutions

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P.. T,
kJ
-8.00
Soly. of Iceland spar (calcite) in Malinin (1963)
H,0 and in CaCl; soln. at 150-
225°C and P(CO;) <400
kg./cm?.
Activity product of CaCO; up to Malinin (1963)
300°C in water and NacCl
solns.
-8.30 Not reported Jensen et al. (2002) Garrels and Christ (1965)
-8.31 Precipitation from Jensen et al. (2002) Nakayama (1968)
supersaturated solutions
-8.40 Theoretically determined from Jensen et al. (2002) Langmuir (1968)
other studies
-8.47 Resuspension of crystals and Jensen et al. (2002) Jacobson and Langmuir
precipitation from (1974)
supersaturated solutions
-8.42 -10.1 Palmer and Van Eldik (1983) | Jacobsen and Langmuir
(2974)
-8.47 -10.8 Palmer and Van Eldik (1983) | Jacobsen and Langmuir
(1974)
-8.48 + 0.02 8.4 Palmer and Van Eldik (1983) | Smith and Martell (1976)
-8.480 + 0.020 Plummer and Busenberg
(1982)
-8.35+0.1 Palmer and Van Eldik (1983) | Plummer and Busenberg
(1982)
-8.48 Resuspension of dry crystals Jensen et al. (2002) Plummer and Busenberg
(1982)
-8.46 + 0.03 Millero et al. (1984)
-8.305 - | Calculated from Meng et al. (1995)
thermodynamic data
-8.58 Precipitation from Jensen et al. (2002)

Dawsonite
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Table 1. Solubility Constants of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0 (Continued)

Solubility Constant Reaction Log K® AHg - Comments Secondary Reference Primary Reference
kJ
Naf\ICOE,(OH)z + 2H,0 = Al(OH), + HCO3 + -17.88 25°C. Extrapolated from high Bénézeth et al. (2007)
Na” + H temperature measurements
Dolomite (ordered)
CaMg(COs),(cr) = ca® + Mg* + 2C0O4? -18.6 Literature compilations Sherman and Barak (2000) Rossini et al. (1952)
-17.8 Based on Ca, Mg and alk. Halla (1962c) Yanat'eva (1952)
-18.4 Sherman and Barak (2000) Yanat'eva (1952)
-18.5 Based on pH and CO; Halla (1962c) Yanat'eva (1952)
-19.3 Sherman and Barak (2000) Yanat'eva (1952)
-16.8 Kramer (1959)
-17.2 Sherman and Barak (2000) Kramer (1959)
-19.3 pH=5.7 Garrels et al. (1960)
-19.4 pH = 6.2 (after grinding) Sherman and Barak (2000) Garrels et al. (1960)
-17.0 21°C. Based on Ca and Alk Halla and Van Tassel (1965) Halla (1962c)
-16.6 21°C. Based on pH and CO, Halla and Van Tassel (1965) Halla (1962c)
-16.7 22-27°C, Field data Hsu (1963)
-17.1 22-27°C, Field data Sherman and Barak (2000) Hsu (1963)
-18.7 From bomb calorimetry Stout and Robie (1963)
-16.5 Barnes and Back (1964)
-17.5 Sherman and Barak (2000) Halla and Van Tassel (1965)
-17.7 Sherman and Barak (2000) Halla and Van Tassel (1965)
-17.0 Solubility, field data Pokrovsky and Schott (2001) | Langmuir (1965, 1971),
Berner (1967), Lippmann
(1973)
-18.7 Literature compilations Sherman and Barak (2000) Karpov et al. (1971)
-15.6 Literature compilations Sherman and Barak (2000) Naumov et al. (1971)
-18.3 Phase equilibria data Sherman and Barak (2000) Helgeson et al. (1978)
-17.5 27°C. Calorimetry, HCI soln Hemingway and Robie Robie et al. (1978)
(1994)
-17.09 Based on calorimetric data Pokrovsky and Schott (2001) | Robie et al. (1978)
-17.6 Literature compilations Sherman and Barak (2000) Wagman et al. (1982)
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Table 1. Solubility Constants of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-C0O,-H,0 (Continued)

Solubility Constant Reaction Log K® AHg . Comments Secondary Reference Primary Reference
kJ
-17.38 Solubility, laboratory Pokrovsky and Schott (2001) | Konigsberger and Gamsjéger
(1987)
-18.2 85°C, Calorimetry, HCI soln Morrow et al. (1994) and Navrotsky and Capobianco
Sherman and Barak (2000) (1987)
-17.4 Phase equilibria data Sherman and Barak (2000) Chernosky and Berman
(1989)
-17.4 Phase equilibria data Sherman and Barak (2000) Holland and Powell (1990)
-17.8 Literature compilations Sherman and Barak (2000) Knacke at al. (1991)
-17.6 Literature compilations Sherman and Barak (2000) Barin (1993)
-18.5 700°C. PbO-B,05; melt Sherman and Barak (2000) Chai and Navrotsky (1993)
-17.2 27°C. Calorimetry, HCI soln Robie and Hemingway Hemingway and Robie
(1995) (1994)
-17.2+0.2 Solubility measurements Sherman and Barak (2000)
-17.40 Estimate Yoder and Rowand (2006)
-17.95+0.1 80°C (est by author to be = Gautelier et al. (2007)
-16.7 at 25°C)
Eitelite
NaMgosCOs + 2H' =0.5Mg?* + Na* + CO,(g) 14.67 25°C, 3 m NaClO, Konigsberger et al. (1992)
+ H,O
14.18 25°C, 1=0 Konigsberger et al. (1992)
Hydromagnesite (1)
3MgCO3.Mg(OH)2#3(H20) = 4Mg®* +3CO5> -30.6 25°C, soly of natural Langmuir (1965) Von der Borch (1962, 1965)
+20H + 3H,0 occurrence
-30.6 25°C, approximate value Langmuir (1965)
-30.1 25°C Langmuir (1965)
Hydromagnesite (II)
Mg(OH)o.4(CO3)05°0.8(H,0) + 2H" = Mg®* + 12.56 25°C, 3 m NaClO, Konigsberger et al. (1992) Riesen (1969)
0.8CO(g) "+ 2H.0
12.34 25°C, =0 Konigsberger et al. (1992) Riesen (1969)
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Table 1. Solubility Constants of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-C0O,-H,0 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P.. T,
kJ
5MgO#4CO,5(H,0) = 5Mg®* +4CO5> +20H -37.08 £ 0.45 Calculated from calorimetric Robie and Hemingway
+ 4H,0 data (1973)
Hydrotalcite-CO3 (-Pyroaurite)
Mngl'”(Cog)o,s(OH)ao(HZO) +6H" = 2Mg* + 24.98 + 0.49 | = 0, corrected using the Johnson and Glasser (2003)
AP +0.5C0O5” + 7H,0 24.94 + 0.18 Davies equation. | = 6.5 mM
. and 12.8 mM. Equilibration up
25.70£0.32 to 147 days
26.10 £ 0.21
Mg4Al(OH)12(CO3)e2(H20)(s) = 4Mgz+ + -51.14 Lothenbach and Winnefeld Johnson and Glasser (2003)
2Al(OH)s +CO5% + 40H + 2H,0 (2006)
MgsAlo(OH)12(CO3)*2(H20) + 13H" = 2AI"" 61.19 Solubility Blanc et al. (2010) Johnson and Glasser (2003)
+ HCO; +4Mg™ + 14H,0
Mdo.74Al0.26(CO3)g.13(OH)2*0.39(H;0) + 7.65 Log K retrieved from Figure 2 Allada et al. (2005b)
1.22H" = 0.74Mg** + 0.26AI(OH)s(s) + of cited reference.
0.13C0O5” + 1.61H,0
Mdo.73Alo.27(CO3)0.16(0OH)1.95°0.83(H,0) + 10.16 Log K retrieved from Figure 2 Allada et al. (2005b)
1.14H" = 0.73Mg?" + 0.27AI(OH)s(s) + of cited reference.
0.16CO5” + 1.97H,0
Mgo_74A|o_26(OH)2(CO3)0_13'0.392H20) + 2H+ = 9.82 Calculated from Allada et al. (2006)
0.74Mg”" + 0.26A1*" +0.13C0O5* + 2.39H,0 thermochemical data.
Mg3A|1,019(CO3)0,472(OH)s.114'2.53(H20) = -68.92 £ 3.50 SOlUblllty Rozov et al. (2010)
3Mg®" + 1.019AF" + 0.472C0O5* +
8.114(0H) = 2.53H,0
Mg3A|1_021(CO3)0_656(OH)7.730'2.46(H20) = -69.52 + 3.54 SOlUblllty Rozov et al. (2010)
3Mg®* + 1.021AF" + 0.666CO5> +
7.730(0H)" + 2.46H,0
Mg3A|0,396Feo.097(CO3)0,33e(oH)s.305'2.51(H20) -68.76 £ 3.55 SOlUblllty Rozov et al. (2010)
=3Mg* + 0.896A1*" + 0.097Fe* +
0.336C0O5” + 8.305(0H)" + 2.51H,0
Mg3A|0,327Feo.lgz(CO3)0,53e(oH)7.937'2.62(H20) -67.79 £ 3.62 SOlUblllty Rozov et al. (2010)
=3Mg”" + 0.827A1" + 0.192Fe* +
0.536C05” + 7.987(0H) + 2.62H,0
Mg3AIo_802Feo_205(C03)0_537(OH)7.946-2.67(H20) -71.61 £ 3.75 SOlUblllty Rozov et al. (2010)

=3Mg*" + 0.802A1*" + 0.205Fe* +
0.537CO4% + 7.946(OH) + 2.67H,0
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Table 1. Solubility Constants of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-

H,O (Continued)

Solubility Constant Reaction

Log K&

AHQRL
kJ

Comments

Secondary Reference

Primary Reference

Mg3Alg.695F€0.304(CO3)0.481(OH)s.03402.52(H20)
=3Mg* + 0.695A1°" + 0.304Fe* +
0.481CO4* + 8.034(OH)" + 2.52H,0

-70.83 £3.61

Solubility

Rozov et al. (2010)

MgBAIO esteo 394(003)0 553(OH)7 95'2 SO(HZO)
= 3Mg” + 0.625A1°" + 0.394Fe™ +
0.553C0;” + 7.950(0OH)" + 2.50H,0

—-68.7 £ 3.65

Solubility

Rozov et al. (2010)

MgBAIO.SOZFeO.A%(COS)O.SGl(OH)8-276'2-45(H20)
= 3Mg*" + 0.502A1°" + 0.496Fe*" +
0.361CO3* + 8.276(0H) + 2.45H,0

-69.25 + 3.63

Solubility

Rozov et al. (2010)

|V|93A|o 415Feo 619(CO3)0.531(OH)s. 039'2 47(H,0)
=3Mg* + 0.415A1" + 0.619Fe® +
0.531C0O5> + 8. 039(OH) + 2.47H,0

-69.51+3.74

Solubility

Rozov et al. (2010)

Mg3Alg.209F€0.703(CO3)0.248(OH)s.509°2.55(H20)
=3Mg* + 0.299A1°" + 0.619Fe* +
0.248CO4* + 8.509(OH)" + 2.55H,0

-70.09 £ 3.68

Solubility

Rozov et al. (2010)

MgBA|0.207FeO.BSQ(COS)OAgl(OH)8-157'2-55(H20)
=3Mg*" + 0.207AI*" + 0.839Fe*" +
0.491CO;* + 8.157(OH) + 2.55H,0

-70.23 +£3.81

Solubility

Rozov et al. (2010)

MgBAIO 108Feo 902(003)0 342(OH)8 344'2 64(H20)
=3Mg” + 0.108AI°" + 0.902Fe™ +
0.342C0;* + 8.334(0H) + 2.64H,0

—70.38 + 3.53

Solubility

Rozov et al. (2010)

MgsFe1.086(CO3)0.343(OH)s.570°2.15(H20) =
3Mg®* + 1.086Fe® +0.343C0O45™ +
8.570(0H) + 2.15H,0

—-72.36 £3.99

Solubility

Rozov et al. (2010)

Kalicinite

KHCO; = K" + HCO3

21.76

Naumov et al. (1974)

Rossini et al. (1952)

1.146

Calculated from
thermodynamic data

Meng et al. (1995)

Magnesite

MgCOs = Mg®* + COs>

-0.88

Room temp., P(CO,) =1 atm.
“Amorphous” magnesite

Langmuir (1965)

Leitmeier (1915)

-8.00

20°C, air

Langmuir (1965)

Wells (1915)

Solubility measurements under
P(CO,) to 34 atm, T to 60°C

Haehnel (1924b)
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Table 1. Solubility Constants of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-C0O,-H,0 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P,T,
kJ
-5.59 Probably a minimal value. Langmuir (1965) Haehnel (1924b)
-10.30 17°C, P(CO,) =1 atm. Run for Langmuir (1965) Bar (1932)
55 days
-6.26 25°C, air? Langmuir (1965) Leick (1932)
-7.02 25°C, P(COy) =1 atm. Langmuir (1965) Halla and Ritter (1935)
-7.69 25°C, P(CO,) =1 atm. “Gel” Langmuir (1965) Halla and Ritter (1935)
magnesite
-5.00 Zhuk (1954) Goskhimizdat (1952)
-8.10 calculated Latimer (1952)
-7.69 25°C, P(COy) =1 atm. Langmuir (1965) Yanat'yeva (1954)
-8.00 25°C, P(CO,) =1 atm. Langmuir (1965) Garrels et al. (1960), quoted
in Zen (1960)
-7.46 25°C Halla (1962a) Yanatyeva and Rassonskaya
(1961), Halla and Ritter
(1935)
-9.42 25°C, P(CO,) =1 atm. Langmuir (1965) Morey (1962)
-8.12 25°C Langmuir (1965) Stout and Robie (1963)
-9.90 21 £ 2°C, P(COy) =1 atm. Run Langmuir (1965) Halla and Van Tasse (1964)
for 534 days, synthetic
magnesite.
-8.167 Calculated from Meng et al. (1995)
thermodynamic data
-6.00 Estimate Yoder et al. (2010)
MgCOs + 2H" = Mg®" + CO,(g) + H,0 9.54 25°C, 3 m NaClQ,, prep. after Konigsberger et al. (1992) Horn (1969)
Jantsch and Zemek (1949)
9.41 25°C, | =0, prep. after Jantsch | Konigsberger et al. (1992) Horn (1969)
and Zemek (1949)
9.42 25°C, 3 m NaClQ,, natural Konigsberger et al. (1992) Riesen (1969)
9.24 25°C, | =0, natural Konigsberger et al. (1992) Riesen (1969)
10.04 3 m NaClO, at 25°C, prep. Konigsberger et al. (1992) Riesen (1969)
after Marc and Simek (1913)
9.86 25°C, | =0, prep. after Marc Konigsberger et al. (1992) Riesen (1969)

and Simek (1913)
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Table 1. Solubility Constants of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-C0O,-H,0 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P,T,
kJ
Nahcolite
NaHCO; = Na" + HCO5 -18.66 + 0.21 Rupert et al. (1965)
- -18.66 £ 0.21 Naumov et al. (1974) Rupert et al. (1965)
-0.407 Calculated from Meng et al. (1995)
thermodynamic data
Natrite
Na,CO; = 2Na* + COs” - -26.61 £ 0.33 Rupert et al. (1965)
- -26.61 £ 0.33 Naumov et al. (1974) Rupert et al. (1965)
1.258 Calculated from Meng et al. (1995)
thermodynamic data
Nesquehonite
MgCOs3+3(H,0) = Mg + COs” + 3H,0 ~-5.0 Latimer (1952) Kline (1929)
-4.67 25°C Halla (1962a) Yanatyeva and Rassonskaya
(1961), Halla and Ritter
(1935)
-5.07 25°C. complexing neglected, Robie and Hemingway Langmuir (1965)
survey of prior literature (1973)
-5.59 25°C. Solubility study Langmuir (1965)
-5.59 £ 0.10 Robie and Hemingway Langmuir (1965)
(1973)
-5.59 Naumov et al. (1974) Langmuir (1965)
-5.42 +0.10 Robie and Hemingway Hostetler (1970) (1965)
(1973)
MgCOs5+3(H,0) + 2H" = Mg®" + COy(g) "+ 13.14 3 m NaClO, at 25°C Konigsberger et al. (1992) Riesen (1969)
4H,0
12.83 25°C, =0 Konigsberger et al. (1992) Riesen (1969)
Strontianite
SrCOs(cr) = Sr** + CO5* -8.805 McCoy and Smith (1911)
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Table 1. Solubility Constants of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-C0O,-H,0 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P,T,
kJ
-9.03 Latimer (1952) McCoy and Smith (1911),
Kelley and Anderson (1935)
- | Solubility measurements under Haehnel (1924c)
P(CO,) =to 65 atm/
-9.963 Calc. from solubility Townley et al. (1937)
-9.03 Zhuk (1954) Goskhimizdat (1952)
-9.15 calculated Latimer (1952)
-9.32 25°C, | = 0, calculated from Helz and Holland (1965)
thermodynamic data by
Rossini et al. (1950)
-9.48 £ 0.03 50°C, 1=0 Helz and Holland (1965)
-9.48 £ 0.03 100°C, 1=0 Helz and Holland (1965)
-9.48 £ 0.03 150°C, 1=0 Helz and Holland (1965)
-9.48 £ 0.03 200°C, =0 Helz and Holland (1965)
-9.271 £ 0.020 25°C, =0 Busenberg et al. (1984)
-9.13 £ 0.03 Millero et al. (1984)
Thaumasite
CaSi0;-CaS0,-CaCOz15(H,0) + 3H" = 10.30 Blanc et al. (2010) Macphee and Barnett (2004)
3Ca"™ + H,Si0; + SO,” + HCO5 + 14H,0
Trona
Na,CO3.NaHCO3+2(H,0) = 3Na" + COs* + 23.64£0.21 Rupert et al. (1965)
HCOs + 2H,0
Vaterite
CaCO; = Ca*" + COs> -7.913 £ 0.020 Plummer and Busenberg
(1982)
-7.91 Palmer and Van Eldik (1983) | Plummer and Busenberg

(1982)
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Table 1. Solubility Constants of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-C0O,-H,0 (Continued)

4CO, +10°H,0

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R,P.. T,
kJ
Synthetic Phases
K2COs
KoCO3 = 2K* + CO5* - | -31.80+2.09 Naumov et al. (1974) Stull and Prophet (1965), et
sed. (-1968)
5.405 Calculated from Meng et al. (1995)
thermodynamic data
MgCQO3+5(H,0)
MgCO3+5(H,0) = Mg®* + COs* + 5H,0 -4.56 250C Halla (1962a) Yanatyeva and Rassonskaya
(1961)

Mg,CO3(OH),
Mg.CO3(OH), + 2H" = 2Mg®* + CO5” +2H,0 6.90 Estimate Yoder et al. (2010)
MgsCO3(OH)4
MgsCO3(OH),+ 4H" = 3Mg* + COs> +4H,0 19.70 Estimate Yoder et al. (2010)
Mas(COgz)2(OH),
Mgs(CO3)2(OH)+ 2H" = 3Mg*" + 2C0O4* 1.00 Estimate Yoder et al. (2010)
+2H,0
Mgs(CO3)4(OH),
Mgs(CO3)4(OH)o+ 2H" = 5Mg®* + 4CO5* -10.70 Estimate Yoder et al. (2010)
+2H,0
Mds(CO3)4(OH),#4(H,0)
Mgs(CO3)4(OH)#4(H,0)+ 2H" = 5Mg®* + -5.04 55°C Halla (1962a) Yanatyeva and
4C0O4% +6H,0 Rassonskaya (1961)
Mgs(CO3)4(OH)z#4(H,0)+ 10H" = 5Mgz+ + 62.80 25°C, 3 m NaClO, Gamsjager (1974) Gamsijager et al. (1973),

Schindler et al. (1970)
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Table 1. Solubility Constants of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-C0O,-H,0 (Continued)

Solubility Constant Reaction

Log K&

AHQRL
kJ

Comments

Secondary Reference

Primary Reference

Maz(CO3)s(OH)4

Mg+(COs)s(OH)4+ 4H, = 7Mg®* + 3CO5*
+4H,0

-4.00

Estimate

Yoder et al. (2010)

Cay(CO3)(OH),

Cay(CO3)(OH), + 2H" = 2Ca*" + CO*
+2H,0

11.30

Estimate

Yoder et al. (2010)

Ca3(C0s)2(0OH).

Ca3(COs)2(OH),+ 2H" = 3Ca?" + 2C0O5>
+2H,0

3.48

Estimate

Yoder et al. (2010)

Ca41003[310H )2

Cay(CO3)3(OH)+ 2H' = 4Ca®" + 3CO5>
+2H,0

-4.52

Estimate

Yoder et al. (2010)

C35!CO3 !4!OH )>

Cas(CO3)4(OH)o+ 2H" = 5Ca" + 4CO5>
+2H,0

-12.52

Estimate

Yoder et al. (2010)

Hemicarboaluminate

3Ca0.Al;0;.0.5CaC0;.0.5Ca(OH)2#10.
5(H,0) + 13H" = 4Ca®" + 2AP" + 0.5CO5> +
17.5H,0

85.728

Damidot et al. (1994)

CauAly(COs)o5(OH)13#5.5(H,0) = 4Ca™ +
2AI(OH); + 0.5C0O5* + 50H + 5.5H,0

-29.13

Solubility

Matschei et al. (2007)

6Ca0-2Al,03-CaCO;-Ca(OH)*21(H,0) +
27H" = 4AI"™ + HCO3 + 8Ca’™" + 37H,0

183.66

Blanc et al. (2010)
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Table 1. Solubility Constants of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-C0O,-H,0 (Continued)

Solubility Constant Reaction Log K® AH? Comments Secondary Reference Primary Reference
R.P,T,

kJ

Monocarboaluminate

3Ca0.Al;0;.CaC0O5¢10(H,0) + 12H" = 69.99 - Damidot et al. (1994)
4Ca?" + 2APF" + CO4% + 16H,0

Ca4A|2(003)(OH;12'5(H20) =4Ca* + -31.47 - | Solubility - Matschei et al. (2007)
2Al(OH), + CO5” + 40H + 5H,0
3Ca0-Al,05-CaC05210.68(H,0) + 13H" = 80.55 Blanc et al. (2010)

2AI"" + HCO;™ + 4Ca™ + 16.68H,0

Tricarboaluminate

3Ca0.Al,0;.3CaC05*30(H,0)+ 12H" = 54.595 - Damidot et al. (1994)
6Ca*" + 2AI*" + 3CO5” + 36H,0

CagAly(CO3)3(OH)12226(H,0) = 6Ca”" + -46.5
2Al(OH),- + 3CO3> + 40H + 26H,0

Solubility - Matschei et al. (2007)

@ At standard state (25°C, 1 atm, | = 0), unless otherwise noted.
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation
Mineral Name Formula AG?,P,,T, Secondary Reference Primary Reference
kJ
Minerals
Aragonite CaCOs; -1127.38 | Naumov et al. (1974) Backstrom (1925); Kelley and Anderson
(1935)
-1127.71 | Latimer (1952) Rossini et al. (1952)?
-1127.71 | Karpov et al. (1968) Latimer (1952)
-1127.88 + 0.84 | Robie (1962, 1966) Rossini et al. (1952), Garrels et al. (1960)
-1127.7 | Woods and Garrels (1987) Rossini et al. (1952)
-1127.7 | La lglesia and Felix (1994) Rossini et al. (1952)
-1128.05 Garrels et al. (1960)
-1126.37 | Karpov et al. (1968) Garrels et al. (1960)
-128.99% | Karpov et al. (1968) Kireev (1964)
-1128.5 | Woods and Garrels (1987) Karpov et al. (1971)
-1126.5 | La lglesia and Felix (1994) Karpov et al. (1971)
-1127.80 Parker et al. (1971)

-1127.793 + 1.464

Robie et al. (1979)

Parker et al. (1971)

-1127.79 £ 1.46

Radha and Navrotsky (2013)

Parker et al. (1971), Robie et al. (1978)

-1129.4 | Woods and Garrels (1987) Christ et al. (1974)
-1127.4 | Woods and Garrels (1987) Naumov et al. (1974)
-1127.4 | LaIglesia and Felix (1994) Naumov et al. (1974)
-1128.35 | BSC (2007) Helgeson et al. (1978)
-1129.2 | Woods and Garrels (1987) Helgeson et al. (1978)
-1129.4 | La Iglesia and Felix (1994) Helgeson et al. (1978)
-1127.8 | Woods and Garrels (1987) Robie et al. (1978)
-1127.5 | La Iglesia and Felix (1994) Robie et al. (1979)
-1127.4 £ 1.5 | Robie and Hemingway (1995) Plummer and Busenberg (1982)
-1130.1 | Woods and Garrels (1987) Robinson et al. (1982)
-1127.8 | Woods and Garrels (1987) Wagman et al. (1982)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation (Continued)

Mineral Name Formula AG?,P, . Secondary Reference Primary Reference
kJ
-1128.2 | Woods and Garrels (1987) Harvie et al. (1984)
-1128.2 | La Iglesia and Felix (1994) Harvie et al. (1984)
-1127.7+£1.0 La Iglesia and Felix (1994)
-1127.4 Robie and Hemingway (1995)
-1128.03 Holland and Powell (1998)
-1128.306 Hummel et al. (2002)
Artinite Mg,CO3(OH),#3(H20) -2562.62 + 4.60 Langmuir (1965)
-2562.62 | Karpov et al. (1968) Langmuir (1965)
-2568.66 + 0.75 Hemingway and Robie (1973)
-2568.346 + 0.750 | Robie et al. (1979) Hemingway and Robie (1973)
-2568.4 £ 0.8 | Robie and Hemingway (1995) Hemingway and Robie (1973)
-2568.35 + 0.75 | Radha and Navrotsky (2013) Hemingway and Robie (1973), Robie et al.
(1978)
-2568.62 | BSC (2007) Helgeson et al. (1978)
-2568.6 | Woods and Garrels (1987) Helgeson et al. (1978)
-2568.6 | La lglesia and Felix (1994) Helgeson et al. (1978)
-2568.3 | Woods and Garrels (1987) Robie et al. (1978)
-2568.3 | La lglesia and Felix (1994) Robie et al. (1979)
-2568.2 | La Iglesia and Felix (1994) Wagman et al. (1982)
Predicted -2568.3 £ 3.7 La Iglesia and Felix (1994)
Burkeite NagCO3(S0.). -3592.99 | BSC (2007) Harvie et al. (1984)
-3592.99 | Radha and Navrotsky (2013) Johnson et al. (1992)
Calcite CaCOs; -1128.34 | Naumov et al. (1974) Kelley and Anderson (1935); Wells and
Taylor (1937)
-1128.76 | Latimer (1952) Rossini et al. (1952)?
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation (Continued)

Mineral Name Formula AG[f),Pr,T, Secondary Reference Primary Reference
kJ
-1128.76 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
-1128.93 + 0.84 | Robie (1962, 1966) Rossini et al. (1952), Garrels et al. (1960)
-1128.76 | Karpov et al. (1968) Rossini et al. (1952)
-1128.8 | Woods and Garrels (1987) Rossini et al. (1952)
-1128.0 | La Iglesia and Felix (1994) Rossini et al. (1952); Wagman et al.
(1982); Robie et al. (1979);
Sangarmeshwar and Barnes (1983)
calculated -1128.63 Zhuk (1954)
-1128.63 | Karpov et al. (1968) Zhuk (1954)
-1128.63 | Karapet'yants and Zhuk (1954)
Karapet'yants (1970)
-1128.34 Garrels et al. (1960)
-1129.09 | Karpov et al. (1968) Garrels et al. (1960)
-1128.93 + 0.84 | Karpov et al. (1968) Robie (1962)
-1127.88 + 0.84 | Karpov et al. (1968) Robie (1962)

-1128.84

Parker et al. (1971)

-1128.842 + 1.381

Robie et al. (1979)

Parker et al. (1971)

-1128.84 +1.38

Radha and Navrotsky (2013)

Parker et al. (1971), Robie et al. (1978)

-1130.3 | Woods and Garrels (1987) Christ et al. (1974)
-1130.3 | La Iglesia and Felix (1994) Christ et al. (1974)
-1128.3 | Woods and Garrels (1987) Naumov et al. (1974)
-1128.3 | La lglesia and Felix (1994) Naumov et al. (1974)

-1129.18 | BSC (2007) Helgeson et al. (1978)
-1130.1 | Woods and Garrels (1987) Helgeson et al. (1978)
-1130.1 | La lglesia and Felix (1994) Helgeson et al. (1978)
-1128.8 | Woods and Garrels (1987) Robie et al. (1978)

-1128.5+ 1.4 | Robie and Hemingway (1995) Plummer and Busenberg (1982), Ko et al.

(1982)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation (Continued)

Mineral Name Formula AG?,P, . Secondary Reference Primary Reference
kJ
-1130.6 | Woods and Garrels (1987) Robinson et al. (1982)
-1130.8 | La Iglesia and Felix (1994) Robinson et al. (1982)
-1128.8 | Woods and Garrels (1987) Wagman et al. (1982)
-1128.79 | Meng et al. (1995) Wagman et al. (1982)
-1128.8 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
-1129.3 | Woods and Garrels (1987) Harvie et al. (1984)
-1129.3 | La Iglesia and Felix (1994) Harvie et al. (1984)
Holland and Powell (1990)
-1234.62 | Stern (2000) Barin (1993)
predicted -1128.0+ 0.8 La Iglesia and Felix (1994)
-1128.5 Robie and Hemingway (1995)
-1128.81 Holland and Powell (1998)
-1129.127 Hummel et al. (2002)
Dawsonite NaAICO3(OH), -1785.990 + 2.950 | Robie et al. (1979) Ferrante et al. (1976)
-1786.0 £ 3.0 | Robie and Hemingway (1995) Ferrante et al. (1976)
-1786 + 4 | Bénézeth et al. (2007) Ferrante et al. (1976)
-1785.99 + 2.95 | Radha and Navrotsky (2013) Ferrante et al. (1976), Robie et al. (1978)
-1786.0 | Woods and Garrels (1987) Robie et al. (1978)
-1785.99 | BSC (2007) Robie et al. (1979)
-1786.0 Robie and Hemingway (1995)
-1782 + 2 Bénézeth et al. (2007)
Dolomite CaMg(COs3), -2169.3 | Woods and Garrels (1987) Rossini et al. (1952)
-2169.3 | La lglesia and Felix (1994) Rossini et al. (1952)
-2169.3 | Sherman and Barak (2000) Rossini et al. (1952)
-2175.68 | Karapet'yants and Karapet'yants (1955)
Karapet'yants (1970)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation (Continued)

Mineral Name Formula AGO Secondary Reference Primary Reference
f.P.T,
kJ
-2170.14 + 3.77 | Robie (1962) Robie (1957)
-2175.68 Garrels et al. (1960)
-2175.68 | Karpov et al. (1968) Garrels et al. (1960)

-2177.8

Woods and Garrels (1987)

Garrels et al. (1960)

-2170.14 + 3.77

Karpov et al. (1968)

Robie (1962)

-2170.14 + 3.77

Robie (1966)

Stout and Robie (1963)

-11.30%? | Karpov et al. (1968) Stout and Robie (1963)
-7.20 + 1.17% | Karpov et al. (1968) Halla (1965)

-2148.48 | Karpov et al. (1968) Halla (1965)

-2149.32 | Karpov et al. (1968) (reference 87a not listed)

-2151.91 | Naumov et al. (1974) Stout and Robie (1963)
-2170.0 | Woods and Garrels (1987) Karpov et al. (1971)
-2170.0 | Sherman and Barak (2000) Karpov et al. (1971)
-2151.9 | Woods and Garrels (1987) Naumov et al. (1974)
-2151.9 | Sherman and Barak (2000) Naumov et al. (1974)

-2161.672 + 1.670 | Robie et al. (1979) Robie and Hemingway (1977)

-2166.31 | BSC (2007) Helgeson et al. (1978)
-2167.2 | Woods and Garrels (1987) Helgeson et al. (1978)
-2167.2 | Sherman and Barak (2000) Helgeson et al. (1978)
-2161.7 | Woods and Garrels (1987) Robie et al. (1978)
-2151.9 | La lglesia and Felix (1994) Naumov et al. (1974)
-2161.7 | LaIglesia and Felix (1994) Robie et al. (1979)
-2167.2 | La Iglesia and Felix (1994) Helgeson et al. (1978)
-2163.4 | Woods and Garrels (1987) Wagman et al. (1982)
-2163.4 | La Iglesia and Felix (1994) Wagman et al. (1982)
-2163.4 | Sherman and Barak (2000) Wagman et al. (1982)
-2162.4 | Sherman and Barak (2000) Chernosky and Berman (1989)

-2168.59 + 2.07

Tareen et al. (1992)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of
Formation (Continued)

Mineral Name Formula AGO Secondary Reference Primary Reference
f.P.T;
kJ
-2163.6 | Sherman and Barak (2000) Barin (1993)
predicted -2157.0+1.4 La Iglesia and Felix (1994)

-2161.3 £ 1.7 | Robie and Hemingway (1995) Hemingway and Robie (1994)

-2161.7 £ 1.7 | Radha and Navrotsky (2013) Hemingway and Robie (1994)

-2161.3 Robie and Hemingway (1995)
-2161.51 Holland and Powell (1998)
-2147.82 Rock et al. (2001)
-2147.82 + 2.20 | Radha and Navrotsky (2013) Rock et al. (2001)
-2161.565 Hummel et al. (2002)
(Gaylussite) CaNay(COs3),*5(H20) -3371.09 Alekseev, and Barinova (1981)
Gaylussite N/A | BSC (2007) Harvie et al. (1984)

—3372.61 | Radha and Navrotsky (2013) Johnson et al. (1992)

Huntite CaMg3(COs)4 -4216.22 Garrels et al. (1960)
-4216.22 + 4.18 | Robie (1962, 1966) Garrels et al. (1960)
-4216.22 | Karpov et al. (1968) Garrels et al. (1960)
-4216.2 | Woods and Garrels (1987) Garrels et al. (1960)
-4216.2 | La Iglesia and Felix (1994) Garrels et al. (1960)
-4216.2 | Walling et al. (1995) Garrels et al. (1960)
-4203.425 + 1.630 | Robie et al. (1979) Hemingway and Robie (1972),

-4203.1 £ 1.6 | Robie and Hemingway (1995) Hemingway and Robie (1972),
Konigsberger and Gamsjager (1987)

-4203.69 + 1.63 Hemingway and Robie (1973)
-4203.4 £ 1.6 | Walling et al. (1995) Hemingway and Robie (1973)
-4203.42 + 1.63 | Radha and Navrotsky (2013) Hemingway and Robie (1973), Robie et al.
(1978)
-4203.707 | Walling et al. (1995) Schott and Dandurand (1975)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation (Continued)

Mineral Name Formula AG?,P, . Secondary Reference Primary Reference
kJ
-4203.707 | Walling et al. (1995) Helgeson et al. (1978)
-4203.71 | BSC (2007) Helgeson et al. (1978)
-4203.4 | Woods and Garrels (1987) Robie et al. (1978)
-4203.4 | La Iglesia and Felix (1994) Robie et al. (1979)
-4203.7 | La Iglesia and Felix (1994) Wagman et al. (1982)
-4180 + 9.6 | Walling et al. (1995) Kénigsberger and Gamsjager (1987)
-4188.63 + 1.0 | Walling et al. (1995) Gamsjager (1989)
Predicted -4215.0 £ 3.2 La Iglesia and Felix (1994)
-4195.6 + 6.4 Walling et al. (1995)
Hydromagnesite (1) 3Mg(CO3).Mg(OH)2*3(H,0) -4637.13 Garrels et al. (1960)
-4637.13 | Karpov et al. (1968) Garrels et al. (1960), (reference 359a not
listed)
-4637.13 | Robie and Hemingway (1973) Garrels et al. (1960)
-4637.1 | Woods and Garrels (1987) Garrels et al. (1960)

3Mg(COs).Mg(OH)*3(H20)

-4602.82 + 8.37

Langmuir (1965)

-4602.82 + 8.37

Karpov et al. (1968)

Langmuir (1965)

-4602.82 + 8.37

Robie and Hemingway (1973)

Langmuir (1965)

-4603.66

Parker et al. (1971)

-4603.3

Woods and Garrels (1987)

Wagman et al. (1982)

Hydromagnesite (II)

Mgs(CO3)4(OH)2*4(H20)

-5864.75 + 1.05

Robie and Hemingway (1973)

-5864.166 + 1.090

Robie et al. (1979)

Robie and Hemingway (1973)

-5864.2 £ 1.1

Robie and Hemingway (1995)

Robie and Hemingway (1973)

-5864.17 + 1.09

Radha and Navrotsky (2013)

Robie and Hemingway (1973), Robie et al.
(1978)

-5864.66

BSC (2007)

Helgeson et al. (1978)

-5864.6

Woods and Garrels (1987)

Helgeson et al. (1978)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation (Continued)

Mineral Name Formula AGO Secondary Reference Primary Reference
f.P.T,
kJ
-5864.2 | Woods and Garrels (1987) Robie et al. (1978)
Hydrotalcite-CO3 Mg4Al(OH)12(COs3) *2(H,0) -6342.97 | Lothenbach and Winnefeld Johnson and Glasser (2003)

(2006)

M@o.74Al0.26(OH)2(CO3)0.13°0.39(H-0)

-1043.08 + 2.07

Allada et al. (2005a)

MgsAl(OH)g(CO3)os*n(H20), n =0 -3773.3+51.4 Rozov et al. (2010)

MgsAl(OH)g(CO3)os*n(H20), n =0 -3294.5 £ 95.8 Rozov et al. (2010)

MgaAl(OH)12(CO3) *2(H-0) -6295.37 Blanc et al. (2010)
3R1 polytype M0zzAlys(OH)2(COs)1604/6(H-0) -59.83% Costa et al. (2010)
calculated

MgsAl1.010(CO3) -3773.43 + 124.15 Rozov et al. (2010)

0.472(0H)g.114°2.53(H20)

MgzAl1 621(CO3) -3818.71 + 118.97 Rozov et al. (2010)

0.666(0OH)7.730°2.46(H.0)

Hydrotalcite-CO; (-Pyroaurite)

Mg3Alo s96F€0.097(CO3)0.336(OH)s.305°2.

51(H,0)

-3671.87 £ 112.49

Rozov et al. (2010)

MgzAlo 827F€0.102(CO3)0.536
(OH)7.987'2.62(H20)

-3690.29 + 112.49

Rozov et al. (2010)

MgsAlo gos —3701.77  111.44 Rozov et al. (2010)
Fe0.205(CO3)0.537(OH)7.946*2.6 7(H,0)
MgsAlg.695 -3623.89 + 104.99 Rozov et al. (2010)

F€0.304(CO3)0.481(OH)g.034°2.52(H,0)

Mg3Alo.625 F€0.394(CO3)o 553
OH)7.95°2.50(H20)

—-3604.44 + 103.58

Rozov et al. (2010)

MgsAlg .02 —3499.21 + 95.95 Rozov et al. (2010)
F€0.496(CO3)o0.361(OH)s.276°2.45(H-0)
MgsAlg.a1s —-3513.97 £ 95.17 Rozov et al. (2010)

Fe0.619(CO3)0.531(OH)s.039°2.47(H20)

Mg3Alo.299F€0.703(CO3)0.248(0OH)s.500°2.

55(H,0)

—-3387.14 + 85.67

Rozov et al. (2010)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of
Formation (Continued)

Mineral Name Formula AG? Secondary Reference Primary Reference
f,P.T,
kJ
Mg3A|0,207Fe 0,339((:03)0,491 -3418.14 + 86.37 Rozov et al. (2010)
OH)8-157'2-55(H20)
MgsAlg 10sFe -3323.14 £ 71.95 Rozov et al. (2010)

0.902(CO3)0.342(OH)s.344°2.64(H20)

MgsFe 1.085(CO3)0.343(OH)g.570°2.15(H0)

-3321.52 £ 78.70

Rozov et al. (2010)

Ikaite CaCO3+6(H,0) -2540.9 £ 5.0 | Robie and Hemingway (1995) Marland (1975)
-2540.9 | Radha and Navrotsky (2013) Robie and Hemingway (1995)
Kalicinite KHCO; -860.65 | Karpov et al. (1968) Latimer (1952)
-860.65 | Karapet'yants and Latimer (1952)
Karapet'yants (1970)
-860.65 | Latimer (1952) Rossini et al. (1952)?
-866.76 | Naumov et al. (1974) Rossini et al. (1952)
-876.34 | Karapet'yants and Karapet'yants (1955)
Karapet'yants (1970)
-867.34 | Karpov et al. (1968) Karapet'yants and Karapet'yants (1961)
-863.5 | Meng et al. (1995) Wagman et al. (1982)
-867.783 | BSC (2007) Harvie et al. (1984)
Lansfordite MgCO3+5(H,0) -2200.24 £ 2.51 Langmuir (1965)

-2200.24 + 2.51

Karpov et al. (1968)

Langmuir (1965)

-2200.99 | Mel'nik (1972) Langmuir (1965)?
-2200.24 | Naumov et al. (1974) Langmuir (1965)
+16.53 | Karapet'yants and Halla (1962)
Karapet'yants (1970)
-2199.53 Parker et al. (1971)
-2200.99 Mel'nik (1972) Recommended
-2201.0 | Woods and Garrels (1987) Mel'nik (1972)
-2201.0 | LaIglesia and Felix (1994) Mel'nik (1972)
-2200.2 | Woods and Garrels (1987) Naumov et al. (1974)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of
Formation (Continued)

Mineral Name Formula AG?,P,,T, Secondary Reference Primary Reference
kJ
-2200.2 | La lglesia and Felix (1994) Helgeson et al. (1978)
-2199.2 | BSC (2007) Wagman et al. (1982)
-2199.2 | Woods and Garrels (1987) Wagman et al. (1982)
-2199.2 | La Iglesia and Felix (1994) Wagman et al. (1982)
-2199.2 | Radha and Navrotsky (2013) Woods and Garrels (1987)
predicted -2197.0+£5.1 La Iglesia and Felix (1994)
Magnesite MgCOs3 -1029.26 | Latimer Rossini et al. (1952)?
-1029.26 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
-1029.26 | Karpov et al. (1968) Rossini et al. (1952)
-1029.0 | Woods and Garrels (1987) Rossini et al. (1952)
-1029.0 | La lglesia and Felix (1994) Rossini et al. (1952)
-1029.3 | Saldi (2009) Rossini et al. (1952)
calculated -1012.65 Zhuk (1954)
-1012.65 | Karpov et al. (1968) Zhuk (1954)
-1012.65 | Karapet'yants and Zhuk (1954)

Karapet'yants (1970)

-1029.59 + 1.88

Robie (1962)

Robie (1957)

-1029.59 + 1.88

Karpov et al. (1968)

Robie (1962)

-1029.59 + 1.88

Robie (1966)

Stout and Robie (1963)

-1012.19 + 2.30

Langmuir (1965)

-1012.19 + 2.30

Karpov et al. (1968)

Langmuir (1965)

-1012.28 | Naumov et al. (1974) Langmuir (1965)

-1012.2 £ 2.3 | Saldi (2009) Langmuir (1965)
-65.96 + 1.13% Robie (1965)
-58.84% | Karpov et al. (1968) Robie (1965)
-1029.480 + 1.381 | Robie et al. (1979) Robie (1965)
-1029.5 £ 1.4 | Robie and Hemingway (1995) Robie (1965)
-1029.5 + 1.4 | Saldi (2009) Robie (1965)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of
Formation (Continued)

Mineral Name Formula AG?,pr . Secondary Reference Primary Reference
kJ
-1029.48 + 1.38 | Radha and Navrotsky (2013) Robie (1965)
-1029.360 | Karapet'yants and Stull and Prophet (1965)
Karapet'yants (1970)
-1031.90 | Karpov et al. (1968) Gerasimov et al. (1966)
-1029.7 £ 1.4 | Saldi (2009) Robie and Waldbaum (1968)
-1030.52 | Mel'nik (1972) Horn (1969), Christ and Hostetler (1970)
-1029.6 | Woods and Garrels (1987) Karpov et al. (1971)
1029.6 | La lglesia and Felix (1994) Karpov et al. (1971)
-1012.11 Parker et al. (1971)
estimated value -66.02% Mel'nik (1972)
estimated value -48.41W Mel'nik (1972)
estimated value -1029.72 Mel'nik (1972)
estimated value -1012.11 Mel'nik (1972)
recommended value -66.02" Mel'nik (1972)
recommended value -1029.72 Mel'nik (1972)
-1029.7 | Woods and Garrels (1987) Mel'nik (1972)
-1029.7 | La lglesia and Felix (1994) Mel'nik (1972)
-1012.3 | Woods and Garrels (1987) Naumov et al. (1974)
-1012.5 | Saldi (2009) Dandurand and Schott (1977)
Saldi (2009) Hemingway et al. (1977)
-1027.83 | BSC (2007) Helgeson et al. (1978)
-1027.8 | Woods and Garrels (1987) Helgeson et al. (1978)
-1027.8 | Saldi (2009) Helgeson et al. (1978)
-1027.8 | La Iglesia and Felix (1994) Helgeson et al. (1978)
-1029.5 | Woods and Garrels (1987) Robie et al. (1978)
-1029.48 | Saldi (2009) Robie et al. (1978)
-1029.5 | La Iglesia and Felix (1994) Robie et al. (1979)
-1026.6 | Saldi (2009) Sadig and Lindsay (1979)
-1012.1 | Woods and Garrels (1987) Wagman et al. (1982)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of
Formation (Continued)

Mineral Name Formula AG?,pr . Secondary Reference Primary Reference
kJ
-1012.1 | Meng et al. (1995) Wagman et al. (1982)
-1012.1 | Saldi (2009) Wagman et al. (1982)
-1027.3 | Woods and Garrels (1987) Harvie et al. (1984)
-1027.3 | La Iglesia and Felix (1994) Harvie et al. (1984)
-1026.0 £ 2.1 | Saldi (2009) Kittrick and Peryea (1986)
-1029.875 | Saldi (2009) Berman (1988)
-1030.709 | Saldi (2009) Chernosky and Berman (1989)
Holland and Powell (1990)
Saldi (2009) Holland and Powell (1990)
-1027.436 | Saldi (2009) Trommsdorff and Connolly (1990)
-1115.39 | Stern (2000) Knacke et al. (1991)
predicted -1029.0+ 1.0 La Iglesia and Felix (1994)
Saldi (2009) Koziol and Newton (1995)
-1029.5 Robie and Hemingway (1995)
-1029.5 £ 1.4 | Saldi (2009) Robie and Hemingway (1995)
+1027.74 Holland and Powell (1998)
-1030.5 £ 0.4 | Saldi (2009) Konigsberger et al. (1999)
-1007.47 Rock et al. (2001)
-1030.6 Hummel et al. (2002)
-1027.1 £ 2.0 Saldi (2009)
Meionite CayAlgSis024C0;3 -13142.7 | Woods and Garrels (1987) Robinson et al. (1982)
Al/Si ordered -13131.8 + 6.2 | Robie and Hemingway (1995) Moecher and Essene (1990)
Al/Si ordered -13131.8 Robie and Hemingway (1995)
-13131.8 | Radha and Navrotsky (2013) Robie and Hemingway (1995)

Monohydrocalcite

CaCO3e¢ (H20)

-1361.600 + 1.130

Robie et al. (1979)

Hull and Turnbull (1973)

-1361.6 £1.1

Robie and Hemingway (1995)

Hull and Turnbull (1973)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation (Continued)

Mineral Name

Formula

0
AG; BT
kJ

Secondary Reference

Primary Reference

-1361.600 = 1.13

Radha and Navrotsky (2013)

Hull and Turnbull (1973), Robie et al.
(1978)

-1361.6 | Woods and Garrels (1987) Robie et al. (1978)
-1361.6 | BSC (2007) Robie et al. (1979)
Nahcolite NaHCO3 -848.89 | Karapet'yants and Latimer (1952)
Karapet'yants (1970)

-851.86 | Latimer (1952) Rossini et al. (1952)?

-851.86 | Karpov et al. (1968) Rossini et al. (1952)
-851.9 | Woods and Garrels (1987) Rossini et al. (1952)

-815.88 | Naumov et al. (1974) Rupert et al. (1965)

-815.9 | Woods and Garrels (1987) Naumov et al. (1974)
-851.2 £ 0.6 | Robie and Hemingway (1995) Berg and Vanderzee (1978)
-851.0 | Woods and Garrels (1987) Wagman et al. (1982)
-851.0 | Meng et al. (1995) Wagman et al. (1982)
-849.461 | BSC (2007) Barin and Platski (1995); Binnewies and

Milke (1999)
Natrite Na,COs3 -1045.830 Saegusa (1950a)
-1045.83 | Karapet'yants and Saegusa (1950a)
Karapet'yants (1970)
-1050.64 | Karpov et al. (1968) Bauer and Dorland (1952)
-1050.54 | Karapet'yants and Bauer and Dorland (1952)
Karapet'yants (1970)
-1051.86 | Karapet'yants and Latimer (1952)
Karapet'yants (1970)
-1047.67 | Latimer (1952) Rossini et al. (1952)?
-1047.67 | Karpov et al. (1968) Rossini et al. (1952)
-1047.7 | Woods and Garrels (1987) Rossini et al. (1952)
-1045.83 | Karpov et al. (1968) Karapet'yants and Karapet'yants (1961)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of
Formation (Continued)

Mineral Name Formula AG?,pr . Secondary Reference Primary Reference
kJ
-1047.76 | Naumov et al. (1974) Rupert et al. (1965)
-1047.510 | Karapet'yants and Stull and Prophet (1965)
Karapet'yants (1970)
-1047.8 | Woods and Garrels (1987) Naumov et al. (1974)
-1045.3 £ 0.4 | Robie and Hemingway (1995) Berg and Vanderzee (1978)
-1044.4 | Woods and Garrels (1987) Wagman et al. (1982)
-1044.44 | Meng et al. (1995) Wagman et al. (1982)
-1172.15 | Stern (2000) Knacke et al. (1991)
-1046.874 | BSC (2007) Barin and Platski (1995), Binnewies and
Milke (1999)
-1049.5 £ 0.4 | Radha and Navrotsky (2013) Kiseleva et al. (1996), Robie et al. (1978)
Natron Na,CO3¢10(H;0) -3428.60 Saegusa (1950a)
-3428.604 | Karapet'yants and Saegusa (1950a)
Karapet'yants (1970)
-3429.0 | Woods and Garrels (1987) Saegusa (1950a)
-3424.31 | Karapet'yants and Bauer and Dorland (1952)
Karapet'yants (1970)
-3425.02 | Karapet'yants and Karapet'yants (1957)
Karapet'yants (1970)
-3424.31 | Karpov et al. (1971) Bauer and Dorland (1952)
-3428.60 | Karpov et al. (1971) Karapet'yants and Karapet'yants (1961)
-3425.02 | Karpov et al. (1971) Karapet'yants (1955)
-3431.51 + 1.3 | Naumov et al. (1974) Waterfield et al. (1968)
-3427.66 | BSC (2007) Wagman et al. (1982)
-3431.5 | Woods and Garrels (1987) Naumov et al. (1974)
-3427.7 | Woods and Garrels (1987) Wagman et al. (1982)
-3427.66 | Radha and Navrotsky (2013) Johnson et al. (1992)
Alkali and Alkali Earth Metals 401




rreeees |1

BERKELEY LAB

Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation (Continued)

Mineral Name Formula AG?,pr . Secondary Reference Primary Reference
kJ
Nesquehonite MgCO3+3(H.0) +15.98 | Karapet'yants and Halla (1962)
Karapet'yants (1970)
+14.64 | Karapet'yants and Halla (1962a)
Karapet'yants (1970)
-1726.57 £ 2.09 Langmuir (1965)
-1726.57 + 2.09 | Karpov et al. (1968) Langmuir (1965)
-1726.61 | Mel'nik (1972) Langmuir (1965)?
-1726.61 | Naumov et al. (1974) Langmuir (1965)
-1726.32 Parker et al. (1971)
recommended -1726.61 Mel'nik (1972)
-1726.6 | Woods and Garrels (1987) Mel'nik (1972)
-1723.98 + 0.50 Robie and Hemingway (1973)
-1723.746 + 0.500 | Robie et al. (1979) Robie and Hemingway (1973)
-1723.8 £ 0.3 | Robie and Hemingway (1995) Robie and Hemingway (1973)
-1723.75 + 0.50 | Radha and Navrotsky (2013) Robie and Hemingway (1973), Robie et al.
(1978)
-1726.6 | Woods and Garrels (1987) Naumov et al. (1974)
-1726.6 | La Iglesia and Felix (1994) Naumov et al. (1974); Mel'nik (1972)
-1723.95 | BSC (2007) Helgeson et al. (1978)
-1724.0 | Woods and Garrels (1987) Helgeson et al. (1978)
-1723.7 | Woods and Garrels (1987) Robie et al. (1978)
-1723.7 | Lalglesia and Felix (1994) Robie et al. (1979)
-1724.0 | La lglesia and Felix (1994) Helgeson et al. (1978)
-1726.1 | Woods and Garrels (1987) Wagman et al. (1982)
-1726.1 | La lglesia and Felix (1994) Wagman et al. (1982)
predicted -1729.8 +3.1 La Iglesia and Felix (1994)
(Nyerereite) Na,Ca(COs3); -2180.16 Alekseev and Barinova (1981)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of
Formation (Continued)

Mineral Name Formula AG?,pr . Secondary Reference Primary Reference
kJ
Pirssonite Na,Ca(CO3),*2(H,0) -2648.85 Alekseev and Barinova (1981)
-635.794 | BSC (2007) Harvie et al. (1984)
-635.794 | Radha and Navrotsky (2013) Johnson et al. (1992)
Spurrite CasSi;0sCO; -5568.8 | Woods and Garrels (1987) Karpov et al. (1971)
-5525.6 £ 5.9 Robie and Hemingway (1995)
Strontianite SrCOs3 -1137.63 | Karpov et al. (1968) Latimer (1952)
-1137.63 | Latimer (1952) Rossini et al. (1952)?
-1137.63 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
-1137.6 | Woods and Garrels (1987) Rossini et al. (1952)
calculated -1138.13 Zhuk (1954)
-1138.13 | Karpov et al. (1968) Zhuk (1954)
-1138.13 | Karapet'yants and Zhuk (1954)

Karapet'yants (1970)

-1138.05 + 0.84

Robie (1962, 1966)

Garrels et al. (1960), Lander (1951)

-1138.05 + 0.84

Karpov et al. (1968)

Robie (1962)

-1152.32

Naumov et al. (1974)

Adami and Conway (1966)

-1137.640 + 1.460

Robie et al. (1979)

Adami and Conway (1966)

-1153.04 + 2.09

Radha and Navrotsky (2013)

Adami and Conway (1966)

-1140.14 Parker et al. (1971)
-1152.3 | Woods and Garrels (1987) Naumov et al. (1974)
-1248.79 | Stern (2000) Barin et al. (1977)
-1152.6 | Woods and Garrels (1987) Helgeson et al. (1978)
-1137.6 | Woods and Garrels (1987) Robie et al. (1978)
-1140.1 | Woods and Garrels (1987) Wagman et al. (1982)
-1144.73 £ 1.0 Busenberg et al. (1984)
-1137.6 £ 1.5 | Robie and Hemingway (1995) Busenberg et al. (1984)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation (Continued)

Mineral Name Formula AG?,P,,T, Secondary Reference Primary Reference
kJ
-1137.6 Robie and Hemingway (1995)
Thaumasite CaSiO;:CaS0,4-CaCOs¢15(H,0) -7559.67 | - Blanc et al. (2010)
Thermonatrite Na,CO3¢(H.0) -1286.55 Saegusa (1950a)
-1286.551 | Karapet'yants and Saegusa (1950a)
Karapet'yants (1970)
-1286.6 | Woods and Garrels (1987) Saegusa (1950a)
-1291.35 | Karpov et al. (1968) Bauer and Dorland (1952)
-1291.35 | Karapet'yants and Bauer and Dorland (1952)
Karapet'yants (1970)
-1290.76 | Karpov et al. (1968) Karapet'yants (1955)
-1290.76 | Karapet'yants and Karapet'yants (1957)
Karapet'yants (1970)
-1286.55 | Karpov et al. (1968) Karapet'yants and Karapet'yants (1961)
-1288.71 | Naumov et al. (1974) Waterfield et al. (1968)
-1288.7 | Woods and Garrels (1987) Naumov et al. (1974)
-1288.7 | La lglesia and Felix (1994) Naumov et al. (1974)
-1286.1 £ 0.5 | Robie and Hemingway (1995) Berg and Vanderzee (1978)
-1285.3 | Woods and Garrels (1987) Wagman et al. (1982)
-1285.3 | La Iglesia and Felix (1994) Wagman et al. (1982)
-1285.31 | BSC (2007) Wagman et al. (1982)
-1286.0 | Woods and Garrels (1987) Harvie et al. (1984)
predicted -1285.7+1.5 La Iglesia and Felix (1994)
-1286.1 | Radha and Navrotsky (2013) Robie and Hemingway (1995)
Tilleyite CasSi,07(COs), -6009.8 | Woods and Garrels (1987) Karpov et al. (1971)
-6013.5 £ 6.0 | Robie and Hemingway (1995) Treiman and Essene (1983); Holland and
Powell (1990)
-6013.5 Robie and Hemingway (1995)

Alkali and Alkali Earth Metals

404




rreeees |'1

BERKELEY LAB

Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation (Continued)

Mineral Name Formula AG?,P,,T, Secondary Reference Primary Reference
kJ
Trona Na3(CO3)(HCO3)*2(H20) -2380.7 Rupert et al. (1965)
-2383.4 | Woods and Garrels (1987) Wagman et al. (1982)
-2380.5 | Woods and Garrels (1987) Harvie et al. (1984)
-2386.6 | Woods and Garrels (1987) Garrels and Christ (1985)
Vaterite CaCOs; -1125.540 + 1.500 | Robie et al. (1979) Turnbull (1973)
-1125.540 £ 1.50 | Radha and Navrotsky (2013) Turnbull (1973)
-1125.5+ 1.5 | Robie and Hemingway (1995) Plummer and Busenberg (1982); Turnbull
(1973)
-1125.5 | Woods and Garrels (1987) Robie et al. (1978)
Wegscheiderite Nas(HCO3)sCO3 Robie and Hemingway (1995) Vanderzee and Wigg (1981)
Synthetic Phases
Na,CO3¢7(H,0) Na,COgz7(H,0) -2714.97 Saegusa (1950a)
-2714.972 | Karapet'yants and Saegusa (1950a)
Karapet'yants (1970)
-2715.9 | Woods and Garrels (1987) Saegusa (1950a)
-2710.77 | Karpov et al. (1968) Bauer and Dorland (1952)
-2710.77 | Karapet'yants and Bauer and Dorland (1952)
Karapet'yants (1970)
-2716.67 | Karpov et al. (1968) Karapet'yants (1955)
-2716.67 | Karapet'yants and Karapet'yants (1957)
Karapet'yants (1970)
-2714.97 | Karpov et al. (1968) Karapet'yants and Karapet'yants (1961)
-2714.2 | Woods and Garrels (1987) Wagman et al. (1982)
-2714.2 | BSC (2007) Wagman et al. (1982)
Trona-K K2NaH(COs)2*2(H-0) -575.74 | BSC (2007) Harvie et al. (1984)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of
Formation (Continued)

Mineral Name Formula AG?,P, . Secondary Reference Primary Reference
kJ
K2CO3 KoCOs3 -1052.09 Saegusa (1950b)
-1069.01 | Latimer (1952) Rossini et al. (1952)?
-1069.01 | Karpov et al. (1968) Latimer (1952)
-1092.86 | Karapet'yants and Latimer (1952)
Karapet'yants (1970)
-1069.01 | Karapet'yants and Latimer (1952)
Karapet'yants (1970)
-1069.0 | Woods and Garrels (1987) Latimer (1952)
-1062.74 | Karpov et al. (1968) Karapet'yants (1954b)
-347.27% | Karpov et al. (1968) Kireev (1964)
-1042.619 | Karapet'yants and Stull and Prophet (1965)
Karapet'yants (1970)
-1060.021 | Karapet'yants and Stull and Prophet (1965)
Karapet'yants (1970)
-1063.99 | Naumov et al. (1974) Stull and Prophet (1965), et seq. (-1968)
-1060.64 | Karpov et al. (1968) Matveev et al. (1966)
-1060.6 | Woods and Garrels (1987) Karpov et al. (1968)
-1064.0 | Woods and Garrels (1987) Naumov et al. (1974)
-1063.5 | Woods and Garrels (1987) Wagman et al. (1982)
-1063.5 | Meng et al. (1995) Wagman et al. (1982)
-1060.6 | Woods and Garrels (1987) Babushkin et al. (1985)
-1196.55 | Stern (2000) Knacke et al. (1991)
K2CO301.5(H,0) K2COge1.5(H,0) -1431.27 | BSC (2007) Harvie et al. (1984)
KgH4(CO3)6°3(H20) KgH4(CO3)s*3(H20) -1514.032 | BSC (2007) Harvie et al. (1984)
KNaCO3+6(H20) KNaCO3+6(H;0) -596.513 | BSC (2007) Harvie et al. (1984)
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Table 2a. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0: Gibbs Free Energies of

Formation (Continued)

Mineral Name Formula AGO Secondary Reference Primary Reference
f.P.T,
kJ
MgCO3+2(H.0) MgCO3+2(H,0) +0.29 | Karapet'yants and Halla (1962)
Karapet'yants (1970)
Hemicarboaluminate 3Ca0.Al;03.0.5CaC0;.0.5Ca(OH),+10 N/A | BSC (2007) Damidot et al. (1994)
5(H:0)
Hemicarboaluminate CayAlx(CO3)0.5(0OH)13¢5.5(H,0) -7336.0 | - Matschei et al. (2007)
Hemicarboaluminate 6Ca0-2Al,03:CaC0O;3-Ca(OH),21(H,0) -14685.62 | - Blanc et al. (2010)
Monocarboaluminate 3Ca0.Al;0;.CaCO310(H,0) N/A | BSC (2007) Damidot et al. (1994)
Monocarboaluminate Ca,Al;(CO3)(OH)12¢5(H20) -7337.5 | - Matschei et al. (2007)
Monocarboaluminate 3Ca0-Al,03-CaC03+10.68(H,0) -7269.02 | - Blanc et al. (2010)
Tricarboaluminate CapAlx(CO3)3(0OH)12026(H,0) -14565.6 | - Matschei et al. (2007)
SrH(COs3), SrH(COs;), -1764.18 | Karpov et al. (1968) Zhuk (1954)
-1764.18 | Karapet'yants and Zhuk (1954)

Karapet'yants (1970)

@ Formation from the oxides

@ Formation with respect to CaCOj3 plus MgCOs
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-Ca0O-SrO-CO,-H,O: Enthalpies of Formation

Mineral Name Formula AH ?,P, . Secondary Reference Primary Reference
kJ
Minerals
Ankerite -1971.5 £ 1.48 | Holland and Powell (1990)
Aragonite CaCOs -1207.04 | Karpov et al. (1968) Latimer (1952)
-1207.04 | Latimer (1952) Rossini et al. (1952)?
-1205.55 + 1.05 | Robie (1962, 1966) Rossini et al. (1952), Garrels et al. (1960)
-1207.0 | Woods and Garrels (1987) Rossini et al. (1952)
-1207.0 | La Iglesia and Felix (1994) Rossini et al. (1952), Naumov et al. (1974)
-1205.55 + 1.05 | Karpov et al. (1968) Robie (1962)
-179.49% | Karpov et al. (1968) Kireev (1964)
-1207.00 £ 0.5 | Naumov et al. (1974) Backstrom (1925); Kelley and Anderson
(1935)
-1207.13 Parker et al. (1971)

-1207.430 + 1.423

Robie et al. (1979)

Parker et al. (1971)

-1207.43 £ 1.42

Radha and Navrotsky (2013)

Parker et al. (1971), Robie et al. (1978)

-1207.0 | Woods and Garrels (1987) Naumov et al. (1974)
-1208.0 | Woods and Garrels (1987) Helgeson et al. (1978)
-1208.0 | La Iglesia and Felix (1994) Helgeson et al. (1978)
-1207.4 | Woods and Garrels (1987) Robie et al. (1978)
-1207.4 | La Iglesia and Felix (1994) Robie et al. (1979)

-1207.4 £ 1.4 | Robie and Hemingway (1995) Plummer and Busenberg (1982)
-1209.7 | La Iglesia and Felix (1994) Robinson et al. (1982)
-1209.7 | Woods and Garrels (1987) Robinson et al. (1982),
-1207.1 | Woods and Garrels (1987) Wagman et al. (1982)
-1207.1 | La lglesia and Felix (1994) Wagman et al. (1982)

-1207.21 BSC (2007)
-1208.16 + 1.11 Holland and Powell (1990)
-1207.0+£1.0 La Iglesia and Felix (1994)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH? Secondary Reference Primary Reference
f.P.T,
kJ
-1207.4 Robie and Hemingway (1995)
-1207.65 £ 0.52 Holland and Powell (1998)
-1208.200 Matas et al. (2000)
-1207.48 Hummel et al. (2002)
Artinite Na,(OH),CO3¢3(H,0) -2920.61 £ 0.71 Hemingway and Robie (1973)
-2920.610 + 0.710 | Robie et al. (1979) Hemingway and Robie (1973)
-2920.6 £ 0.7 | Robie and Hemingway (1995) Hemingway and Robie (1973)
-2920.61 + 0.71 | Radha and Navrotsky (2013) Hemingway and Robie (1973), Robie et al.
(1978)
-2920.6 | Woods and Garrels (1987) Helgeson et al. (1978)
-2568.6 | La Iglesia and Felix (1994) Helgeson et al. (1978)
-2920.6 | Woods and Garrels (1987) Robie et al. (1978)
-2568.3 | La Iglesia and Felix (1994) Robie et al. (1979)
predicted -2920.6 £2.3 La Iglesia and Felix (1994)
-2920.61 BSC (2007)
Burkeite NagCO3(SO4)2 N/A BSC (2007)
Butschliite K,Ca(COs), -1824.0 £ 3.9 | Radha and Navrotsky (2013) Robie et al. (1978), Navrotsky et al. (1997)
Calcite CaCOs; -1206.83 + 0.8 | Naumov et al. (1974) Kelley and Anderson (1935); Wells and
Taylor (1937)
-1206.87 | Latimer (1952) Rossini et al. (1952)?
-1206.87 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
-177.82 £ 0.42 | Weeks (1956) Rossini et al. (1952)

-1205.35 + 1.05

Robie (1962, 1966)

Rossini et al. (1952), Garrels et al. (1960)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH ?,P, . Secondary Reference Primary Reference
kJ

-1206.87 | Karpov et al. (1968) Rossini et al. (1952)
-1206.9 | Woods and Garrels (1987) Rossini et al. (1952)
-1206.9 | La Iglesia and Felix (1994) Rossini et al. (1952), Wagman et al.

(1982)
-177.82% | Karpov et al. (1968) Weeks (1956)
-1205.35 + 5.23 | Karpov et al. (1968) Robie (1962)
-178.32 | Karapet'yants and Meadowcroft and Richardson (1963)
Karapet'yants (1970)

-1207.7 | Woods and Garrels (1987) Karpov et al. (1971)
-1207.7 | LaIglesia and Felix (1994) Karpov et al. (1971)

-1206.92 Parker et al. (1971)

-1207.370 + 1.339

Robie et al. (1979)

Parker et al. (1971)

-1207.37 + 1.34

Radha and Navrotsky (2013)

Parker et al. (1971), Robie et al. (1978)

-1206.8 | Woods and Garrels (1987) Naumov et al. (1974)
-1208.8 | La Iglesia and Felix (1994) Naumov et al. (1974)
-1208.2 | Woods and Garrels (1987) Helgeson et al. (1978)
-1208.2 | La Iglesia and Felix (1994) Helgeson et al. (1978)
-1207.4 | Woods and Garrels (1987) Robie et al. (1978)
-1207.4 | La Iglesia and Felix (1994) Robie et al. (1979), Sangameshwar and
Barnes (1983)
-1206.87 Alekseev, and Barinova (1981)
-1207.4 £ 1.3 | Robie and Hemingway (1995) Plummer and Busenberg (1982), Ko et al.
(1982)
-1209.0 | Woods and Garrels (1987) Robinson et al. (1982)
-1209.0 | La Iglesia and Felix (1994) Robinson et al. (1982)
-1206.9 | Woods and Garrels (1987) Wagman et al. (1982)
-1206.92 | Meng et al. (1995) Wagman et al. (1982)
-1207.4 | Woods and Garrels (1987) Sangameshwar and Barnes (1983)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH? Secondary Reference Primary Reference
f.P.T,
kJ
-1207.77 £ 1.11 Holland and Powell (1990)
-1206.92 | Stern (2000) Barin (1993)
-1208.9 £ 0.8 La Iglesia and Felix (1994)

-1207.4

Robie and Hemingway (1995)

-1221.99 +1.13

Radha and Navrotsky (2013)

Kiseleva et al. (1996), Robie et al. (1978)

-1207.54 + 0.52

Holland and Powell (1998)

-1208.200 Matas et al. (2000)
-1208.705 Hummel et al. (2002)
-1207.3 BSC (2007)

Cancrinite (NC2)

Naz.770[Al.003Si5.997024]
(NO23)1.474(CO3)0.146°2.175(H20)

14258.27 + 17.34

Radha and Navrotsky (2013)

Liu et al. (2007)

Cancrinite (NC85)

Nay7.282[Als.g54Si6.146024]
(NO3)1.336(CO3)0.046°3.365(H20)

14258.27 + 17.34

Radha and Navrotsky (2013)

Liu et al. (2007)

Cancrinite (CAN7)

Na7.571[A|6.1038i5.897024]
(NO3)1.242(CO3)0.113°3.533(H-0)

14384.09 + 15.76

Radha and Navrotsky (2013)

Liu et al. (2007)

Cancrinite (CAN25)

Na7.887[A|5.9828i6.018024]
(NO3)1.433(CO3)0.236°2.457(H,0)

14207.51 + 11.62

Radha and Navrotsky (2013)

Liu et al. (2007)

Cancrinite (CAN50)

Nayz.725[Als.969Si6.031024]
(NO3)1_234(CO3)o.251'2.829(H20)

14257.26 + 11.32

Radha and Navrotsky (2013)

Liu et al. (2007)

Cancrinite CAN75)

Nag 072[Alg.055Si5.945024]
(NO23)1.320(CO3)0.348°2.501(H20)

14292.44 + 12.13

Radha and Navrotsky (2013)

Liu et al. (2007)

Cancrinite (FB2-49)

N ar, 771[A| 5.956S i 6.004024]

14524.07 + 14.09

Radha and Navrotsky (2013)

Liu et al. (2007)

(CO3)0.881'3-480(H20)
Dawsonite NaAICO3(OH), -1963.970 + 2.936 | Robie et al. (1979) Ferrante et al. (1976)
-1964.0 £ 2.9 | Robie and Hemingway (1995) Ferrante et al. (1976)
-1964 + 4 | Benezeth et al. (2007) Ferrante et al. (1976)
-1963.97 + 2.93 | Radha and Navrotsky (2013) Ferrante et al. (1976), Robie et al. (1978)
-1964.0 | Woods and Garrels (1987) Robie et al. (1978)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH ?,P, . Secondary Reference Primary Reference
kJ
-1964.0 Robie and Hemingway (1995)
-1960 + 7 Benezeth et al. (2007)
-1699 todziana et al. (2011)
-1963.956 BSC (2007)
Dolomite CaMg(COs), -301.92 £ 1.46 | Weeks (1956) Rossini et al. (1952)
-2331.7 | Woods and Garrels (1987) Rossini et al. (1952)
-2331.7 | Lalglesia and Felix (1994) Rossini et al. (1952)
-2332.86 + 3.35 | Robie (1962) Robie (1957)
-2332.86 | Karpov et al. (1968) Robie (1962)
-8.20 + 1.55@ | Karpov et al. (1968) Halla (1965)
-2326.30 | Karpov et al. (1968) Karapet'yants and Karapet'yants (1961)
-2332.86 + 3.35 | Robie (1966) Stout and Robie (1963)
-12.30® | Karpov et al. (1968) Stout and Robie (1963)
-2314.59 | Naumov et al. (1974) Stout and Robie (1963)

-2324.480 + 1.460

Robie et al. (1978)

Stout and Robie (1963)

-301.92 + 1.46W

Karpov et al. (1968)

Weeks (1956)

-2332.7 | Woods and Garrels (1987) Karpov et al. (1971)
-2314.6 | Woods and Garrels (1987) Naumov et al. (1974)
-2314.6 | LaIglesia and Felix (1994) Naumov et al. (1974)
-2329.9 | Woods and Garrels (1987) Helgeson et al. (1978)
-2329.9 | Lalglesia and Felix (1994) Helgeson et al. (1978)
-2324.5 | Woods and Garrels (1987) Robie et al. (1978)
-2324.5 | Lalglesia and Felix (1994) Robie et al. (1978)
-2326.3 | Woods and Garrels (1987) Wagman et al. (1982)
-2326.3 | La lglesia and Felix (1994) Wagman et al. (1982)
-2325.72 £ 1.26 Holland and Powell (1990)
-2325.7 | Sherman and Barak (2000) Holland and Powell (1990)

Alkali and Alkali Earth Metals

412




rreeees |1

BERKELEY LAB

Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH ?,Pr . Secondary Reference Primary Reference
kJ
-2327.9 | Sherman and Barak (2000) Knacke et al. (1991)
-2331.64 + 2.07 Tareen et al. (1992)
-2324.5+ 1.5 | Robie and Hemingway (1995) Hemingway and Robie (1994)
-2324.5 £ 1.1 | Radha and Navrotsky (2013) Hemingway and Robie (1994)
-2319.9+1.3 La Iglesia and Felix (1994)
-2324.5 Robie and Hemingway (1995)
-2324.56 £ 0.70 Holland and Powell (1998)
-2329.400 Matas et al. (2000)
-2321.148 Hummel et al. (2002)
-2328.94 BSC (2007)
Fairchildite K,Ca(COs), -1790.4 £ 4.0 | Radha and Navrotsky (2013) Robie et al. (1978), Navrotsky et al. (1997)
(Gaylussite) Na,Ca(CO3),*5(H,0) -3424.65 Alekseev, and Barinova (1981)
Gaylussite N/A BSC (2007)
Huntite CaMg3(COs)4 -4529.60 + 1.57 Hemingway and Robie (1973)
-4529.600 + 1.570 | Robie et al. (1979) Hemingway and Robie (1973)
-4529.6 £ 1.6 | Robie and Hemingway (1995) Hemingway and Robie (1973),
Konigsberger and Gamsjager (1987)
-4529.60 + 1.57 | Radha and Navrotsky (2013) Hemingway and Robie (1973), Robie et al.
(1978)
-4529.6 | Woods and Garrels (1987) Robie et al. (1978)
-4629.6 | La Iglesia and Felix (1994) Robie et al. (1979)
predicted -4545.9 £ 2.7 La Iglesia and Felix (1994)
-4529.6 BSC (2007)

Hydromagnesite (II)

Mgs(CO3)4(OH)2*4(H0)

-6514.86 + 1.05

Robie and Hemingway (1973)

-6514.860 + 1.060

Robie et al. (1979)

Robie and Hemingway (1973)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH? Secondary Reference Primary Reference
f.P.T,
kJ
-6514.9 £ 1.1 | Robie and Hemingway (1995) Robie and Hemingway (1973)

-6514.86 + 1.06

Radha and Navrotsky (2013)

Robie and Hemingway (1973), Robie et al.
(1978)

-6514.9 | Woods and Garrels (1987) Helgeson et al. (1978)
-6514.9 | Woods and Garrels (1987) Robie et al. (1978)
-6514.86 BSC (2007)

Hydrotalcite-CO3

Mgo.66Al0.31(OH)2(CO3)0.1520.30(H-0)

-1170.34 £+ 1.81

Allada et al. (2005a)

Mo.66Al0.31(OH)2(CO3)0.1620.30(H-0)

-1170.34 £+ 1.81

Radha and Navrotsky (2013)

Allada et al. (2005a,b)

M@o.74Al0.26(OH)2(CO3)0.13°0.39(H-0)

-1165.98 + 2.06

Allada et al. (2005a)

Mgo.74A|0.26(003)0.13(OH)2'0.39(H20)

-1165.98 + 2.06

Allada et al. (2005b)

Mgo.74Al0.26(OH)2(CO3)0.1320.39(H-0)

-1165.98 + 2.06

Radha and Navrotsky (2013)

Allada et al. (2005a,b)

Mgo.67Al0.33(OH)2(CO3)0.17°0.69(H20)

-1284.65 + 1.97

Allada et al. (2005a)

Mgo.67Al0.33(OH)2(CO3)o.17°0.69(H20)

-1284.65 + 1.97

Radha and Navrotsky (2013)

Allada et al. (2005a,b)

Mgo.66Al0.34(OH)2(CO3)0.17°0.70(H20)

-1292.07 + 2.05

Allada et al. (2005a)

Mgo.66Al0.34(OH)2(CO3)0.17°0.70(H20)

-1292.08 + 2.05

Radha and Navrotsky (2013)

Allada et al. (2005a,b)

Mdo.73Alo.27(CO3)o.16(OH)1.95°0.83H,0

-1297.19 + 1.97

Allada et al. (2005b)

Mdo.73Alo 27(CO3)0.16(0OH)1.05°0.83(H-0)

-1297.19 + 1.97

Radha and Navrotsky (2013)

Allada et al. (2005a,b)

Mgo.74A|0.26[(N03)0.2(OH)0.06] (OH)2'039(
H.0)

-1119.36 + 2.50

Allada et al. (2005b)

M@o.67Al0.33(OH)2(CO3)0.16#0.70(H-0)

-1284.65 + 1.75

Allada et al. (2006)

Mdo.66Al0.34(OH)2(CO3)0.170.69(H.O)

-1292.07 + 1.63

Allada et al. (2006)

M0o.66Al0.31(OH)2(CO3)0.1520.30(H-0)

-1168.52 + 1.81

Allada et al. (2006)

M@o.74Al0.26(OH)2(CO3)0.13°0.39(H-0)

-1165.98 + 2.06

Allada et al. (2006)

Mgo.73Al0.27(OH)2(CO3)0.16°0.83(H20)

-1279.19 + 1.97

Allada et al. (2006)

3R1 polytype M2izAl13(OH)2(COs)1604/6(H-0) -57.99 + 1.67% | Costa et al. (2010) Allada et al. (2006)
experimental
Mg4Al,(OH)12(CO3) *2(H20) -7374 | - Lothenbach et al. (2008)
MgsAl(OH)12(COs) *2(H,0) -7078.83 | - Blanc et al. (2010)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH? Secondary Reference Primary Reference
f,PT,
kJ
calculated M02zAlys(OH)2(COs)1604/6(H-0) -65.23% Costa et al. (2010)
Ikaite CaCO0O43+6(H.0) -2954.1 £ 5.0 | Robie and Hemingway (1995) Marland (1975)
-2954.1 | Radha and Navrotsky (2013) Robie and Hemingway (1995)
Kalicinite KHCO; -959.39 | Latimer (1952) Rossini et al. (1952)?
-959.39 | Karpov et al. (1968) Rossini et al. (1952)
-966.09 9 + 4.2 | Naumov et al. (1974) Rossini et al. (1952)
-963.2 | Meng et al. (1995) Wagman et al. (1982)
N/A BSC (2007)
Lansfordite MgCO3+5(H,0) N/A BSC (2007)
Magnesite MgCO; [blank] | Karpov et al. (1968) Roth (1948)
-1121.73 | Karpov et al. (1968) Britske et al. (1949)
-1112.94 | Latimer (1952) Rossini et al. (1952)?
-1112.94 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
-117.61 £ 1.26 | Weeks (1956) Rossini et al. (1952)
-1112.94 | Karpov et al. (1968) Rossini et al. (1952)
-1096.21 | Karpov et al. (1968) Rossini et al. (1952)
-1096.21 | Karapet'yants and Rossini et al. (1952), Roth (1948)
Karapet'yants (1970)
-1113.0 | Woods and Garrels (1987) Rossini et al. (1952)
-1113.0 | La lglesia and Felix (1994) Rossini et al. (1952)
-1112.9 | Saldi (2009) Rossini et al. (1952)

-117.61 + 1.26W

Mel'nik (1972)

Nikolaev and Dolivo-Dobrovolskii (1961),
Rossini et al. (1952)

-1089.51

Mel'nik (1972)

Kapustinskii and Stakhanova (1954)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name

Formula

AH?

f.P.T,
kJ

Secondary Reference

Primary Reference

-117.61 + 1.26W

Karpov et al. (1968)

Weeks (1956)

-1113.15 + 1.67

Karpov et al. (1968)

Robie (1962)

-1113.16 + 1.67

Robie (1962)

Stout and Robie (1963)

-1095.71 + 2.51

Langmuir (1965)

-1095.71 + 2.51

Karpov et al. (1968)

Langmuir (1965)

-100.53"

Mel'nik (1972)

Langmuir (1965)

-1095.79

Naumov et al. (1974)

Langmuir (1965)

Saldi (2009)

Langmuir (1965)

-118.11 + 0.849

Robie (1965)

-118.11W

Karpov et al. (1968)

Robie (1965)

-1113.280 + 1.339

Robie et al. (1979)

Robie (1965)

-1113.28 + 1.34

Radha and Navrotsky (2013)

Robie (1965)

-1113.3+1.3

Robie and Hemingway (1995)

Robie (1965)

-118.11 + 0.849

Mel'nik (1972)

Robie (1965), Robie and Waldbaum
(1968)

Saldi (2009) Robie (1965)
-1112.94 | Karapet'yants and Stull and Prophet (1965)
Karapet'yants (1970)
-1089.51 | Karpov et al. (1968) Gerasimov et al. (1966)
-1115.45 | Karpov et al. (1968) Gerasimov et al. (1966)
-1095.71 | Mel'nik (1972) Karpov et al. (1968), Naumov et al.
(1971), Langmuir (1965)
Saldi (2009) Robie and Waldbaum (1968)
-1095.79 Parker et al. (1971)
recommended value -118.11W Mel'nik (1972)
recommended value -1113.11 Mel'nik (1972)
-1113.1 | Woods and Garrels (1987) Mel'nik (1972)
-1113.1 | La lglesia and Felix (1994) Mel'nik (1972)
-1113.2 | Woods and Garrels (1987) Karpov et al. (1971)
-1113.2 | La lglesia and Felix (1994) Karpov et al. (1971)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH ?,P, . Secondary Reference Primary Reference
kJ

-1095.8 | Woods and Garrels (1987) Naumov et al. (1974)

Saldi (2009) Dandurand and Schott (1977)

Saldi (2009) Hemingway et al. (1977)
-1111.4 | Woods and Garrels (1987) Helgeson et al. (1978)
-1111.4 | La Iglesia and Felix (1994) Helgeson et al. (1978)
-1111.4 | Saldi (2009) Helgeson et al. (1978)
-1113.3 | Woods and Garrels (1987) Robie et al. (1978)

-1113.28 | Saldi (2009) Robie et al. (1978)

-1113.3 | La Iglesia and Felix (1994) Robie et al. (1979)

Saldi (2009) Sadiq and Lindsay (1979)
-1095.8 | Woods and Garrels (1987) Wagman et al. (1982)
-1095.8 | Meng et al. (1995) Wagman et al. (1982)
-1095.8 | Saldi (2009) Wagman et al. (1982)

Saldi (2009) Kittrick and Peryea (1986)

-1113.636 | Saldi (2009) Berman (1988)

-1114.505 | Saldi (2009) Chernosky and Berman (1989)
-1112.48 £ 0.81 Holland and Powell (1990)
-1112.48 £ 0.81 | Saldi (2009) Holland and Powell (1990)

Saldi (2009) Trommsdorff and Connolly (1990)
-1095.80 | Stern (2000) Knacke et al. (1991)
predicted -1113.0+£ 0.7 La Iglesia and Felix (1994)
-1111.68 | Saldi (2009) Koziol and Newton (1995)
-1113.3 Robie and Hemingway (1995)
-1113.3 £ 1.3 | Saldi (2009) Robie and Hemingway (1995)
-1111.59 + 0.36 Holland and Powell (1999)
-1117.94 + 0.4 | Saldi (2009) Konigsberger et al. (1999)
-1113.300 Matas et al. (2000)
Hummel et al. (2002)
-1111.7 £ 2.55 Allada et al. (2006)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH ?,P, . Secondary Reference Primary Reference
kJ
-116.7 + 2.55% Allada et al. (2006)
-1110.99 £ 2.0 Saldi (2009)
-1111.4 BSC (2007)
Meionite CayAlSis024C0;3 -13897.5 | Woods and Garrels (1987) Robinson et al. (1982)
Al/Si ordered -13881.4 + 6.2 | Robie and Hemingway (1995) Moecher and Essene (1990)
Al/Si ordered -13881.4 Robie and Hemingway (1995)
Al/Si ordered -13881.4 | Radha and Navrotsky (2013) Robie and Hemingway (1995)
Monohydrocalcite CaCO3¢(H0) -1498.3 £ 1.2 | Robie and Hemingway (1995) Hull and Turnbull (1973)
-1498.29 + 1.17 | Radha and Navrotsky (2013) Hull and Turnbull (1973), Robie et al.
(1978)
-1498.3 | Woods and Garrels (1987) Robie et al. (1978)
-1498.29 BSC (2007)
Nahcolite NaHCO3; -947.68 | Latimer (1952) Rossini et al. (1952)?
-947.68 | Karpov et al. (1968) Rossini et al. (1952)
-947.7 | Woods and Garrels (1987) Rossini et al. (1952)
-913.45 + 1.3 | Naumov et al. (1974) Rupert et al. (1965)
-913.4 | Woods and Garrels (1987) Naumov et al. (1974)
-949.0 £ 0.2 | Robie and Hemingway (1995) Berg and Vanderzee (1978)
-950.8 | Woods and Garrels (1987) Wagman et al. (1982)
-950.81 | Meng et al. (1995) Wagman et al. (1982)
-947.257 BSC (2007)
Natrite Na,COs3 -1129.05 Saegusa (1950a)
-1129.05 | Karapet'yants and Saegusa (1950a)
Karapet'yants (1970)
-1133.95 | Karpov et al. (1968) Bauer and Dorland (1952)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH ?,P, . Secondary Reference Primary Reference
kJ
-1133.95 | Karapet'yants and Bauer and Dorland (1952)
Karapet'yants (1970)
-1130.94 | Latimer (1952) Rossini et al. (1952)?
-1130.94 | Karpov et al. (1968) Rossini et al. (1952)
-1130.9 | Woods and Garrels (1987) Rossini et al. (1952)
-1136.37 | Karpov et al. (1968) Kubachewski and Evans (1958)
-1129.05 | Karpov et al. (1968) Karapet'yants and Karapet'yants (1961)
-1136.37 | Karapet'yants and Kubaschewski and Evans (1963)
Karapet'yants (1970)
-321.96 | Karapet'yants and Meadowcroft and Richardson (1963)
Karapet'yants (1970)
-1131.44 + 1.3 | Naumov et al. (1974) Rupert et al. (1965)
-1130.94 | Karapet'yants and Stull and Prophet (1965)
Karapet'yants (1970)
-1131.4 | Woods and Garrels (1987) Naumov et al. (1974)
-1129.2 £ 0.3 | Robie and Hemingway (1995) Berg and Vanderzee (1978)
-1131.44 Alekseev and Barinova (1981)
-1130.7 | Woods and Garrels (1987) Wagman et al. (1982)
-1130.68 | Meng et al. (1995) Wagman et al. (1982)
-1130.77 | Stern (2000) Knacke et al. (1991)
-1130.68 EQ3/6
Natron Na,C0O3¢10(H,0) -4075.76 Saegusa (1950a)
-4075.756 | Karapet'yants and Saegusa (1950a)
Karapet'yants (1970)
-4083.50 | Karpov et al. (1968) Bauer and Dorland (1952)
-4083.50 | Karapet'yants and Bauer and Dorland (1952)
Karapet'yants (1970)
-4075.76 | Karpov et al. (1968) Karapet'yants and Karapet'yants (1961)
-4082.04 + 1.3 | Naumov et al. (1974) Waterfield et al. (1968)
-4082.0 | Woods and Garrels (1987) Naumov et al. (1974)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH ?,P, . Secondary Reference Primary Reference
kJ
-4081.3 | Woods and Garrels (1987) Wagman et al. (1982)
-4079.39 | Radha and Navrotsky (2013) Johnson et al. (1992)
-4079.394 BSC (2007)
Nesquehonite MgCO3+3(H,0) +11.21 | Karapet'yants and Halla (1962)
Karapet'yants (1970)
-1985.73 + 4.2 | Naumov et al. (1974) Langmuir (1965)
-1977.26 £ 0.46 Robie and Hemingway (1973)
-1977.260 + 0.260 | Robie et al. (1979) Robie and Hemingway (1973)
-1977.3 £ 0.3 | Robie and Hemingway (1995) Robie and Hemingway (1973)
-1977.26 + 0.26 | Radha and Navrotsky (2013) Robie and Hemingway (1973), Robie et al.
(1978)
-1985.7 | Woods and Garrels (1987) Naumov et al. (1974)
-1726.6 | La lglesia and Felix (1994) Naumov et al. (1974)
-1977.2 | Woods and Garrels (1987) Helgeson et al. (1978)
-1724.0 | La lglesia and Felix (1994) Helgeson et al. (1978)
-1977.3 | Woods and Garrels (1987) Robie et al. (1978)
-1723.7 | La lglesia and Felix (1994) Robie et al. (1979)
predicted -1987.2+3.1 La Iglesia and Felix (1994)
-1977.26 BSC (2007)
(Nyerereite) Na,Ca(COs), -2342.58 Alekseev, and Barinova (1981)
Pirssonite Na,Ca(CO3),*2(H,0) -2941.31 Alekseev, and Barinova (1981)
N/A BSC (2007)
Spurrite CasSi;0sCO; -5899.3 | Woods and Garrels (1987) Karpov et al. (1971)
5840.2 +5.7 Robie and Hemingway (1995)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH ?,P, . Secondary Reference Primary Reference
kJ
Strontianite SrCOs3 -1217.07 Kapustinsky and Dezideryeva (1946)
-1221.31 | Karpov et al. (1968) Latimer (1952)
-1221.31 | Latimer (1952) Rossini et al. (1952)?
-1218.38 | Zhuk (1954) Rossini et al. (1952), Karapet'yants (1953)
-1218.4 | Woods and Garrels (1987) Rossini et al. (1952)
-1216.41 + 2.09 | Robie (1962) Garrels et al. (1960), Lander (1951)
-1216.41 + 2.09 | Karpov et al. (1968) Robie (1962)
-1232.61 + 2.1 | Naumov et al. (1974) Adami and Conway (1966)
-1218.680 + 1.450 | Robie et al. (1978) Adami and Conway (1966)
-1233.43 + 2.09 | Radha and Navrotsky (2013) Adami and Conway (1966)
-1220.05 Parker et al. (1971)
-1232.6 | Woods and Garrels (1987) Naumov et al. (1974)
-1219.85 | Stern (2000) Barin et al. (1977)
-1232.6 | Woods and Garrels (1987) Helgeson et al. (1978)
-1218.7 | Woods and Garrels (1987) Robie et al. (1978)
-1220.1 | Woods and Garrels (1987) Wagman et al. (1982)
-1225.77 +1.1 Busenberg et al. (1984)
-1218.7 £ 1.5 | Robie and Hemingway (1995) Busenberg et al. (1984)
-1231.4 + 3.2 | Radha and Navrotsky (2013) Kiseleva et al. (1994), Robie et al. (1978)
-1218.7 Robie and Hemingway (1995)
Thaumasite CaSiO3-CaS0,-CaC0O515(H,0) -8682.04 | - Blanc et al. (2010)
Thermonatrite Na,CO3¢(H,0) -1428.71 Saegusa (1950\a)
-1428.706 | Karapet'yants and Saegusa (1950\a)
Karapet'yants (1970)
-1433.94 | Karpov et al. (1968) Bauer and Dorland (1952)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH ?,P, . Secondary Reference Primary Reference
kJ
-1433.94 | Karapet'yants and Bauer and Dorland (1952)
Karapet'yants (1970)
-1428.71 | Karpov et al. (1968) Karapet'yants and Karapet'yants (1961)
-1432.02 + 1.3 | Naumov et al. (1974) Waterfield et al. (1968)
-1432.0 | Woods and Garrels (1987) Naumov et al. (1974)
-1432.0 | La lglesia and Felix (1994) Naumov et al. (1974)
-1429.7 £ 0.4 | Robie and Hemingway (1995) Berg and Vanderzee (1978)
-1431.3 | Woods and Garrels (1987) Wagman et al. (1982)
-1431.3 | La lglesia and Felix (1994) Wagman et al. (1982)
predicted -1426.3+1.5 La Iglesia and Felix (1994)
-1429.7 | Radha and Navrotsky (2013) Robie and Hemingway (1995)
-1428.784 BSC (2007)
Tilleyite CasSi,07(C0s), -6371.6 | Woods and Garrels (1987) Karpov et al. (1971)
-6372.2 £ 5.7 | Robie and Hemingway (1995) Treiman and Essene (1983); Holland and
Powell (1990)
-6372.2 Robie and Hemingway (1995)
Tricarboaluminate CapAlx(CO3)3(0OH)12026(H,.0) -16792 | - Matschei et al. (2007)
Trona Naz(CO3)(HCO3)*2(H.0) -2681.9 Rupert et al. (1965)
-2684.9 | Woods and Garrels (1987) Wagman et al. (1982)
-2682.1 £ 0.4 | Robie and Hemingway (1995) Vanderzee and Wigg (1981)
Wegscheiderite Nas(HCO3)3;CO; -3984.0 £ 0.8 Robie and Hemingway (1995)
Synthetic Phases
Na,CO3¢7(H,0) Na,COgz7(H,0) -3192.74 Saegusa (1950a)
-3192.743 | Karapet'yants and Saegusa (1950a)

Karapet'yants (1970)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH? Secondary Reference Primary Reference
f.P.T,
kJ
-3203.35 | Karpov et al. (1968) Bauer and Dorland (1952)
-3203.35 | Karapet'yants and Bauer and Dorland (1952)
Karapet'yants (1970)
-3192.74 | Karpov et al. (1968) Karapet'yants and Karapet'yants (1961)
-3200.0 | Woods and Garrels (1987) Wagman et al. (1982)
N/A BSC (2007)
NaHCOs.Na,CO3z*2(H.0) NaHCO3.Na,CO3*2(H,0) -2675.25 | Karapet'yants and Gancy (1963)
Karapet'yants (1970)
3NaHCO;.Na,COs 3NaHCO;.Na,COs -3986.93 | Karapet'yants and Gancy (1963)
Karapet'yants (1970)
Dawsonite-K KAICO3(OH), -1714 todziana et al. (2011)
Trona-K KoNaH(COs),+2(H20) N/A BSC (2007)
K.CO; K,CO3 -1138.41 Saegusa (1950b)
-1146.1 | Woods and Garrels (1987) Latimer (1952)
-1146.12 | Latimer (1952) Rossini et al. (1952)?
-1146.12 | Karpov et al. (1968) Rossini et al. (1952)
-390.91% | Karpov et al. (1968) Karapet'yants and Karapet'yants (1961)
-1129.30 | Karapet'yants and Stull and Prophet (1965)
Karapet'yants (1970)
-1146.12 | Karapet'yants and Stull and Prophet (1965)
Karapet'yants (1970)
-1149.76 + 2.1 | Naumov et al. (1974) Stull and Prophet (1965), et seq. (-1968)
-1149.8 | Woods and Garrels (1987) Naumov et al. (1974)
-1151.0 | Woods and Garrels (1987) Wagman et al. (1982)
Alkali and Alkali Earth Metals 423




rreeees |'1

BERKELEY LAB

Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation

(Continued)

Mineral Name Formula AH? Secondary Reference Primary Reference
f.P.T,
kJ
-1151.02 | Meng et al. (1995) Wagman et al. (1982)
-1146.1 | Woods and Garrels (1987) Babushkin et al. (1985)
-991.1 + 2.4 | Radha and Navrotsky (2013) Kiseleva et al. (1996),
Robie et al. (1978)
-1150.18 | Stern (2000) Knacke et al. (1991)
K2CO30.5(H20) K2C03°0.5(H.0) -1298.84 | Karapet'yants and Karapet'yants (1959-1966)
Karapet'yants (1970)
K2CO3¢1.5(H,0) K>CO31.5(H,0) -1604.15 | Karapet'yants and Karapet'yants (1959-1966)
Karapet'yants (1970)
N/A BSC (2007)
K3H4(CO3)6'3(H20) K3H4(CC)3)6'3(H20) N/A BSC (2007)
KNaCO3*6(H-0) KNaCO3*6(H.0) N/A BSC (2007)
K>Cay(COs); K,Cay(COs)s -2821.1 +6.4 | Radha and Navrotsky (2013) Robie et al. (1978), Navrotsky et al. (1997)
Mg(HCO3), Mg(HCO3), -1824.22 + 62.76 | Estimated value of fictive Wilcox and Bromley (1963)
compound
-1824.22 | Karapet'yants and Wilcox and Bromley (1963)
Karapet'yants (1970)
Ca(HCO3), Ca(HCOs3), -1940.12 | Karapet'yants and Yatsimirskii (1956)

Karapet'yants (1970)

-1494.74 + 62.76

Estimated value of fictive
compound

Wilcox and Bromley (1963)

-1949.74

Karapet'yants and
Karapet'yants (1970)

Wilcox and Bromley (1963)
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Table 2b. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0: Enthalpies of Formation
(Continued)

Mineral Name Formula AH? Secondary Reference Primary Reference
f.P.T,
kJ
Hemicarboaluminate 3Ca0.Al;03.0.5CaC0;.0.5Ca(0OH),+10. N/A BSC (2007)
5(H0)
Hemicarboaluminate CayAlx(CO3)05(0OH)13¢5.5(H,0) -8270 | - Matschei et al. (2007)
Hemicarboaluminate 6Ca0-2Al,05:CaCO;-Ca(OH),*21(H,0) -16600.31 | - Blanc et al. (2010)
3Ca0-Al,03-3CaC03+30(H-0) -16217.18 Parker et al. (1971)
Monocarboaluminate CayAlx(CO3)(OH)12¢5(H.0) -8250 | - Matschei et al. (2007)
Monocarboaluminate 3Ca0-Al,03-CaC03¢10.68(H,0) -8175.75 | Blanc et al. (2010) Berman and Newman (1963)
-8175.54 Parker et al. (1971)
Monocarboaluminate 3Ca0.Al;03.CaCO310(H,0) N/A BSC (2007)
Sr(HCOs3), Sr(HCO:s;), -1941.38 | Karpov et al. (1968) Yatsirmirskii (1956)
-1941.38 | Karapet'yants and Yatsimirskii (1956)
Karapet'yants (1970)
-1953.93 | Karpov et al. (1968) Karapet'yants (1957)
-1953.93 | Karapet'yants and Karapet'yants (1957), Wilcox and Bromley
Karapet'yants (1970) (1963)
-1953.93 + 62.76 | Estimated value of fictive Wilcox and Bromley (1963)
compound

@ Formation from the oxides

@ Formation with respect to CaCOj3 plus MgCOs
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-C0O,-H,0: Entropies

Mineral Name Formula Sgr . Secondary Reference Primary Reference
JKgfw™
Minerals
Aragonite CaCOs; 88.62 £ 1.26 Anderson (1934a)
88.70 £ 1.26 | Kelley and King (1961) Anderson (1934a)
88.70 | Latimer (1952) Rossini et al. (1952)?
88.7 | Woods and Garrels (1987) Rossini et al. (1952)
88.70 £ 1.26 | Robie (1962, 1966) Kelley and King (1961)
88.70 £ 1.26 | Karpov et al. (1968) Kelley and King (1961)
87.99 £ 0.21 | Naumov et al. (1974) Stavely and Linford (1969)
87.99 £ 0.20 | Robie et al. (1979) Stavely and Linford (1969)
88.0+ 0.2 | Robie and Hemingway (1995) Stavely and Linford (1969)
88.7 | Woods and Garrels (1987) Karpov et al. (1971)
88.70 Parker et al. (1971)
88.0 | Woods and Garrels (1987) Naumov et al. (1974)
90.2 | Woods and Garrels (1987) Helgeson et al. (1978)
88.0 | Woods and Garrels (1987) Robie et al. (1978)
88.7 | Woods and Garrels (1987) Wagman et al. (1982)
87.9 | Woods and Garrels (1987) Robinson et al. (1982)
88.00 Holland and Powell (1990)
87.99 Robie and Hemingway (1995)
89.50 Holland and Powell (1998)
87.93 Matas et al. (2000)
Hummel et al. (2002)
90.207 BSC (2007)
Artinite Mg,CO3(OH),*3(H.0) 259.41 +8.79 Langmuir (1965)
259.41 + 8.79 | Karpov et al. (1968) Langmuir (1965)
232.92 + 0.67 | Robie et al. (1979) Hemingway and Robie (1972)
232.9 £ 0.7 | Robie and Hemingway (1995) Hemingway and Robie (1972)
232.9 | Woods and Garrels (1987) Helgeson et al. (1978)
232.9 | Woods and Garrels (1987) Robie et al. (1978)
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-CO,-H,0:

Entropies (Continued)

Mineral Name Formula Sgr . Secondary Reference Primary Reference
JKgfw™
232.92 BSC (2007)
Burkeite NagCO3(SO4)> N/A BSC (2007)
Calcite CaCoO; 93.05 +1.67 Anderson (1934a)
92.88 £ 0.84 | Kelley and King (1961) Anderson (1934a), Nernst and
Schwers (1914), Simon and
Swain (1935)
92.88 + 0.84 | Weeks (1956) Kelley (1950)
92.88 | Latimer (1952) Rossini et al. (1952)?
92.88 | Zhuk (1954) Rossini et al. (1952),
Karapet'yants (1953)
92.88 | Karpov et al. (1968) Rossini et al. (1952)
92.9 | Woods and Garrels (1987) Rossini et al. (1952)
calculated 92.47 Zhuk (1954)
92.47 | Karpov et al. (1968) Zhuk (1954)
92.47 | Karapet'yants and Karapet'yants (1970) | Zhuk (1954)
84.52 | Karpov et al. (1968) Yatsimirskii and Krestov (1960)
84.52 | Karapet'yants and Karapet'yants (1970) | Yatsimirskii and Krestov (1960)
92.88 + 0.84 | Robie (1962, 1966) Kelley and King (1961)
92.88 £ 0.84 | Karpov et al. (1968) Kelley and King (1961)
91.84 +0.21 | Naumov et al. (1974) Stavely and Linford (1969)
91.71 + 0.20 | Robie et al. (1979) Stavely and Linford (1969)
91.7 £ 0.2 | Robie and Hemingway (1995) Stavely and Linford (1969)
92.9 | Woods and Garrels (1987) Karpov et al. (1971)
92.88 Parker et al. (1971)
91.7 | Woods and Garrels (1987) Naumov et al. (1974)
92.7 | Woods and Garrels (1987) Helgeson et al. (1978)
91.7 | Woods and Garrels (1987) Robie et al. (1978)
92.9 | Woods and Garrels (1987) Wagman et al. (1982)
91.8 | Woods and Garrels (1987) Robinson et al. (1982)
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-CO,-H,0:

Entropies (Continued)

Mineral Name Formula Sgr . Secondary Reference Primary Reference
JKgfw™
92.90 | Stern (2000) Barin (1993)
91.70 Holland and Powell (1990)
91.71 Robie and Hemingway (1995)
92.50 Holland and Powell (1998)
91.07 Matas et al. (2000)
Hummel et al. (2002)
92.676 BSC (2007)
Dawsonite NaAICO3(OH), 132.00 £ 0.50 | Robie et al. (1979) Ferrante et al. (1976)
132.0 £ 0.5 | Robie and Hemingway (1995) Ferrante et al. (1976)
132 + 2 | Bénézeth et al. (2007) Ferrante et al. (1976)
132.0 | Woods and Garrels (1987) Robie et al. (1978)
132.00 Robie and Hemingway (1995)
131+1 Bénézeth et al. (2007)
132 BSC (2007)
Dolomite CaMg(CO0s), 158.57 Weeks (1956)
155.18 + 0.29 | Robie (1962) Robie (1957)
155.18 + 0.29 | Robie (1966) Stout and Robie (1963)
155.18 £ 0.42 | Karpov et al. (1968) Stout and Robie (1963)
155.18 | Karapet'yants and Karapet'yants (1970) | Stout and Robie (1963)
155.18 + 0.4 | Naumov et al. (1974) Stout and Robie (1963)
155.18 £ 0.29 | Robie et al. (1979) Stout and Robie (1963)
155.2 + 0.3 | Robie and Hemingway (1995) Stout and Robie (1963)
155.2 | Woods and Garrels (1987) Karpov et al. (1971)
155.2 | Woods and Garrels (1987) Naumov et al. (1974)
155.2+0.3 Robie and Hemingway (1995)
155.2 | Woods and Garrels (1987) Helgeson et al. (1978)
155.2 | Woods and Garrels (1987) Robie et al. (1978)
155.2 | Woods and Garrels (1987) Wagman et al. (1982)
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-CO,-H,0:

Entropies (Continued)

Mineral Name Formula SO Secondary Reference Primary Reference
Pr vTr
JKgfw™
155.20 Holland and Powell (1990)
155.18 Robie and Hemingway (1995)
156.00 Holland and Powell (1998)
155.48 Matas et al. (2000)
Hummel et al. (2002)
155.18 BSC (2007)
(Gaylussite) CaNay(COs3),5(H.0) 363.6 Alekseev, and Barinova (1981)
Gaylussite N/A BSC (2007)
Huntite CaMgs(COs)s 299.53 + 0.88 | Robie et al. (1979) Hemingway and Robie (1972)
299.5 + 0.9 | Robie and Hemingway (1995) Hemingway and Robie (1972)
299.5 | Woods and Garrels (1987) Robie et al. (1978)
299.53 BSC (2007)
Hydromagnesite (1) 3Mg(CO3)Mg(OH).*3(H,0) 391.20 +9.20 Langmuir (1965)
391.20 + 9.20 | Karpov et al. (1968) Langmuir (1965), (reference
521a not listed)
Hydromagnesite (II) Mgs(CO3)4(0OH),*4(H,0) 503.67 + 1.55 | Robie et al. (1979) Robie and Hemingway (1972)
503.7 £ 1.6 | Robie and Hemingway (1995) Robie and Hemingway (1972)
541.3 | Woods and Garrels (1987) Helgeson et al. (1978)
503.7 | Woods and Garrels (1987) Robie et al. (1978)
541.33 BSC (2007)
HydrOtalCite-CO3 M90,74A|0,26(OH)z(CO3)0,13'0.39(H20) 85.58 +0.17 Allada et al. (20053)
MgsAl,(OH)12(CO3)*2(H,0) 551 Lothenbach et al. (2008)
MgsAlz(OH)12(CO3)*2(H20) 552.07 Blanc et al. (2010)
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-CO,-H,0:

Entropies (Continued)

Mineral Name Formula Sgr . Secondary Reference Primary Reference
JKgfw™
Ikaite CaCO3¢6(H;0) 370.0 £5.0 | Robie and Hemingway (1995) Marland (1975)
Kalicinite KHCO;3; 111.29 | Karpov et al. (1968) Saegusa (1950b)
111.29 Latimer (1952)
estimate 111.29 | Karapet'yants and Karapet'yants (1970) | Latimer (1952)
114.22 | Karapet'yants and Karapet'yants (1970) | Drozin (1961)
109.20 + 12. Naumov et al. (1974)
N/A BSC (2007)
Lansfordite MgCO3+5(H,0) -117.15 | Karapet'yants and Karapet'yants (1970) | Halla (1962)
283.26 + 14.64 Langmuir (1965)
283.26 + 14.64 | Karpov et al. (1968) Langmuir (1965), (reference
521a not listed)
N/A BSC (2007)
Magnesite MgCOs 65.7 £ 0.8 Anderson (1934b)
graphical
calculated 66.1 Anderson (1934b)
65.69 £ 0.84 | Kelley and King (1961) Anderson (1934b)
65.69 £ 0.84 | Weeks (1956) Kelley (1950)
65.69 | Latimer (1952) Rossini et al. (1952)?
65.69 | Zhuk (1954) Rossini et al. (1952),
Karapet'yants (1953)
65.69 | Karpov et al. (1968) Rossini et al. (1952)
65.7 | Woods and Garrels (1987) Rossini et al. (1952)
65.7 | Saldi (2009) Rossini et al. (1952)
calculated 9.20 Zhuk (1954)
70.29 | Karapet'yants and Karapet'yants (1970) | Yatsimirskii and Krestov (1960)
65.69 + 0.84 | Robie (1962, 1966) Kelley and King (1961)
65.69 + 0.84 | Karpov et al. (1968) Kelley and King (1961)
65.81 + 1.00 Langmuir (1965)
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-CO,-H,0:

Entropies (Continued)

Mineral Name Formula Sgr . Secondary Reference Primary Reference
JKgfw™
65.81 +1.00 | Karpov et al. (1968) Langmuir (1965), (reference
521a not listed)
Saldi (2009) Langmuir (1965)
Saldi (2009) Robie (1965)
65.69 | Karapet'yants and Karapet'yants (1970) | Stull and Prophet (1965)
65.69 + 0.84 | Mel'nik (1972) Robie and Waldbaum (1968),
Naumov et al. (1971)
65.7 | Saldi (2009) Robie and Waldbaum (1968)
65.8 | Woods and Garrels (1987) Karpov et al. (1971)
65.69 Parker et al. (1971)
recommended value 65.69 Mel'nik (1972)
65.7 | Woods and Garrels (1987) Mel'nik (1972)
65.69 + 0.8 Naumov et al. (1974)
65.7 | Woods and Garrels (1987) Naumov et al. (1974)
Saldi (2009) Dandurand and Schott (1977)
65.09 + 0.14 | Robie et al. (1979) Hemingway et al. (1977)
65.1 + 0.1 | Robie and Hemingway (1995) Hemingway et al. (1977)
Saldi (2009) Hemingway et al. (1977)
65.7 | Woods and Garrels (1987) Helgeson et al. (1978)
Saldi (2009) Helgeson et al. (1978)
65.1 | Woods and Garrels (1987) Robie et al. (1978)
65.09 | Saldi (2009) Robie et al. (1978)
Saldi (2009) Sadiq and Lindsay (1979)
65.7 | Woods and Garrels (1987) Wagman et al. (1982)
65.7 | Saldi (2009) Wagman et al. (1982)
Saldi (2009) Kittrick and Peryea (1986)
65.210 | Saldi (2009) Berman (1988)
65.09 | Saldi (2009) Chernosky and Berman (1989)
65.21 | Saldi (2009) Trommsdorff and Connolly
(1990)
65.10 Holland and Powell (1990)
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-CO,-H,0:

Entropies (Continued)

Mineral Name Formula Sgr . Secondary Reference Primary Reference
JKgfw™
65.10 | Saldi (2009) Holland and Powell (1990)
65.70 | Stern (2000) Knacke et al. (1991)
65.09 | Saldi (2009) Koziol and Newton (1995)
65.09 Robie and Hemingway (1995)
65.1 £ 0.1 | Saldi (2009) Robie and Hemingway (1995)
65.10 Holland and Powell (1998)
Saldi (2009) Konigsberger et al. (1999)
64.95 Matas et al. (2000)
Hummel et al. (2002)
64.8 +2.0 Saldi (2009)
65.689 BSC (2007)
Meionite CayAlSis0,4C0;3 691.4 | Woods and Garrels (1987) Robinson et al. (1982)
Al/Si ordered 715.2 £1.0 | Robie and Hemingway (1995) Moecher and Essene (1990)
Al/Si ordered 715.2 Robie and Hemingway (1995)
Monohydrocalcite CaCO3+(H0) 131.1 + 3.0 | Robie and Hemingway (1995) Hull and Turnbull (1973)
129.853 BSC (2007)
Nahcolite NaHCO; 102.09 + 1.67 | Kelley and King (1961) Anderson (1933)
155.23 | Karapet'yants and Karapet'yants (1970) | Latimer (1952)
102.09 | Latimer (1952) Rossini et al. (1952)?
102.09 | Karpov et al. (1968) Rossini et al. (1952)
102.1 | Woods and Garrels (1987) Rossini et al. (1952)
102.09 + 1.7 | Naumov et al. (1974) Kelley and King (1961)
102.1 | Woods and Garrels (1987) Naumov et al. (1974)
102.1 + 1.7 | Robie and Hemingway (1995) Berg and Vanderzee (1978)
101.7 | Woods and Garrels (1987) Wagman et al. (1982)
102.09 BSC (2007)
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-CO,-H,0:

Entropies (Continued)

Mineral Name Formula Sgr . Secondary Reference Primary Reference
JKgfw™
Natrite Na,COs; 135.98 + 2.51 | Kelley and King (1961) Anderson (1933)
136.82 Saegusa (1950a)
136.82 | Karapet'yants and Karapet'yants (1970) | Saegusa (1950a)
135.98 | Karpov et al. (1968) Bauer and Dorland (1952)
135.98 | Karapet'yants and Karapet'yants (1970) | Bauer and Dorland (1952),
Kelley and King (1961)
estimate 135.98 Latimer (1952)
135.98 | Karpov et al. (1968) Latimer (1952)
135.98 | Karapet'yants and Karapet'yants (1970) | Latimer (1952)
136.0 | Woods and Garrels (1987) Rossini et al. (1952)
123.85 | Karpov et al. (1968) Yatsimirskii (1960)
123.85 | Karapet'yants and Karapet'yants (1970) | Yatsimirskii and Krestov (1960)
136.82 | Karpov et al. (1968) Karapet'yants and
Karapet'yants (1961)
135.98 + 2.51 | Karpov et al. (1968) Kelley and King (1961)
134.98 + 0.4 | Naumov et al. (1974) Thompson et al. (1962)
136.40 | Karapet'yants and Karapet'yants (1970) | Stull and Prophet (1965)
135.0 £ 0.6 | Robie and Hemingway (1995) Waterfield et al. (1968), Berg
and Vanderzee (1978)
135.0 | Woods and Garrels (1987) Naumov et al. (1974)
135.0 | Woods and Garrels (1987) Wagman et al. (1982)
138.78 | Stern (2000) Knacke et al. (1991)
134.98 BSC (2007)
Natron Na,CO3¢10(H,0) 2171.08 | Karapet'yants and Karapet'yants (1970) | Saegusa (1950a)
2171.08 | Karpov et al. (1968) Karapet'yants and
Karapet'yants (1961)
564.71+ 0.8 Naumov et al. (1974)
564.7 | Woods and Garrels (1987) Naumov et al. (1974)
562.7 | Woods and Garrels (1987) Wagman et al. (1982)
562.7 BSC (2007)
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,0-K,0-MgO-CaO-SrO-CO,-H,0:

Entropies (Continued)

Mineral Name Formula Sgr . Secondary Reference Primary Reference
JKgfw™
Nesquehonite MgCO3+3(H,0) 196.23 £ 8.79 Langmuir (1965)
196.23 £ 8.79 | Karpov et al. (1968) Langmuir (1965), (reference
521a not listed)
-4.18 | Karapet'yants and Karapet'yants (1970) | Halla (1962)
195.62 £ 0.59 | Robie et al. (1979) Robie and Hemingway (1972)
195.6 + 0.6 | Robie and Hemingway (1995) Robie and Hemingway (1972)
158.99 + 33. Naumov et al. (1974)
159 | Woods and Garrels (1987) Naumov et al. (1974)
195.6 | Woods and Garrels (1987) Helgeson et al. (1978)
195.6 | Woods and Garrels (1987) Robie et al. (1978)
195.64 BSC (2007)
(Nyerereite) Na,Ca(CO3), 231.38 Alekseev, and Barinova (1981)
Pirssonite Na,Ca(C0O3),*2(H,0) 268.49 Alekseev, and Barinova (1981)
N/A BSC (2007)
Spurrite CasSi,0sCO3 270.8 | Woods and Garrels (1987) Karpov et al. (1971)
331.0+£2.0 Robie and Hemingway (1995)
Strontianite SrCO; 97.11 +1.67 Anderson (1934a)
97.07 + 1.67 | Kelley and King (1961) Anderson (1934b)
97.07 £ 1.7 | Naumov et al. (1974) Anderson (1934b)
97.07 + 1.67 | Karpov et al. (1968) Britske et al. (1949)
97.07 | Latimer (1952) Rossini et al. (1952)?
97.07 | Zhuk (1954) Rossini et al. (1952),
Karapet'yants (1953)
97.07 | Karpov et al. (1968) Latimer (1952)
97.1 | Woods and Garrels (1987) Rossini et al. (1952)
94.98 | Karpov et al. (1968) Karapet'yants (1954a)
94.98 | Karapet'yants and Karapet'yants (1970) | Karapet'yants (1954b)
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-CO,-H,0:

Entropies (Continued)

Mineral Name Formula Sgr . Secondary Reference Primary Reference
JKgfw™
calculated 98.32 Zhuk (1954)
98.32 | Karpov et al. (1968) Zhuk (1954)
98.32 | Karapet'yants and Karapet'yants (1970) | Zhuk (1954)
99.58 | Karpov et al. (1968) Yatsimirskii (1960)
99.58 | Karapet'yants and Karapet'yants (1970) | Yatsimirskii and Krestov (1960)
97.07 £ 1.67 | Robie (1962, 1966) Kelley and King (1961)
97.07 £ 1.67 | Robie et al. (1979) Kelley and King (1961)
97.07 Parker et al. (1971)
97.1 | Woods and Garrels (1987) Naumov et al. (1974)
97.07 | Stern (2000) Barin et al. (1977)
97.1 | Woods and Garrels (1987) Helgeson et al. (1978)
97.1 | Woods and Garrels (1987) Robie et al. (1978)
97.1 | Woods and Garrels (1987) Wagman et al. (1982)
97.2+ 1.7 | Busenberg et al. (1984)
97.1+1.7 | Robie and Hemingway (1995) Busenberg et al. (1984)
97.07 Robie and Hemingway (1995)
Thaumasite CaSiO;-CaS0,-CaCO315 Blanc et al. (2010) Schmidt et al. (2008)
(H0)
Thermonatrite Na,CO3¢(H,0) 476.98 | Karapet'yants and Karapet'yants (1970) | Saegusa (1950a)
393.51 | Karpov et al. (1968) Bauer and Dorland (1952)
395.39 | Karapet'yants and Karapet'yants (1970) | Bauer and Dorland (1952)
476.98 | Karpov et al. (1968) Karapet'yants and
Karapet'yants (1961)
168.15 + 0.4 | Naumov et al. (1974) Waterfield et al. (1968)
168.1 + 0.8 | Robie and Hemingway (1995) Waterfield et al. (1968), Berg
and Vanderzee (1978)
168.2 | Woods and Garrels (1987) Naumov et al. (1974)
168.1 | Woods and Garrels (1987) Wagman et al. (1982)
168.11 BSC (2007)
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-CO,-H,0:

Entropies (Continued)

Mineral Name Formula SO Secondary Reference Primary Reference
Pr vTr
JKgfw™
Tilleyite, Calculated CasSi,07(CO3), 376.7 | Woods and Garrels (1987) Karpov et al. (1971)
394.0 £ 4.0 | Robie and Hemingway (1995) Robie and Hemingway (1995,
ref. 450)
394.00 Robie and Hemingway (1995)
Trona Na3(CO3)(HCO3)*2(H-0) 301.7+4.2 Rupert et al. (1965)
301.2 | Woods and Garrels (1987) Wagman et al. (1982)
Vaterite CaCOs; Robie and Hemingway (1995)
93.6+0.5 Wolf et al. (2000)
Wegscheiderite Nas(HCO3);CO3 Robie and Hemingway (1995)
Synthetic Phases
Na,CO3¢7(H,0) Na,CO3¢7(H,0) 1602.89 | Karapet'yants and Karapet'yants (1970) | Saegusa (1950a)
1602.89 | Karpov et al. (1968) Karapet'yants and
Karapet'yants (1961)
422.2 | Woods and Garrels (1987) Wagman et al. (1982)
N/A BSC (2007)
Trona-K KzNaH(CO3)-*2(H.0) N/A BSC (2007)
K.COs K.COs3 151.04 Saegusa (1950b)
Estimate 140.58 Latimer (1952)
140.58 | Karpov et al. (1968) Latimer (1952)
140.6 | Woods and Garrels (1987) Latimer (1952)
149.37 | Karapet'yants and Karapet'yants (1970) | Yatsimirskii and Krestov (1960)
151.84 | Karapet'yants and Karapet'yants (1970) | Stull and Prophet (1965)
156.32 | Karapet'yants and Karapet'yants (1970) | Stull and Prophet (1965)
155.52 + 0.4 | Naumov et al. (1974) Stull and Prophet (1965), et seq.

(-1968)
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Table 2c. Thermodynamic Properties of Solid Carbonates in the System Na,0O-K,0-MgO-CaO-SrO-CO,-H,0:

Entropies (Continued)

Mineral Name Formula SO Secondary Reference Primary Reference
Pr vTr
JKgfw™
149.37 | Karpov et al. (1968) Matveev et al. (1966)
155.5 | Woods and Garrels (1987) Naumov et al. (1974)
155.5 | Woods and Garrels (1987) Wagman et al. (1982)
155.52 | Stern (2000) Knacke et al. (1991)
K2CO31.5(H.0) K2C0O3°1.5(H.0) N/A BSC (2007)
K3H4(CO3)6°3(H20) K8H4(CO3)5'3(H20) N/A BSC (2007)
KNaCOz*6(H.0) KNaCO3+6(H.0) N/A BSC (2007)
MgCO3+2(H,0) MgCO3+2(H;0) -29.29 | Karapet'yants and Karapet'yants (1970) | Halla (1962)
Hemicarboaluminate CasAlx(CO3)o5(0OH)13°5.5 713 | - Matschei et al. (2007)
(H20)
Hemicarboaluminate 6Ca0-2Al,03-CaCO3:-Ca(OH) 1269.09 | - Blanc et al. (2010)
2°21(H20)
Hemicarboaluminate 3Ca0.Al,03.0.5CaC03+0.5Ca N/A BSC (2007)
(OH),#10 5(H.0)
Monocarboaluminate CayAlx(CO3)(OH)12¢5(H.0) 657 | - Matschei et al. (2007)
Monocarboaluminate 3Ca0-Al,03-CaC03¢10.68(H, 601.89 | - Blanc et al. (2010)
0)
Monocarboaluminate 3Ca0.Al;0;.CaCO310(H,0) N/A BSC (2007)
Tricarboaluminate CagAlx(CO3)3(0OH);2026(H,0) 1858 | - Matschei et al. (2007)
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Table 3. Crystallographic Properties of Solid Carbonates in the System Na,O-K,0-MgO-CaO-SrO-CO,-H,0

Name Formula Reference
Minerals
1 |Ankerite CaFe"06MgosMn*51(COs), Gaines et al. (1997)
2 |Aragonite CaCOs; Gaines et al. (1997)
3 |Aragonite CaCOs; Antao and Hassan (2009)
4 | Artinite Mg2(COs3)(OH)+3(H20) Gaines et al. (1997)
5 |Artinite Mg2(CO3)(OH),#3(H20) Akao and Iwai (1977b)
6 Barringtonite MgCO3+2(H;0) Nashar (1965)
7 Barringtonite MgCO3+2(H,0) Gaines et al. (1997)
8 Baylissite KoMg(COgz)2#4((H20)) Gaines et al. (1997)
9 Burkeite NasCO3(SO04) Gaines et al. (1997)
10 |Burkeite NasCO3(SO04) Mineralogy Database (http://webmineral.com/)
11 |Burkeite NasCO3(SO04) Guiseppetti et al. (1988). See also Shi and Rousseau (2003)
Name Cell Constants Space Group vo*
a (A) bo (A) co (R) a B y z cm’ gfw*
Minerals
1 |Ankerite 4.830 16.167 3 R-3 65.626
2 |Aragonite 4.959 7.968 5.741 4 Pmcn 34.152
3 |Aragonite 4.96062 7.97006 5.74181 4 Pmcn 32.317
4 | Artinite 16.56 3.15 6.22 99 2 C2 or C2/m 96.495
5 |Artinite 16.560(5) 3.153(1) 6.231(3) 90.10(4) 2 c2/m 97.963
6 |Barringtonite 9.155 6.202 6.092 94.00 95.53| 108.20(?)| 4 tricl 48.867
7 |Barringtonite 9.156 6.206 6.092 94.0 95.5 108.7| 4 P1or P-1 48.859
8 |Baylissite 12.37 6.24 6.86 114.5 2 P 2,/a 145.09
9 |Burkeite 5.167 9.215 7.055 4/3 P1or P-1 151.76
10 |Burkeite 21.15 27.63 5.16 12 Pmmm 151.32
11 |Burkeite 5.170 9.217 7.058 4/3 Pmnm 151.94

#Calculated from cell constants, this work
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Name Formula Reference
12 | Chlorartinite [Mg2CO3(H,0)(OH)]Cl+(H,0) Sugimoto et al. (2007)
13 |Dehydrated chlorartinite  |[Mg.CO3(H,O)(OH)]CI Sugimoto et al. (2007)
14 | Calcite CaCOs Gaines et al. (1997)
15 |Calcite CaCOs Mineralogy Database (http://webmineral.com/)
16 |Calcite CaCOs Graf (1961)
17 |Dawsonite NaAICO;(OH), Gaines et al. (1997)
18 |Dawsonite NaAICO;(OH), Mineralogy Database (http://webmineral.com/)
19 |Dawsonite NaAICO3(OH), Chinh et al. (1987)
20 |Dawsonite NaAICO;3(OH), todziana et al. (2011)
21 |Dolomite (ord) CaMg(COs), Gaines et al. (1997)
22 |Dolomite (ord) CaMg(COs), Mineralogy Database (http://webmineral.com/)
23 | Dolomite (ord) CaMg(COs), Graf (1961)
Name Cell Constants Space Group vo*
a (A) bo (A) co (A) a B v z cm’ gfw™
12 |Chlorartinite 23.14422 7.22333(5) 18 R3c 112.11
(16)
13 |[Dehydrated chlorartinite 22.6791(5) 7.22336(14) 18 R3c 107.65
14 |Calcite 4.9896 17.061 6 R3c 36.920
15 |Calcite 4.989 17.062 6 R3c 36.914
16 |Calcite 4.9900 17.0615 6 R3c 36.927
17 |Dawsonite 6.71 10.411 5.58 4 Imam 58.687
18 |Dawsonite 6.73 10.36 5.575 4 Imam 58.512
19 |Dawsonite 6.762 10.428 5.593 4 12cm 59.376
20 |Dawsonite 6.709 5.599 10.494 4 Imma 59.347
21 |Dolomite (ord) 4.8069 16.0034 3 R-3 64.284
22 |Dolomite (ord) 4.842 15.95 3 R-3 65.009
23 |Dolomite (ord) 4.8079 16.010 3 R-3 64.337

*Calculated from cell constants, this work
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Name Formula Reference
24 |Dypingite Mgs(CO3)4(OH)2*5(H,0) Gaines et al. (1997)
25 |Dypingite Mgs(COs3)4(OH)2*5(H,0) Raade (1970), Canterford et al. (1984)
26 |Dypingite Mgs(COs3)4(OH)2*5(H,0) Ballirano et al. (2013)
27 |Dypingite Mgs(COs3)4(OH)2*5(H,0) Ballirano et al. (2013)
28 |Dypingite Mgs(COs3)4(OH)2*5(H,0) Ballirano et al. (2013)
29 |Gaylussite CaNay(COs3),*5(H.0) Gaines et al. (1997)
30 |Gaylussite CaNay(COs3),*5(H.0) Dickens and Brown (1969)
31 |Giorgiosite Mgs(CO3)4(OH)2*6(H,0) Friedel (1975), Canterford et al. (1984)
32 |Huntite CaMg3(COs)4 Gaines et al. (1997)
33 |Huntite CaMg3(COs)4 Mineralogy Database (http://webmineral.com/)
34  |Huntite CaMg3(COs)4 Dollase and Reeder (1986)
35 |Hydromagnesite (Il) Mgs(CO3)4(OH)2*4(H,0) Gaines et al. (1997)
36 |Hydromagnesite (Il) Mgs(CO3)4(OH)2+4(H,0) Akao and Iwaj (1977a)

Name Cell Constants Space Group Vo

2 (A) bo (A) co (A) a B v cm’ giw

24 | Dypingite 32.6 9.45 ? 8 monocl ?
25 |Dypingite
26 |Dypingite 10.3816(7)| 33.7446(16)| 35.6806(14) 114.567(5) 32 monocl 213.94
27 |Dypingite 10.3824(11)| 33.6541(31)| 35.6468(32) 114.573(9) 32 monocl 213.18
28 |Dypingite 10.3369(7)| 33.7934(25)| 35.7059(20) 114.548(5) 32 monocl 213.52
29 |Gaylussite 11.589 7.779 11.207 102.0 4 12/a 148.78
30 |Gaylussite 14.361 7.781 4.209 127.84 4 C2/c or Cc 148.93
31 |Giorgiosite
32 |Huntite 9.505 7.821 3 R32 122.84
33 |Huntite 9.5027 7.8212 3 R32 122.78
34 |Huntite 9.5027 7.8212 3 R32 122.78
35 |Hydromagnesite (Il) 10.11 8.94 8.38 114.5 2 P2i/c 207.53
36 |Hydromagnesite (1) 10.105(5) 8.954(2) 8.378(4) 114.44(5) 2 P2,/c 207.80

*Calculated from cell constants, this work
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Name Formula Reference
37 |lkaite CaCO3¢6(H,0) Gaines et al. (1997)
38 |lkaite CaCO0O4+6(H.0) Hesse et al. (1983)
39 |Kalicinite KHCO3 Mineralogy Database (http://webmineral.com/)
40 |Kalicinite KHCO3 Gaines et al. (1997)
41 |Kalicinite KHCO3 Kaji et al. (2003)
42  |Kalicinite KHCO3 Duan (2012a)
43 |Lansfordite MgCO3+5(H;0) Gaines et al. (1997)
44 | Lansfordite MgCO3¢5(H,0) Liu et al. (1990)
45 | Magnesite MgCOs Gaines et al. (1997)
46 |Magnesite MgCOs Mineralogy Database (http://webmineral.com/)
47 |Magnesite MgCOs Graf (1961)

Name Cell Constants Space Group vo*

a (A) bo (A) co (A) o B v z cm” gfw*

37 |lkaite 8.87 8.23 11.02 110.2 4 C2/c or Cc 113.67
38 |lkaite 8.792 8.310 11.021 110.53 4 C2/c 113.53
39 |Kalicinite 15.11 5.67 3.71 103.8 4 P2./c 46.473
40 |[Kalicinite 15.173 5.628 3.711 104.63 4 P2-1/c 46.163
41 |[Kalicinite 15.192 5.6290 3.7067 104.538 4 P2-1/c 46.195
42 |Kalicinite 15.1725 5.6283 3.7110 104.631 4 P12,/al 46.164
43 |Lansfordite 12.48 7.55 7.34 101.7 4 P2i/c 101.96
44  |Lansfordite 7.364 7.632 12.488 101.75 4 P2-1/c 103.45
45 [Magnesite 4.633 15.013 6 R3c 28.011
46 [Magnesite 4.633 15.15 6 R3c 28.266
47 |Magnesite 4.6330 15.016 6 R3c 28.016

#Calculated from cell constants, this work

Alkali and Alkali Earth Metals 441



rreeees |'1

BERKELEY LAB

Name Formula Reference
48 |Meionite CayAleSis024C0O3 Gaines et al. (1997)
49 |Meionite (Al/Si ordered) |CasAlgSis024CO3 Antao and Hassan (2008)
50 |Monohydrocalcite CaCO3¢(H0) Gaines et al. (1997)
51 |Monohydrocalcite CaCO3¢(H0) Swainson (2008)
52 |Nahcolite NaHCO3; Gaines et al. (1997)
53 |Nahcolite NaHCO3; Sass and Scheuerman (1962)
54 | Natrite Na,COs3 Gaines et al. (1997)
55 |Natrite Na,CO3 Arakcheeva et al. (2010)
56 |Natron Na,C0O3¢10(H,0) Gaines et al. (1997)
57 |Natron Na,C0O3¢10(H,0) Taga (1969)

Name Cell Constants Space Group vo*

a (A) bo (A) co (R) a B y z cm’ gfw*

48 |Meionite 12.26 12.26 7.61 2 P4/m 344.42
49 |Meionite (Al/Si ordered) 12.16711 12.16711 7.575466 2 14/m 337.67
50 |Monohydrocalcite 10.566 7.573 9 P3,12 48.992
51 |Monohydrocalcite 10.5547 7.5644 9 P3-1 48.832
52 |Nahcolite 7.475 9.686 3.481 93.38 4 P2i/n 37.879
53 |Nahcolite 3.51(1) 9.71(1) 8.05(1) 111.85 4 P2-1/c 38.339
54 |Natrite 8.906 5.238 6.045 101 4 C2orCm 41.676
55 |Natrite 8.8818 5.235 6.0455 101.464 C2/m 41.476
56 |Natron 12.83 9.026 13.44 123.0 4 Cc 196.52
57 |Natron 12.83 9.026 13.44 123.0 Cc 196.52

#Calculated from cell constants, this work
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Name Formula Reference
58 [Nesguehonite MgCO3+3(H.0) Gaines et al. (1997)
59 |Nesquehonite MgCO3+3(H.0) Mineralogy Database (http://webmineral.com/)
60 |Nesquehonite MgCO3+3(H.0) Stephan and MacGillavry (1972)
61 |Nesquehonite MgCO3+3(H.0) Giester et al. (2000)
62 |Not characterized (Mgo.92Ca0,08) CO3z*3(H,0) Queralt et al. (1997)
63 | Pirssonite Na,Ca(CO3).*2(H,0) Gaines et al. (1997)
64 | Pirssonite Na,Ca(CO3).*2(H,0) Dickens and Brown (1969)
65 |Pokrovskite Mg2(CO3)(OH),+0.5(H,0) Gaines et al. (1997)
66 |Pokrovskite Mg2(CO3)(OH), Perchiazzi and Merlino (2006)
67 |Mgy(CO3)(OH), Mg2(CO3)(OH), Gunter and Ostwald (1977)
68 |Shortite Ca;Nay(CO3)3 Gaines et al. (1997)
69 |Shortite Ca;Nay(CO3)3 Dickens et al. (1970)

Name Cell Constants Space Group vo*

a (A) bo (A) co (A) a B v z cm’ gfw™

58 [Nesquehonite 7.705 5.367 12.121 90.6 4 P2:/n 75.459
59 [Nesquehonite 12 5.39 7.68 90.45 4 P2:/n 74.784
60 |Nesquehonite 7.7053(11) 5.3673(6)| 12.1212(11) 90.451(13) 4 P2-1/n 75.469
61 |Nesquehonite 7.701(1) 5.365(1) 12.126(2) 90.41(1) 4 P2y/n 75.425
62 |Not characterized 6.063(6) 10.668(5) 6.014(4) 107.28 4? P2y/n 55.921
63 |Pirssonite 11.32 20.06 6 8 Fdd2 102.56
64 |Pirssonite 11.340 20.096 6.034 8 Fdd2 103.51
65 |Pokrovskite 9.43 12.27 3.395 96.6 4 P2i/a 58.749
66 | Pokrovskite 12.2396(4) 9.3506(4) 3.1578(1) 96.445(5) 4 P2i/a 54.067
67 |Mg2(COs)(OH), 9.34 3.15 12.18 90. 4 monocl 53.951
68 |Shortite 4.961 11.03 7.12 2 Amm2 117.31
69 |Shortite 4.947(1) 11.032(1) 7.108(1) 2 Amm2 116.81

*Calculated from cell constants, this work
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Name Formula Reference

70 |Paraspurrite CasSi,0sCO3 Gaines et al. (1997)

71 | Spurrite CasSi;0sCO; Gaines et al. (1997)

72 | Spurrite CasSi;0sCO; Grice (2005)

73 | Strontianite SrCOs3 Gaines et al. (1997)

74 | Strontianite SrCOs3 Mineralogy Database (http://webmineral.com/)
75 | Strontianite SrCOs3 Antao and Hassan (2009)

76 | Thaumasite [CasSi)(OH)e*12(H,0)](SO4) (CO3)
Ca3Si(CO3)(SO4)(OH)e*12(H,0)

CaSiO3-CaS0,-CaC03°15(H;0)

Edge and Taylor (1971)
Gaines et al. (1997)
Blanc et al. (2010)

77 | Thaumasite

78 |Thaumasite

79 | Thermonatrite Na,COs3¢(H,0) Gaines et al. (1997)
80 |Thermonatrite Na,CO3¢(H,0) Wu and Brown (1975)
Name Cell Constants Space Group Vo
2 (A) bo (A) co (A) a B v z om” gfw

70 |Paraspurrite 10.473 6.706 27.78 90.58 8 P2-1/a 146.86
71 |Spurrite 10.49 6.705 14.15 101.3 4 P2-1/a 145.90
72 |Spurrite 10.484 6.712 14.156 101.27 4 P2-1/a 147.08
73 | Strontianite 5.090 8.358 5.997 4 Pmcn 38.410
74 | Strontianite 5.107 8.414 6.029 4 Pmcn 39.004
75 |Strontianite 5.107499 8.413820 6.026924 4 Pmcn 38.993
76 |Thaumasite 11.030 10.396 2 P63 329.81
77 |Thaumasite 11.04 10.39 2 P6s/m 330.22
78 |Thaumasite 2 329.40
79 |Thermonatrite 10.72 5.249 6.469 4 Pca2; 54.802
80 |Thermonatrite 6.472 10.724 5.259 4 P2-1/ab 54.953

#Calculated from cell constants, this work
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Name Formula Reference
81 |[Tilleyite CasSi,0,(C0s), Gaines et al. (1997)
82 |Tilleyite CasSi,07(COs), Mineralogy Database (http://webmineral.com/)
83 |Tilleyite CasSi,07(COs), Grice (2005)
84 |Trona Na3(CO3)(HCO3)*2(H20) Gaines et al. (1997)
85 |Trona Na3(CO3)(HCO3)*2(H20) Mineralogy Database (http://webmineral.com/)
86 |Trona Na3(CO3)(HCO3)*2(H20) Choi and Mighell (1982)
87 |Vaterite CaCOs Gaines et al. (1997)
88 |Vaterite CaCOs; Kamhi (1963)
89 |Vaterite CaCOs; Wang and Becker (2009)
90 |Vaterite CaCOs; Wang and Becker (2009)
91 |Vaterite CaCOs; Wang and Becker (2009)
92 |Wegscheiderite Nas(HCO3)3;CO; Gaines et al. (1997)
93 |Wegscheiderite Nas(HCO3)3;CO3 Fernandes et al. (1990)
Name Cell Constants Space Group vo*
a (A) bo (A) co (&) o B v om’ gfw*

81 |[Tilleyite 15.108- 10.241- 7.577- 105.15- P2,/a 170.36-

15.111 10.242 7.579 105.47 170.20
82 |Tilleyite 15.025 10.269 7.628 105.833 4 P2,/a 170.47
83 |[Tilleyite 15.082 10.236 7.572 105.17 4 P2-1/a 169.86
84 |Trona 20.362 3.481 10.291 106.48 4 12/a 105.31
85 |Trona 20.106 3.492 10.303 103.05 4 12/a 106.10
86 |Trona 20.36 3.48 10.29 106.48 4 C2/c 105.26
87 |Vaterite 7.135 16.98 12 P6-3/mmc 37.569
88 |Vaterite 4.13 8.49 2 P6-3/mmc 37.762
89 |Vaterite 7.103 25.271 18 P1 36.942
90 |Vaterite 7.103 25.249 18 P3321 36.909
91 |Vaterite 7.103 25.249 18 P6s22 36.909
92 |Wegscheiderite 10.04 15.56 3.466 91.92 95.82 108.67 P-1 153.30
93 |Wegscheiderite 3.4762 10.0393 15.5969 107.770 95.589 95.028 P-1 154.14

#Calculated from cell constants, this work
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Name Formula Reference
Synthetic Phases
94 |NayCOz+7(H.0) Na,CO3¢7(H20) Wagman et al. (1982)
95 |Dawsonite-K KAICO3(OH), todziana et al. (2011)
96 |Trona-K KzNaH(COs3),+2(H,0) Harvie et al. (1984)
97 |K,COs3 K2CO3 Gatehouse and Lloyd (1973)
98 |K,COs3 K2CO3 Duan et al. (2011), Duan et al. (2012b)
99 |K,COs51.5(H.0) K2COge1.5(H,0) Skakle et al. (2001), Duan et al. (2012c)
100 |KgH4(CO3)6*3(H20) KgH4(CO3)s*3(H20) Harvie et al. (1984)
101 |KNaCOs*6(H;0) KNaCO3+6(H;0) Bois et al. (1984)
102 | Mgz(HCO3)3Cle6(H;0) Mg2(HCO3)sCl+6(H,0) Dinnebier and Jansen (2008)

103 | Mga(CO3z)3(OH)2#3(H20)

Mg4(CO3)3(OH)2*3(H0)

104 | Mgs(CO3z)4(OH),*8(H.0)

Mgs(CO3)4(OH).*8(H0)

Suzuki and Ito (1973), Canterford et al. (1984)

Name Cell Constants Space Group vo*
a (A) bo (A) co (A) a B v z cm’ gfw™

Synthetic Phases
94 |Na,COgz7(H.0)
95 |Dawsonite-K 6.619 11.631 5.722 4 Cmcm 66.321
96 |Trona-K
97 |K.CO; 5.64(3) 9.80(4) 6.88(3) 98.8(5) 4 P2,/c 56.578
98 |K,COs3 5.63961 9.8312 6.83407 98.703 P12,/cl 56.390
99 |K;COs3¢1.5(H,0) 11.8175 13.7466 7.1093 120.769 8 Ci12/c1 74.702
100 |KgH4(CO3)e*3(H-0)
101 |KNaCOs*6(H;0) P2,/c
102 |Mgy(HCO3)sCl*6(H,0) 8.22215(2) 39.5044(2) 6 R3c 232.14
103 | Mg4(COs)3(OH).*3(H-0)
104 |Mgs(CO3)4(OH),*8(H.0)

*Calculated from cell constants, this work
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Name Formula Reference

105 |Hemi-carboaluminate 3Ca0.Al;03.0.5CaC0;.0.5Ca(0OH),+10(H,0) Damidot et al. (1994)
106 |C4A.1/2C02#12(H,0) 4Ca0-Al,03-0.5C0,+12(H,0) Fischer and Kuzel (1982)
107 |C4A.CO11(H.0) 4Ca0-Al,03-CO,+11(H;0) Fischer and Kuzel (1982)
108 |Hydrated tetracalcium 4Ca0-Al,03-CO,¢11(H,0) Renaudin et al. (1999)

Mono-carboaluminate
109 |Hemi-carboaluminate CayAlx(CO3)05(0OH)13¢5.5(H,0) Lothenbach et al. (2008), Taylor (1992)
110 |Hemi-carboaluminate 6Ca0-2Al,05:CaC0O;-Ca(OH),*21(H,0) Blanc et al. (2010), Taylor (1992)
111 |Mono-carboaluminate 3Ca0.Al,05.CaCO310(H,0) Damidot et al. (1994)
112 |Mono-carboaluminate CayAlx(CO3)(OH)12¢5(H.0) Lothenbach et al. (2008), Taylor (1992)
113 |Mono-carboaluminate 3Ca0-Al,03-CaC03+10.68(H,0) Blanc et al. (2010), Taylor (1992)
114 |Tricarboaluminate CapAlx(CO3)3(0OH)12026(H.0) Lothenbach et al. (2008), Taylor (1992)
115 |tetracalcium dialuminium | CasAl;(OH);,CO35(H,0) Francois et al. (1998)

hydroxide carbonate

pentahydrate

Name Cell Constants Space Group vo*
a (A) bo (A) c (A) @ B v z cm® gfw™

105 [Hemi-carboaluminate
106 |C4A.1/2C0,#12(H,0) 5.770(1) 49.159(5) 3 R3c 284.52
107 |C4A.COz#11(H,0) 5.781(1) 5.744(1) 7.855(1) 92.61(2)| 101.96(2)| 120.09(2)| 1/2 triclinic 261.76
108 |Hydrated tetracalcium 5.7422(4) 5.7444(4) 15.091(3) 92.29(1)| 87.45(1)| 119.47(1)| 1 P-1 260.58

Mono-carboaluminate
109 [Hemi-carboaluminate 285
110 [Hemi-carboaluminate 569.02
111 |{Mono-carboaluminate
112 |{Mono-carboaluminate 262
113 [Mono-carboaluminate 261.96
114 |Tricarboaluminate 650
115 |Tetracalcium dialuminium 5.7747(14) 8.4689(11) 9.923(3) 64.77(2)| 82.75(2)| 81.43(2)| 1 triclinic 260.77

hydroxide carbonate

pentahydrate

#Calculated from cell constants, this work
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BERKELEY LAB

TRANSLATION EQUATION AND REACTION CONSTANT USED FOR
STANDARDIZATION OF CARBONATE/BICARBONATE SPECIES

Table 1. Translation equations and reaction constants used for conversion of equations using
HCO; as a basis species to Cogz'.

Species or reaction Log K AH? Database Source
data for standard RP T,
state conditions, kJ
298.15 K and 1 atm
CO4” + H" = HCO3 10.3288 - | Data0.YMP.R5 Shock and Helgeson (1988)
10.329 -14.901 | NAGRA/PSI (2001)
10.329 -14.899 | Phreeqc (2009); Wateq4f (2005)
10.3268 - | Thermoddem (2009) [not cited]

Table 2. Database References

Database Reference

Data0.YMP.R5 BSC (Bechtel SAIC Company) (2007). Qualification of Thermodynamic Data for Geochemical
Modeling of Mineral-Water Interactions in Dilute Systems. ANL-WIS-GS-000003 REV 01. Las
Vegas, Nevada: Bechtel SAIC Company.DOC.20070619.0007.

NAGRA/PSI (2001) Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002). Nagra/PSI Chemical
Thermodynamic Data Base 01/01. Universal Publishers/uPublish.com, Parkland, Florida. 565

p.

Phreeqc (2009) USGS (2014). PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations.
(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/), phreeqc-
2.18.3/Database/PHREEQC.DAT

Thermoddem (2009) | Blanc P., Lassin A. and Piantone P. (2007) THERMODDEM a database devoted to waste
minerals. BRGM (Orléans, France). For updates: http://thermoddem.brgm.fr

Reference

Shock, E.L. and Helgeson, H.C. (1988). Calculation of the thermodynamic and transport properties of
aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and
equation of state predictions to 5 kb and 1000 C. Geochimica et Cosmochimica Acta, 52(8), 2009-
2036.
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