
Photos placed in horizontal position 
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Maintainability and Performance for LAMMPS 

Christian Trott, Tzu-Ray Shan, Stan Moore, Aidan Thompson and Steve Plimpton
Center for Computing Research; Sandia National Laboratories 

SAND2015-10209C



LAMMPS a general purpose MD code

 C++, MPI based open source code: lammps.sandia.gov

 Modular design for easy extensibility by expert users

 Wide variety of supported particle physics:
 Bio simulations, semi conductors, metals, granular materials

 E.g. blood transport, strain simulations, grain flow, glass forming, self 
assembly of nano materials, neutron star matter

 Large flexibility in system constrains
 Regions, walls, geometric shapes, external forces, particle injection

 Scalable: simulations with up to 6 Million MPI ranks 
demonstrated

2

Estimate: 500 Performance Critical Kernels



LAMMPS on next generation platforms

 Next generation platform support through packages

 GPU

 GPU support for NVIDIA Cuda and OpenCL since 2011

 Offloads force calculations (non-bonded, long range coulomb)

 USER-CUDA

 GPU support for NVIDIA Cuda

 Aims at minimizing data transfer => run everything on GPU

 Reverse offload for long range coulomb and bonded interaction

 OMP

 OpenMP 3 support for multi threading

 Aimed at low thread count (2-8)

 INTEL

 Intel Offload pragmas for Xeon Phi

 Offloads force calculations (non-bonded, long range coulomb)

3

Packages replicate existing physics 
modules:

Hard to maintain.
Prone to inconsistencies.

Much more code.



Kokkos: Performance, Portability and Productivity

4

DDR#

HBM#

DDR#

HBM#

DDR#DDR#

DDR#

HBM#HBM#

Kokkos#

LAMMPS# Trilinos# Albany#



Kokkos: Performance, Portability and Productivity

 A programming model implemented as a C++ library

 Open Source (BSD): https://github.com/kokkos

 Abstractions for Parallel Execution and Data Management
 Execution Pattern: What kind of operation (for-each, reduction, scan, 

task)

 Execution Policy: How to execute (Range Policy, Team Policy, DAG)

 Execution Space: Where to execute (GPU, Host Threads, PIM)

 Memory Layout: 

 Memory Traits: How to access the data (Random, Stream, Atomic)

 Memory Space: Where does the data live (High Bandwidth, DDR, NV)

 Supports multiple backends: OpenMP, Pthreads, Cuda, 
Qthreads, Kalmar (experimental)

 Sandia application teams committed to Kokkos as its path for 
transitioning legacy codes, and as part of its new codes
 Trilinos, LAMMPS, Albany, Sierra Mechanics, … 5



template<class ExecSpace>
struct IntegratNVE {

Kokkos::View<double*[3],ExecSpace::memory_space> x,f,v;
Kokkos::View<const double*[3],ExecSpace::memory_space> c_x,c_f,c_v;
double dt;
int natoms;

void initial_integrate() {
Kokkos::parallel_for(

Kokkos::RangePolicy<ExecSpace, InitialIntegrate>(natoms),
*this);

}

KOKKOS_INLINE_FUNCTION
void operator() (InitialIntegrate , const int i) const {
v(i,0) *= dt*c_f(i,0);
v(i,1) *= dt*c_f(i,1);
v(i,2) *= dt*c_f(i,2);

}
};

Kokkos in LAMMPS: Examples I

6

Kokkos Multidimensional View 

Data Type with Runtime and Compiletime Dimension

Template Modules on Execution Space: e.g. Cuda, OpenMP
Storage location

Execution Pattern
Execution Policy

Execution Body



Kokkos in LAMMPS: Examples II

7

template<class ForceType, bool half_neigh>
struct PairForce {
typedef Kokkos::MemoryTraits<

typename std::if_c<half_neigh,Kokkos::Atomic,0>::type> atomic_trait;
Kokkos::View<double*[3], ExecSpace::memory_space, atomic_trait> f;
Kokkos::View<double*[3], ExecSpace::memory_space, 

Kokkos::MemoryTraits<Kokkos::RandomAccess> > x;
Kokkos::View<int**, NeighLayout,ExecSpace::memory_space> neighbors;  
ForceType force;

KOKKOS_INLINE_FUNCTION
void operator() (const int& i) const {

const double x_i = x(i,0);
for(int jj=0; jj<numneigh(i); jj++) {
const int j = neighbors(i,jj);
const double dx = x(j,0) - x_i;
const double rsq = dx*dx+dy*dy+dz*dz;
if(rsq < cutoff) {
f_ij = force.eval(rsq);
fx_i += dx * f_ij;
if(half_neigh) f(j,0) -= dx*f_ij;

}
}

}
};

Choose Atomic Access for Half Neighbor List
Use Random Access Hint to get Texture Fetches

Use Optimal Memory Layout for each Architecture



Performance Evaluation (I)

8



Performance Evaluation (II)

9



The Way Forward

 Kokkos in LAMMPS appears to deliver on performance, 
portability and productivity

 We believe it is a practical solution to the needs of codes with 
large loop counts 
 If the number of performance critical regions is small, specialisation

might be less intrusive

 Institutional support for Kokkos through Sandia ensures 
longevity ( and for us: in-house expertise )

 We started on long process of providing Kokkos versions for 
all modules, most new capabilities developed at Sandia will 
be Kokkos from the get-go

 Expect to be ready for Summit/Sierra platforms in 2018

10


