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Outline of the Talk

Strong Light-Matter Interaction

e Show how to use metamaterial

nanoresonators to

™
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* Achieve strong coupling with intersubband
transitions (ISTs) in quantum wells (QWs)
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What are Metamaterials? Sandi
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* Metamaterials are artificial materials whose interaction with light results in interesting
phenomena otherwise unattainable with natural materials
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* They are usually made of a subwavelength (i.e. non-diffracting) periodic arrangement of
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Adapted from M. Lapine et al. IET Microw. Antennas Propagat. 1, 3-11 (2007)
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Why the Use of Metamaterials Sandi
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* Some of the interesting phenomena that can be attained through the use of metamaterials:

Negative refraction Artificial magnetism
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Light-Matter Coupling in Metasurfaces @ﬁit"iﬂ‘.?au
Coupled to ISTs in QWs
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ter resonance

_ Rabi frequency

Benz, Campione, et al., Nat. Commun. 4, 2882 (2013)
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Applications of Strong Coupling Between @ Sandia

Metasurfaces and ISTs

* Range of operation from near- to far-infrared: Frequency can be
engineered by proper design of quantum wells and resonators

* Design tunable optoelectronic devices (e.g. filters?!)

* Enable incoherent and efficient light emission (i.e. “intersubband LEDs”)?

1Benz et al., Appl. Phys. Lett. 103, 263116 (2013) 3Campione et al. Appl. Phys. Lett. 104, 131104 (2014)

2Geiser et al. Appl. Phys. Lett. 101, 141118 (2012) 4Lee et al. Nature 511, 65-69 (2014)
>Wolf*, Campione*, et al. Nature Commun. 6, 7667 (2015)
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Material Resonance: ISTs in QWs
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Stack of different semiconductors
Quantized energy level designed
Narrow absorption

Promising for tuning from depletion

Benz et al., Appl. Phys. Lett.
103, 263116 (2013)

Only z polarized light can interact with the QWs and excite
the optically active transition
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We thus pattern a metasurface
of metallic resonators for two
reasons:

1) Introduce the cavity
resonance (dependent on
materials, dimensions, etc.)

2) Produce strong z-polarized
near fields to excite the ISTs
and promote electrons
in subbands
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Spectral Properties National
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* z-polarized near fields excite the ISTs, inducing a splitting of 3.5 THz splitting

E IST resonance Full-wave
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Benz et al., Nat. Commun. 4, 2882 (2013)
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Validation of Energy Exchange

* The validation of energy exchange is provided through the following video

ZI I _________ ........ X-y plane
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* Note that after the input pulse has gone through the structure, the Rabi oscillation is clearly visible
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InGaAs QWs (mid IR)
Benz et al., Nat. Commun. 4, 2882 (2013)
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GaN QWs (near IR)
Benz et al., ACS Photon. 1, 906 (2014)
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How Does the Resonator Design @Sandia
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Affect the Rabi Splitting?
fI Anappara et al. [22] |
100 - @ Gunteretal. [10]
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e Different resonator geometries may lead to different Rabi splittings

* Even for similar QW lengths
Maissen et al. , Proc. SPIE 8623, 86231M (2013) Campione et al., Phys. Rev. B 89, 165133 (2014)
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Modeling: Introduction of a @Sandia

Circuit Model

* A metasurface resonance can be modeled through a series RLC circuit

R Lo C

AAM— P |
gAu
— ?
ISTs in QWs e

/ W
€15t R,
* Proper connection in absence of strong coupling, i.e. in
Substrate, &, absence of QWs in the semiconductor heterostructure
Wi‘ the contribution of the ISTs?
—AN—
R

S

* The plane wave in the substrate can be modeled through a resistive load
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Electrostatic Approximation for @ﬁgtnigil';lal
Near Fields — IST Dipole Rule
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* The ISTs selection rule requires z polarized
electric fields

e zpolarized electric fields are confined in
the near fields of the resonators

* Near fields can be described resorting to
the electrostatic approximation
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Capacitance of a Static Dipole Over @ Sandia

an Anisotropic Half Space

Campione et al., Phys. Rev. B 89, 165133 (2014)

Z ’ ’
$S L) * We can estimate the electric potential of a charge

' b = 9. (2,6

e=¢,(XX+3p)+¢e,22
* This lets us characterize the electrostatic fields of a two-charge

system
g€, +1
C= te = — Cms = Cms + Ce{ST = écms
_ 1 9
O, —9_ & +
C. .. MS capacitance when ¢, = ¢ &: coupling coefficient
ms z t
CelcslT = Cpps («/gtgz - & ) / (g, +1): capacitor representing the strong
coupling to the ISTs
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Capacitance of a Static Dipole Over @ Sandia 7NN

National §=
Laboratories %,, Lﬁ

an Anisotropic Half Space

Campione et al., Phys. Rev. B 89, 165133 (2014)

z
I Qe $S I_qe
: | L) * We can estimate the electric potential of a charge
I | _
—————— ¢e o ¢e (81"82)

* This lets us characterize the electrostatic fields of a two-charge
system

This capacitor is a measure of the near-field interaction
between dipole and the ISTs

Cs: MS capacitance when ¢, = ¢, &: coupling coefficient

Ci' = Cpy (Jgtgz —¢, ) / (g, +1): capacitor representing the strong
coupling to the IST's
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Strong Coupling Capacitor in Place in @Sandia

the Circuit Model

* The total capacitor is thus the sum of two contributions

*»  Then$pudmubiritabie nddaih@W\simgng full-wave and

+ oo omplEaIta
EE i s ) e )
R Lins 5

ms

€Au
CcI5T
c
ISTs in QWs . hi
e ||
=2IST

Substrate, ¢,

IEEE Photonics Society Special Seminar, University of New Mexico, November 10, 2015 Slide 17 of 49



Validation of the Circuit Model: @ﬁgtnigil';lal
Spectral Properties
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Campione et al., Phys. Rev. B 89, 165133 (2014) €Ay

. . 2 .
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2IST
Y
Substrate, &,
X
Y
N Full-wave Circuit network Experiment

34 8 34

N'32 ' 07 N32 Stw 32 |

an e

— 30 — 30 = 30

> 28 28 € 228 |
226 £ 26 5826
= = B .24

524 =24

222 22 4 89 '

i3 & =
20 20 . =
20 22 24 26 28 30 32 34 20 22 24 26 28 30 32 34

2022 24 26 28 30 32 34
Bare cavity frequency [THz]

Not only do we recover the resonance frequency locations, but we are also able to quantify
the magnitude of reflectivit

Bare cavity frequency [THz] Bare cavity frequency [THz]
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Circuit Model: How to Maximize @Sandia

Rabi Splitting

*  We now investigate different resonators on top of the same quantum well

Circular SRR Jerusalem cross Dogbone
025 ¥
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Bare cavity frequency [THz] Bare cavity frequency [THz] Bare cavity frequency [THz]

* Note the good agreement with full-wave simulations (red dashed)

* Note the narrower splitting for SRR resonator
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Circuit Model: How to Maximize Rabi

Splitting — Design Guidelines

O \
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Campione et al., Phys. Rev. B 89,
165133 (2014)

Benz, Campione, et al., Nano Lett.
15, 1959 (2015)

To increase the Rabi splitting the metasurface should
exhibit a larger capacitance
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Another Example: @Sandia
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* Let’s take the SRR geometry of the previous slide

) Cme =870
Splitting = 4.2 THz

* Toincrease its capacitance, we increase the metal traces

A larger capacitance
‘ Cing =13.7 aF corresponds to a larger Rabi
Splitting = 4.8 THz splitting

* Dependence with resonator physical dimensions:

Cgap = gohW/g‘l‘gO (h+W+ g)

C

Csrr = Cg surf

+
ap
C..c=|2en(h+w)log(4R/ /T
Sydoruk et al., J. Appl. Phys. 105, 014903 (2009) surf [ 0( ) g( g ):I
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Outline of the Talk
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* Achieve efficient second harmonic (SH) generation in ISTs
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Strongly coupled structures exhibit large field enhancements — Useful to enhance second
harmonic generation in ISTs in QWSs

Nonlinear

medium

Conventional method:

. macroscopic nonlinear crystal (BBO,LiNbO,,...)
. Low efficiency = long path length > phase matching is a
problem

The use of ultrathin metasurfaces that are free of phase-matching constraints could

open up a plethora of applications, such as frequency up- and down-conversion and
beam manipulation at the second harmonic frequency
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Second Order Susceptibility Sandia
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* Asymmetric QWs may exhibit large second order susceptibility x(2)

Resonant process!

3
) @9y = EN. (z12)(22a)(za1)
Fa=3% X ) = N T A, — iTa) (2hw — ABrs — iT33)

£, =228

Zjj oc<‘Pl- |72“P]>

Ey =982 meV .
I E Design principles:

Typical values ~250000 pm/V e Maximize carrier concentrationin the wells.
e Maximize transition dipole moment.

vs. e Levelsequally spaced.
10s of pm/V for LINbO3 e Minimizelosses
Rosencher et al. Electron. Lett. 25, 1063 (1989) Capasso et al. IEEE J. Quantum Electr. 30, 1313 (1994)

Khurgin J. Opt. Soc. Am. B 6, 1673 (1989)
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Design and Fabrication of ISTs Nationa
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QW designed for 10um = 5um SHG, based on InGas/AllnAs system
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Campione et al. Appl. Phys. Lett. 104, 131104 (2014)

Wolf*, Campione*, et al. Nature Commun. 6, 7667 (2015)

Lee et al. Nature 511, 65-69 (2014)
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Second Harmonic Generation — Design @ Sandia

of the Strong Coupling Structure

* Resonant metamaterials enhance second harmonic generation

Gorkunov et al. Appl. Phys. Lett. 88, 071912 (2006) Kanazawa et al. Appl. Phys. Lett. 99, 024101 (2011)
Klein et al. Science 313, 502 (2006) Thyagarajan et al. Opt. Express 20, 12860 (2012)
Ginzburg et al. ACS Photon. 2, 8 (2014)

*  We propose a split-ring resonator design supporting two resonances for orthogonal polarizations of
the incoming wave

Proposed design Supported resonances

«—> X

60 THz

Campione et al. Appl. Phys. Lett. 104, 131104 (2014)
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m Metallic nanoresonators have E, in near-field for normal incidence
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* Enhances fields by up to 5 times Good spatial field overlap!

Campione et al. Appl. Phys. Lett. 104, 131104 (2014).
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Enhanced z-Polarized Fields Within QWs National

* Good field overlap within the QWs

gAu

Cap layer, ¢,

ISTs in QWs

§IST

z
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Y
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0.2
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1
.......................... -0.2

1) z-polarized
-0.6 field within the
QWs
2) Enhanced with
respect to |E | of
the plane wave

-0.8
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Linear Transmission: Simulation and Sandia

National

Experimental Results Laboratories %

Wavelength
aV%engt [ugl]

g Wavslength [uén]

121110 9 8 5 121110 9

1 ‘ 1 o /"‘~\
C K C
2 ke
@ o
505 12 o fin £05 Ay f
& v/ y-polarization < x-pola rization\\ i
= —Experimental = — Experimental H
0 ~-Simulated ---Simulated Yea S
100 150 200 250 .00 150 200 250
Energy[meV] Energy[meV]

IEEE Photonics Society Special Seminar, University of New Mexico, November 10, 2015 Slide 29 of 49




National

Second Harmonic Generation — @Sandia AR
Laboratories %

Simulation Results

0.015 ‘ ‘ ‘
=& Forward ) .. t,r t,r 2
o Bachd SH conversion efficiency Ngy = PSH / Pep
(\lg 0.01;
Em *  An optimum value for the pump frequency that
= 0005 maximizes the SH conversion efficiency is found for
) N e reflected and transmitted pulses

P |
P-*’ L i i L . . . .
% 28 29 30 31 32 33 34 Maximum estimated efficiency: 102 W/W?

Frequency [THz]

©
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=
T

*  SHsignal is found in perpendicular polarization with
respect to the pump polarization

S
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Frequency [THz]

Campione et al. Appl. Phys. Lett. 104, 131104 (2014)
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Pump is CW CO, laser Wavelength [um]
5 102 10 9.8 9.6 94

® Experiment > e T * CWpump
—p, 4510 p2_BNIEN efficiency: * | * pulsed pump

~2.3 mW/W?2with ; .

SH power [uW]

~700 nm thickness il )
, oo, o
o,
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S. Campione et al. Appl. Phys. Lett. 104, 131104 (2014) Lee et al. Nature 511, 65-69 (2014)

Frequency [THz]

Measure, 5um
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Polarization Properties of SH e s ]
polarizer Wolf et al. Nature Commun. 6, 7667 (2015)
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Saturation of the SH Process s N7
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W Results could be improved by increasing the
volume of QW IST used in the SH process ---
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Moving to Shorter Wavelengths o (50°)

Laboratories %

Conduction I

band offset

Challenges:

— Very large CB offset required = IlI-Nitrides are hard to
control

— Resonators dimensions shrink = fabrication approaches
the limit of conventional EBL

— Metal losses increase = will strong coupling prevail??

IEEE Photonics Society Special Seminar, University of New Mexico, November 10, 2015 Slide 34 of 49



SHG in llI-Nitride ISTs in QWs National
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e Design: SHG3 um 2 1.5 um (0.4 eV - 0.8 eV)
e Traditional band structure calculation not enough

— Over estimation of IST

o
(3

Energy [eV]

0 2 4 6
Growth Direction [nm]

Adding
interface
roughness

|
1+
|
S |
c 0.95
& |
= |
£2—6-9 l
£ o
|
0.85¢ I
/ I e
0.8
4 8 0 Wolf et al. Appl. Phys. Lett. 107, 151108 (2015)

Position (nm)
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SHG in llI-Nitride Strongly
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» Actual working wavelength 3.2 ym > 1.6 ym

107
s .
210-8 -90 60 -30 0 30 60 5 2+ Or‘derl Of m09n|TUde
8 Pomrinde o) QWi 30 oW/ improvement with
()]
% 10° A'e respect to QWs only
o

107° — —

10 10

Peak power in [W]

Wolf et al. Appl. Phys. Lett. 107, 151108 (2015)
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Outline of the Talk
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* Form a metasurface for beam manipulation of the SH signal
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Yu et al. Science 334, 333 (2011)
Phase gradient to achieve lensing
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Ni et al. Science 335, 427 (2012)

Lin et al. Science 345, 298 (2014)
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* Recent independent work has shown manipulation of SH radiation coming from

*  Ounetpiliioasbtasurfaces

* Nonlinear

Segal et al. Pr 927808 (2014)

Couple back nonlinear
pojarization to resonators

Generate nonlinear
polarization in QWs

illuminate at FF

Construct a
metasurface of
coherent
resonators
radiating SH

Resonator radiates SH to far field
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Radiating with controllable phase difference

Full control over beam direction and shape

Image from Wikipedia
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. We created a phase-locked “feed” to subwavelength metamaterial resonators which re-radiate a
beam with desired spectral, spatial, and polarization properties
So that we can realize

Focusing

Focusing

Beam steering

Beam steering

Angular momentum

Ancular marmentum

at the SH frequency
Wolf*, Campione*, et al., Nature Commun. 6, 7667 (2015)
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e Resonant prc--3s = x2) has phase

lati
e Involves real u andifgiden

IllCOllE‘l ent emlttel S Cohel ent array

All the resonators are acting as a collection of
phase coherent sources of SH radiation

Far-field radiation pattern

O. Wolf et al. Nature Commun. 6, 7667 (2015)
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Simulation of SH Beam Steering o

Laboratories

. Thus, by slightly varying the resonator shape across the sample, one could create a source with an
arbitrary wavefront

Phase variation across the array

Simulation

F — 3
©
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Lal]
5
P Ot
o
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®
g -1t )

-20 0 20

Cavity x position [um] B_eam StEEl"lng / /4

. The angle of the emitted lobe is controlled by the ‘phase slope’ along the chosen axis and can
readily be varied by changing the spacing between phase steps
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Period determines - Source
angular separation a +beam
splitter

O. Wolf et al. Nature Commun. 6, 7667 (2015)
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Pump
polarization

3-in-1:

Source +
Polarizer + Beam | ... u polarized
Splitter

O. Wolf et al. Nature Commun. 6, 7667 (2015)
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Very recently, the Pancharatnam-Berry phase approach has been theoretically applied to nonlinear
metasurfaces to achieve focused SH beam

Tymchenko et al. arxiv:1510.07306 (2015)

—-1.0 0 1.0
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LCP SHG
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RCP pump

This is just the beginning — The topic of nonlinear metasurfaces has potentially a lot more to offer!
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®m Metasurfaces are ideally suited for strong light-matter coupling
to ISTs in QWs
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Motivation of circuit modeling @ Sandia

Resonator dependence

e Acircuit interpretation helps understanding
* the parameters that contribute to strong coupling

* and how the resonator shapes affect Rabi splitting
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Campione et al., Phys. Rev. B 89, 165133 (2014)
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Electrostatic approximation for @ st
near fields — Comparison

Dogbone On Dogbone On top of Distributed set of charges:
top of anisotropic half space Electrostatic approximation
multilayered
substrate
“Au c b
Ay 44+
ISTs in QWs ISTs in QWs ISTs in QWs
Substrate
E
1 |E|  |E| |
0.5
~ 0 ’
E! |
- -0.5
-1 .
0.5 0 0.5
x [pm]

IEEE Photonics Society Special Seminar, University of New Mexico, November 10, 2015 Slide 51 of 49



The change in energy due to the presence of
the QWs is evaluated using both full-wave
simulations and circuit network model

Cap layer, ¢,

ISTs in QWs
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The agreement is quite remarkable given the
electrostatic approximation used
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QUANTUM WELLS
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 We thus plot the transmission maps as a function of polariton and bare cavity frequencies from full-wave
simulations and FTIR measurements at room temperature

Full-wave Experiment
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* Note the good agreement of the two results
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Electrostatic approximation for

near fields
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SHG- setup
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 The normal plane wave illumination induces the resonating metasurface to generate near fields that

contain substantial z polarized electric fields Benz et al., Nat. Commun. 4, 2882 (2013)

E * These near fields excite electrons in the optical transition of the
k .],_> QWs, energy is exchanged between the two systems, inducing a
splitting in the spectral properties (e.g., transmission): 3.5 THz splitting

&
A « When looking in time domain, the presence of a Rabi oscillation is also

sought to confirm strong coupling regime: 33 fs oscillation, 480 fs
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