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Outline of the Talk 
Strong Light-Matter Interaction

• Show how to use metamaterial 

nanoresonators to

• Achieve strong coupling with intersubband

transitions (ISTs) in quantum wells (QWs)

• Achieve efficient second harmonic (SH) generation in ISTs 

• Form a metasurface for beam manipulation of the SH signal

χ(2)ω
ω 2ω
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What are Metamaterials?

• Metamaterials are artificial materials whose interaction with light results in interesting 
phenomena otherwise unattainable with natural materials

• They are usually made of a subwavelength (i.e. non-diffracting) periodic arrangement of 
resonating meta-atoms

Adapted from M. Lapine et al. IET Microw. Antennas Propagat. 1, 3-11 (2007)
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Why the Use of Metamaterials

• Some of the interesting phenomena that can be attained through the use of metamaterials:

Negative refraction Artificial magnetism

R. A. Shelby et al. Science 292, 77 (2001)

Super resolution

N. Fang et al. Science 308, 534 (2005)

J. Ginn et al. PRL 108, 097402 (2012)

Cloaking

D. Schurig et al. Science 314, 977 (2006)
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Light-Matter Coupling in Metasurfaces
Coupled to ISTs in QWs

Weak coupling
- Losses > Coupling
- Purcell regime

Strong coupling
- Coupling > Losses
- Energy exchange
- Rabi frequency
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Benz, Campione, et al., Nat. Commun. 4, 2882 (2013)

Matter resonance

Cavity resonance
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Applications of Strong Coupling Between 
Metasurfaces and ISTs

• Range of operation from near- to far-infrared: Frequency can be 
engineered by proper design of quantum wells and resonators

• Design tunable optoelectronic devices (e.g. filters1)

• Enable incoherent and efficient light emission (i.e. “intersubband LEDs”)2

• Enable efficient nonlinear properties3-5

1Benz et al., Appl. Phys. Lett. 103, 263116 (2013)

2Geiser et al. Appl. Phys. Lett. 101, 141118 (2012)

3Campione et al. Appl. Phys. Lett. 104, 131104 (2014)

4Lee et al. Nature 511, 65-69 (2014)

5Wolf*, Campione*, et al. Nature Commun. 6, 7667 (2015)
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Material Resonance: ISTs in QWs

• Stack of different semiconductors
• Quantized energy level designed
• Narrow absorption
• Promising for tuning from depletion

Optically active transition: between ground 
state (black) and first excited state (red)

InGaAs homogeneously doped

• The optical properties of ISTs in QWs can be recovered by modeling the QWs as a uniaxial
anisotropic material 
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Benz et al., Appl. Phys. Lett. 
103, 263116 (2013)
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Benz et al., Nat. Commun. 4, 2882 (2013)Only z polarized light can interact with the QWs and excite 
the optically active transition
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Optical Cavity Resonance: Metasurface

10 um

Cap layer, εc

Substrate, εs

εAu

z

y

E
k

We thus pattern a metasurface
of metallic resonators for two 
reasons: 
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2) Produce strong z-polarized 
near fields to excite the ISTs 
and promote electrons 
in subbands

1) Introduce the cavity 
resonance (dependent on 
materials, dimensions, etc.) 
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Spectral Properties

Cap layer, εc

Substrate, εs

εAu

ISTε
ISTs in QWs

z

y

E
k

• z-polarized near fields excite the ISTs, inducing a splitting of 3.5 THz splitting

Benz et al., Nat. Commun. 4, 2882 (2013)

IST resonance Full-wave
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Validation of Energy Exchange

• The validation of energy exchange is provided through the following video

y-z plane

• Note that after the input pulse has gone through the structure, the Rabi oscillation is clearly visible

Cap layer, εc

Substrate, εs

εAu

ISTε
ISTs in QWs

z

y

x-y plane
y

x

Energy exchange

|Ez|
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Strong Coupling: From mid-IR to near-IR

Benz et al., Nat. Commun. 4, 2882 (2013)

InGaAs QWs (mid IR) GaN QWs (near IR)

Benz et al., ACS Photon. 1, 906 (2014)
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How Does the Resonator Design 
Affect the Rabi Splitting?

• Different resonator geometries may lead to different Rabi splittings

• Even for similar QW lengths 

Askenazi et al. New J. Phys. 16, 043029 (2014)

Maissen et al. , Proc. SPIE 8623,  86231M (2013)                    Campione et al., Phys. Rev. B 89, 165133 (2014)
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Modeling: Introduction of a 
Circuit Model

• A metasurface resonance can be modeled through a series RLC circuit

Rms
Lms

Cms

Cap layer, εc

Substrate, εs

εAu

ISTε
ISTs in QWs

z

y

Rs

• The plane wave in the substrate can be modeled through a resistive load

Rms
Lms

Cms

Rs

• Proper connection in absence of strong coupling, i.e. in 
absence of QWs in the semiconductor heterostructure

?
• How can I model the contribution of the ISTs?
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Electrostatic Approximation for 
Near Fields – IST Dipole Rule 

10 um

y

x
a

b0.1 0.525

a = b = 2.625

1.0

0.4

• The ISTs selection rule requires z polarized 
electric fields

• z polarized electric fields are confined in 
the near fields of the resonators

• Near fields can be described resorting to 
the electrostatic approximation
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Capacitance of a Static Dipole Over 
an Anisotropic Half Space

• We can estimate the electric potential of a charge 

 e e t z    ,

• This lets us characterize the electrostatic fields of a two-charge 
system 

IST
ms ms eq ms
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ms: MS capacitance when z tC   : coupling coefficient

   IST
eq ms 1 : capacitor representing the strong 

                                                      coupling to the ISTs

t z t tC C      

Campione et al., Phys. Rev. B 89, 165133 (2014)
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Capacitance of a Static Dipole Over 
an Anisotropic Half Space

• We can estimate the electric potential of a charge 
qe

z

x
s

 e e t z    ,

• This lets us characterize the electrostatic fields of a two-charge 
system 

-qe

IST
ms ms eq ms

1

1

t ze

t

q
C C C C C

 


   


    

 

ms: MS capacitance when z tC   : coupling coefficient

   IST
eq ms 1 : capacitor representing the strong 

                                                      coupling to the ISTs

t z t tC C      

This capacitor is a measure of the near-field interaction 
between dipole and the ISTs

 ˆ ˆ ˆˆ ˆˆt z   ε xx yy zz

Campione et al., Phys. Rev. B 89, 165133 (2014)
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Strong Coupling Capacitor in Place in 
the Circuit Model

Rms
Lms

Cms

Cap layer, εc

Substrate, εs

εAu

ISTε
ISTs in QWs

z

y

Rs

• The total capacitor is thus the sum of two contributions

IST
ms eqC C C 

IST
eqC

• Computed in absence of QWs using full-wave and 
circuit simulations

• The IST capacitor is obtained using 

   IST
eq ms 1t z t tC C      
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Validation of the Circuit Model: 
Spectral Properties

Cap layer, εc

Substrate, εs

εAu

ISTε
ISTs in QWs

z

y

y

x

2
Reflectivity 

Not only do we recover the resonance frequency locations, but we are also able to quantify 
the magnitude of reflectivity

Campione et al., Phys. Rev. B 89, 165133 (2014)

Full-wave Circuit network Experiment



IEEE Photonics Society Special Seminar, University of New Mexico, November 10, 2015 Slide 19 of 49

Circuit Model: How to Maximize 
Rabi Splitting 

• We now investigate different resonators on top of the same quantum well

• Note the good agreement with full-wave simulations (red dashed)
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• Note the narrower splitting for SRR resonator

Full-wave
Circuit model
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Circuit Model: How to Maximize Rabi 
Splitting – Design Guidelines 

• Such narrow splitting is associated to a smaller value of the capacitance Cms
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

To increase the Rabi splitting the metasurface should 
exhibit a larger capacitance

Campione et al., Phys. Rev. B 89, 
165133 (2014)

Benz, Campione, et al., Nano Lett. 
15, 1959 (2015)
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Another Example: 
Split Ring Resonators

ms 8 7 aFC  .

ms 13 7 aFC  .

• Let’s take the SRR geometry of the previous slide

• To increase its capacitance, we increase the metal traces

• Dependence with resonator physical dimensions:

SRR gap surfC C C 

 gap 0 0C hw g h w g    

   surf 02 log 4 / /C h w R g    
Sydoruk et al., J. Appl. Phys. 105, 014903 (2009)

A larger capacitance 
corresponds to a larger Rabi 

splittingSplitting = 4.8 THz

Splitting = 4.2 THz
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Outline of the Talk 
Strong Light-Matter Interaction

• Show how to use metamaterial 

nanoresonators to

• Achieve strong coupling with intersubband

transitions (ISTs) in quantum wells (QWs)

• Achieve efficient second harmonic (SH) generation in ISTs 

• Form a metasurface for beam manipulation of the SH signal

χ(2)ω
ω 2ω



IEEE Photonics Society Special Seminar, University of New Mexico, November 10, 2015 Slide 23 of 49

Second Harmonic Generation

Nonlinear 
medium

ω

ω
2ω

Conventional method:
• macroscopic nonlinear crystal (BBO,LiNbO3,…)
• Low efficiency  long path length  phase matching is a 

problem

• Strongly coupled structures exhibit large field enhancements – Useful to enhance second 
harmonic generation in ISTs in QWs

The use of ultrathin metasurfaces that are free of phase-matching constraints could 
open up a plethora of applications, such as frequency up- and down-conversion and 
beam manipulation at the second harmonic frequency
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Second Order Susceptibility 
in ISTs in QWs

Rosencher et al. Electron. Lett. 25, 1063 (1989) Capasso et al. IEEE J. Quantum Electr. 30, 1313 (1994)

• Asymmetric QWs may exhibit large second order susceptibility χ(2)

Resonant process!

Typical values ~250000 pm/V       

vs.          

10s of pm/V for LiNbO3

Khurgin J. Opt. Soc. Am. B 6, 1673 (1989)

jiij Rz 

Design principles:

• Maximize carrier concentration in the wells.

• Maximize transition dipole moment.

• Levels equally spaced.

• Minimize losses
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3 levels are designed to create 
a (2)
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Campione et al. Appl. Phys. Lett. 104, 131104 (2014)

Wolf*, Campione*, et al. Nature Commun. 6, 7667 (2015)

Lee et al. Nature 511, 65-69 (2014)
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Second Harmonic Generation – Design 
of the Strong Coupling Structure

Campione et al. Appl. Phys. Lett. 104, 131104 (2014)

30 THz 60 THz

Gorkunov et al. Appl. Phys. Lett. 88, 071912 (2006)
Klein et al. Science 313, 502 (2006)

• Resonant metamaterials enhance second harmonic generation

• We propose a split-ring resonator design supporting two resonances for orthogonal polarizations of 
the incoming wave

Proposed design Supported resonances

X

Y

Kanazawa et al. Appl. Phys. Lett. 99, 024101 (2011)
Thyagarajan et al. Opt. Express 20, 12860 (2012)
Ginzburg et al. ACS Photon. 2, 8 (2014)
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Nanoresonators Enhance the Fields

Metallic nanoresonators have Ez in near-field for normal incidence

• Designed to have two resonances in FF and SH in cross polarizations

• Enhances fields by up to 5 times

Campione et al. Appl. Phys. Lett. 104, 131104 (2014).

X

Y

Good spatial field overlap!
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Enhanced z-Polarized Fields Within QWs

• Good field overlap within the QWs

Cap layer, εc

Substrate, εs

εAu

ISTε
ISTs in QWs
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1) z-polarized 
field within the 
QWs

2) Enhanced with 
respect to |Ey| of 
the plane wave
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Linear Transmission: Simulation and 
Experimental Results
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Second Harmonic Generation –
Simulation Results

Campione et al. Appl. Phys. Lett. 104, 131104 (2014)
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SH conversion efficiency

• An optimum value for the pump frequency that 
maximizes the SH conversion efficiency is found for 
reflected and transmitted pulses

Maximum estimated efficiency: 10-2 W/W2

• SH signal is found in perpendicular polarization with 
respect to the pump polarization
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Polarization Properties of SH

laser polarization
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Wolf et al. Nature Commun. 6, 7667 (2015)
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Saturation of the SH Process

No CO2 lasing lines at peak 
efficiency  High pump 
intensity using pulsed OPA

CW data shown at different 
frequency

0.1% conversion in 
~700nm path length 

Due to IST’s absorption 
saturation

max conversion: ~0.1% 
@ ~6kW/cm2
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BUT…

Results could be improved by increasing the 
volume of QW IST used in the SH process ---

Better longitudinal field overlap
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Moving to Shorter Wavelengths

Challenges:

– Very large CB offset required  III-Nitrides are hard to 
control

– Resonators dimensions shrink  fabrication approaches 
the limit of conventional EBL

– Metal losses increase  will strong coupling prevail??

Conduction 
band offset
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SHG in III-Nitride ISTs in QWs
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• Design: SHG 3 µm  1.5 µm (0.4 eV  0.8 eV)

• Traditional band structure calculation not enough

– Over estimation of IST

Wolf et al. Appl. Phys. Lett. 107, 151108 (2015)0 2 4 6 8
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SHG in III-Nitride Strongly 
Coupled Structures

•Actual working wavelength 3.2 µm  1.6 µm
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Wolf et al. Appl. Phys. Lett. 107, 151108 (2015)
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Outline of the Talk 
Strong Light-Matter Interaction

• Show how to use metamaterial 

nanoresonators to

• Achieve strong coupling with intersubband

transitions (ISTs) in quantum wells (QWs)

• Achieve efficient second harmonic (SH) generation in ISTs 

• Form a metasurface for beam manipulation of the SH signal

χ(2)ω
ω 2ω
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Beam Manipulation with Metasurfaces

Yu et al. Science 334, 333 (2011)

Ni et al. Science 335, 427 (2012)

Lin et al. Science 345, 298 (2014)

Phase gradient to achieve anomalous refraction Phase gradient to achieve anomalous reflection

Phase gradient to achieve lensing
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Beam Manipulation of SH Radiation

Segal et al. Proc. SPIE 9278, 927808 (2014)

• Recent independent work has shown manipulation of SH radiation coming from 
metallic metasurfaces• Our approach

• Nonlinear diffraction

illuminate at FF Generate nonlinear 
polarization in QWs

Couple back nonlinear 
polarization to resonators

Resonator radiates SH to far field

Construct a 
metasurface of 
coherent 
resonators 
radiating SH
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Phased Arrays - Schematic

Identical point sources
+
Radiating with controllable phase difference 
==
Full control over beam direction and shape

Image from Wikipedia
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Array of Second Harmonic Sources

Wolf*, Campione*, et al., Nature Commun. 6, 7667 (2015)

• We created a phase-locked “feed” to subwavelength metamaterial resonators which re-radiate a 
beam with desired spectral, spatial, and polarization properties

So that we can realize

Focusing 

Beam steering

Angular momentum

at the SH frequency



IEEE Photonics Society Special Seminar, University of New Mexico, November 10, 2015 Slide 42 of 49

Spatial Coherence of the Resonators

•Resonant process  χ(2) has phase

•Involves real transitions

•Resonant cavity mediated process 

•Resonator inhomogeneity adds random phase

•COHERENT ???

Far-field radiation pattern

O. Wolf et al. Nature Commun. 6, 7667 (2015)

All the resonators are acting as a collection of 
phase coherent sources of SH radiation
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Simulation of SH Beam Steering

• Thus, by slightly varying the resonator shape across the sample, one could create a source with an 
arbitrary wavefront

Phase variation across the array Simulation

• The angle of the emitted lobe is controlled by the ‘phase slope’ along the chosen axis and can 
readily be varied by changing the spacing between phase steps
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Beam Manipulation: 2-in-1 device

flipping induces π phase shift

Period determines  
angular separation
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Beam Manipulation: 3-in-1 device

•Cavities radiate polarized light

5µm
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O. Wolf et al. Nature Commun. 6, 7667 (2015)
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Latest Developments in the Literature

• Very recently, the Pancharatnam-Berry phase approach has been theoretically applied to nonlinear 
metasurfaces to achieve focused SH beam Tymchenko et al. arxiv:1510.07306 (2015)

This is just the beginning – The topic of nonlinear metasurfaces has potentially a lot more to offer!
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Conclusion

Metasurfaces are ideally suited for strong light-matter coupling 
to ISTs in QWs

Promising platform for efficient second harmonic generation 
with near perfect polarization separation between pump and 
SH signal

Manipulation of SH beam 
for wavefront engineering
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Motivation of circuit modeling
Resonator dependence

• A circuit interpretation helps understanding 

• the parameters that contribute to strong coupling

?

• and how the resonator shapes affect Rabi splitting    

Campione et al., Phys. Rev. B 89, 165133 (2014)
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Electrostatic approximation for 
near fields – Comparison 

Dogbone On 
top of 

multilayered 
substrate

Dogbone On top of 
anisotropic half space

Distributed set of charges: 
Electrostatic approximation
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Energy evaluation circuit model

Cap layer, εc

Substrate, εs

εAu

ISTε
ISTs in QWs

z

y

E
k

y

x

QW no QW
e e eW W W  

The change in energy due to the presence of 
the QWs is evaluated using both full-wave 
simulations and circuit network model 

The agreement is quite remarkable given the 
electrostatic approximation used
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Energy evaluation circuit model
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Spectra various resonators circuit model
• The agreement is better observed by plotting the reflection for a specific scaling factor

WITHOUT 

QUANTUM WELLS

WITH 

QUANTUM WELLS
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Full-wave simulation and 
experimental results

• We thus plot the transmission maps as a function of polariton and bare cavity frequencies from full-wave 
simulations and FTIR measurements at room temperature

Full-wave Experiment

• Note the good agreement of the two results
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Electrostatic approximation for 
near fields
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SHG- setup
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Focus lens 
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Refocus 
MgF2 lens
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detector
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ND filter

Beam path
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Electrostatic approximation for 
near fields – Comparison 

Resonator On top of 
anisotropic half space

Distributed set of charges: 
Electrostatic approximation
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Time and spectral measurements
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• The normal plane wave illumination induces the resonating metasurface to generate near fields that 
contain substantial z polarized electric fields

• These near fields excite electrons in the optical transition of the 
QWs, energy is exchanged between the two systems, inducing a 
splitting in the spectral properties (e.g., transmission): 3.5 THz splitting

• When looking in time domain, the presence of a Rabi oscillation is also 
sought to confirm strong coupling regime: 33 fs oscillation, 480 fs
beating
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