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Our Expertise

I Risk-Averse Optimization:
I A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic Programming:

Modeling and Theory, SIAM, Philadelphia, 2009.
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Conditional Value-at-Risk”, SIAM Journal on Optimization, to appear.
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Our Expertise
I Probabilistic Computation & Statistical Estimation:

I S. Y. Chun, A. Shapiro, and S. Uryasev, “Conditional Value-at-Risk and Average

Value-at-Risk: Estimation and Asymptotics”, Operations Research, vol. 60, pp.

739-756, 2012.
I B. Pagnoncelli, S. Ahmed, and A. Shapiro, “Sample Average Approximation Method

for Chance Constrained Programming: Theory and Applications”, Journal Optimization

Theory and Applications, vol. 142, pp. 399-416, 2009.
I A. Veremyev, P. Tsyurmasto, S. Uryasev, and R. T. Rockafellar, “Calibrating

Probability Distributions with Convex-Concave-Convex Functions: Application to CDO

Pricing”, Computational Management Science, 2013.
I R. T. Rockafellar and J. Royset, “On Buffered Failure Probability in Design and

Optimization of Structures”, J. Reliability Engineering and System Safety, vol. 95, 2010.
I Discrete Density Estimation & Stochastic Reduced Order Models

I B. Ergashev, K. Pavlikov, S. Uryasev, and E. Sekeris, “Estimation of Truncated Data

Samples in Operational Risk Modeling”. Journal of Risk and Insurance, 2015.
I S. Sarkar, J. E. Warner, W. Aquino, and M. D. Grigoriu, “Stochastic Reduced Order

Models for Uncertainty Quantification of Intergranular Corrosion Rates”, Corrosion

Science, 2013.
I J. E. Warner, M. D. Grigoriu, and W. Aquino, “Stochastic Reduced Order Models for

Random Vectors: Application to Random Eigenvalue Problems”, Probabilistic

Engineering Mechanics, vol. 31, 2013.
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Our Expertise

I PDE-Constrained Optimization, Inexactness, & Adaptivity:
I D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders, “A

Trust-Region Algorithm with Adaptive Stochastic Collocation for PDE Optimization

under Uncertainty”, SIAM Journal on Scientific Computing, vol. 35(4), 2013.
I D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders, “Inexact

Objective Function Evaluations in a Trust-Region Algorithm for PDE-Constrained

Optimization under Uncertainty”, SIAM Journal on Scientific Computing, vol. 36(6),

2014.
I D. P. Kouri, “A Multilevel Stochastic Collocation Algorithm for Optimization of PDEs

with Uncertain Coefficients”, SIAM/ASA Journal on Uncertainty Quantification, vol.

2(1), 2014.
I M. Heinkenschloss and D. Ridzal, “A Matrix-Free Trust-Region SQP Method for

Equality Constrained Optimization”, SIAM Journal on Optimization, vol. 24(3), 2014.
I M. Heinkenschloss and D. Ridzal, “An Inexact Trust-Region SQP Method with

Applications to PDE-Constrained Optimization”, Numerical Mathematics And

Advanced Applications, EUMATH 2007, Springer-Verlag, Heidelberg, 2008.
I M. Heinkenschloss and D. Ridzal, “Integration of Sequential Quadratic Programming

and Domain Decomposition Methods for Nonlinear Optimal Control Problems”, In

Domain Decomposition Methods in Science and Engineering XVII, Lecture Notes in

Computational Science and Engineering Vol. 60, Springer-Verlag, Heidelberg, 2008.
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Our Expertise

I Numerical Methods and Software for PDEs:
I P. B. Bochev, D. Ridzal, “Rehabilitation of the Lowest-Order Raviart-Thomas Element

on Quadrilateral Grids”, SIAM Journal on Numerical Analysis, vol. 47(1), 2007.
I P. B. Bochev, H. C. Edwards, K. J. Peterson, D. Ridzal, “Solving PDEs with Intrepid”,

Scientific Programming, vol. 20(2), 2011.
I N. D. Roberts, P. B. Bochev, L. D. Demkowicz, D. Ridzal, “A toolbox for a class of

Discontinuous Petrov-Galerkin methods using Trilinos”, Sandia Report,

SAND2011-6678, 2011.
I W. Aquino, J. C. Brigham, N. Sukumar, C. J. Earls, “Generalized Finite Element

Method using Proper Orthogonal Decomposition”, International Journal for Numerical

Methods in Engineering, vol. 79, 2009.
I Intrepid, www.trilinos.org/packages/intrepid, Lead developers: D. Ridzal, P. B. Bochev.
I Sierra Structural Dynamics, www.sandia.gov/asc/integrated codes.html.

I Software for Large-Scale Optimization:
I Rapid Optimization Library (ROL), www.trilinos.org/packages/rol,

Lead developers: D. P. Kouri and D. Ridzal.

I Portfolio Safeguard (PSG), www.aorda.com/aod/psg.action,

Lead developer: S. Uryasev.
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Computational & Software Infrastructure

I Optimization: Rapid Optimization Library (ROL)
Lead Developers: Kouri and Ridzal

I Matrix-free simulation-based optimization interface
I State-of-the-art algorithms for large-scale unconstrained and

constrained optimization
I Interface for optimization under uncertainty including risk,

buffered probability, and sample generation
I Application: Intrepid (Ridzal), Sacado, MueLu, etc.

I Intrepid implements local finite-element computations
I Trilinos packages for automatic differentiation, algebraic

multigrid, (non)linear solvers, mesh data structures, etc.
I Rapid development of large-scale multiphysics applications

with scalable solvers and interfaces for optimization

I Optimization: Portfolio Safeguard
Chief Research Consultant and Owner: Uryasev

I Nonlinear and mixed-integer nonlinear optimization
I Numerous risk and probabilistic functions implemented
I Large scale: 1,000,000 scenarios and 200,000 variables
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Motivating Applications

Direct-field acoustic testing

Optimal control of thermal fluids

Topology optimization for structural design

Optimal control of plasma instabilities
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Motivating Applications

Direct-field acoustic testing

Optimal control of thermal fluids

Topology optimization for structural design

Optimal control of plasma instabilities

Overarching challenge: Incorporate the treatment of risk in the
mathematical formulation, theoretical analysis and numerical solution.
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Direct-Field Acoustic Testing
“RISK-NEUTRAL” OPTIMAL CONTROL OF THE HELMHOLTZ EQUATION

Ωo

Setup: Red denotes uncertainty in the refraction
index inside Ωo and uncertainty in the loudspeaker
enclosures (including thickness and sound speed).
Blue stands for the loudspeaker control regions,
whose union is denoted by Ωc .

Minimize
z ∈ L2(Ωc)

∫
Ξ
ρ(ξ)

∫
Ωo

|(U(z))(ξ, x)−w(x)|2dxdξ+α

∫
Ωc

|z(x)|2dx ,

where U(z) = u : Ξ→ H1(Ω) solves

−∆u(ξ)− K (ξ)u(ξ) = 1Ωc z, in Ω, a.s.

with Robin boundary conditions

∂u
∂n

(ξ) = iku(ξ), on ∂Ω, a.s.

I Large-scale optimization, incl. solution of Helmholtz equation in 3D.
I Uncertainty in material properties, loudspeaker specifications, etc.
I Risk-neutral (expected value) formulation of the misfit objective:

The state u(ξ) should match w on average; cf. experimental science.
I Challenge 1: Large-dimensional space of uncertain parameters, Ξ.
I Partial solution: Adaptive objective function and gradient evaluations.
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Direct-Field Acoustic Testing
“RISK-NEUTRAL” OPTIMAL CONTROL OF THE HELMHOLTZ EQUATION

Results: Left pane: The real parts of the computed optimal controls. Center pane: The real part of
the expected value of the optimal state, restricted to the region of interest. Right pane: The real part
of the standard deviation of the optimal state.

dim PDE Solves CP obj CP grad Obj. Value
42 11,543 145 145 5.2542
44 32,739 233 481 5.2637
46 60,617 243 1,453 5.2641
48 79,221 247 2,961 5.2641
50 90,157 251 4,569 5.2641
60 100,911 271 7,621 5.2641
70 103,979 291 8,233 5.2641
80 105,607 311 8,253 5.2641

Cost: Roughly 200x the cost of deterministic optimization, for 80-dim uncertainty.
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Topology Optimization for Structural Design
“RISK-AVERSE” OPTIMAL DESIGN FOR LINEAR ELASTICITY EQUATIONS

Setup: The forcing or load F (ξ) on the right part of
the bracket is uncertain. Additionally, there is an
uncertain Dirichlet condition on the displacement at
the bolt location, see g(ξ).

Given volume fraction V0 ∈ (0, 1), max compliance η, Ω ⊂ R3,

Minimize
0 ≤ z ≤ 1

Prob
[∫

Ω
F (ξ, x) · (U(z))(ξ, x) dx ≥ η

]
s.t.
∫

Ω z(x) dx ≤ V0|Ω|, where U(z) = u : Ξ→ (H1(Ω))3 solves

−∇ · (E(z) : εu(ξ)) = F (ξ), in Ω, a.s. .

εu(ξ) =
1
2

(∇u(ξ) +∇u(ξ)>), in Ω, a.s. .

u(ξ) = g(ξ), on ∂Ω, a.s.

I Uncertainty in external forces (loads) and boundary conditions.
I Reliability formulation of the compliance objective: Compute

light-weight designs that reduce the probability of structural failure.
I Challenge 2: Nonsmooth objective functions and constraints.
I Challenge 3: Rare-event detection and computation.
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Optimal Control of Thermal Fluids
“TIME-CONSISTENT” RISK-AVERSE CONTROL OF MULTIPHYSICS SYSTEMS

Setup: The velocity field and temperature at the inlet Γin are
time dependent and uncertain, see u0(ξ, t) and T0(ξ, t). A
time dependent temperature control z(t) is applied on the top
and bottom boundaries, Γc and Γh , to create thermal flow
counteracting the vortex in the recirculation zone ΩR .

Minimize
a(t) ≤ z(t) ≤ b(t)

Risk
(∫

ΩR

|∇ × (U(z))(ξ, x , τ final)|2dx
)

where U(z) = u : Ξ→ (H1(Ω))3 × L2([0, τ final]) solves

∂u(ξ)

∂t
− ν1∆u(ξ) + (u(ξ) · ∇)u(ξ) +∇p(ξ) + ν2T (ξ)g = 0

∂T (ξ)

∂t
− ν3∆T (ξ) + u(ξ) · ∇T (ξ) = 0

and ∇ · u(ξ) = 0, in Ω× [0, τ final], with BCs

u = u0(ξ, t) and T = T0(ξ, t) on Γin × [0, τ final], etc.,
and heat-flux control z(t) = z satisfying

∂T (ξ)

∂n
= h(z − T (ξ)) on Γh and Γc.

I Uncertainty in the velocity field and temperature at the inlet.
I A thermal fluid system with time-dependent temperature control.
I Challenge 4: Time consistency for continuous-time systems.

D. P. Kouri (PI) DARPA EQUiPS Risk-Averse Optimization 16



Outline

Introduction
Team Members & Expertise
Computational & Software Infrastructure

Motivating Applications

Technical Challenges
Risk Mitigation Strategy

Our Approach
Risk Quadrangle
Buffered Probability
Time Consistency
Optimization-Based Sampling

D. P. Kouri (PI) DARPA EQUiPS Risk-Averse Optimization 17



Target Optimization Formulations

Goal: Develop efficient methods to determine resilient optimal
controls & designs that mitigate high-consequence rare events.

Minimize probability subject to risk-adjusted constraints:

min
z∈Z

pτ (U(z)) subject to R(J(U(z), z)) ≤ c0.

Minimize risk subject to probabilistic constraints:

min
z∈Z

R(J(U(z), z)) subject to pτ (U(z)) ≤ p0.

Notation: z is the control or design and U(z) is the PDE solution.

D. P. Kouri (PI) DARPA EQUiPS Risk-Averse Optimization 18



Multi-Physics Hierarchy

∂T
∂t
− ν3∆T + u · ∇T = 0

∂u
∂t
− ν1∆u + u · ∇u +∇p − ν2g = 0

∇ · u = 0

∂u
∂t
− ν1∆u + u · ∇u +∇p − ν2Tg = 0

∇ · u = 0

∂T
∂t
− ν3∆T + u · ∇T = 0

−ν1∆u + u · ∇u +∇p − ν2Tg = 0

∇ · u = 0

−ν3∆T + u · ∇T = 0

−ν3∆T + u · ∇T = 0
−ν1∆u + u · ∇u +∇p − ν2g = 0

∇ · u = 0

Unsteady Phase 2

Steady Phase 1
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Technical Overview

Risk Quadrangle

Risk R←→ D Deviation

↑↓ S ↓↑
Regret V ←→ E Error

I Application specific risk through
defintion of regret.

I Rigorously connect optimization
and statistical esitmation.

I Develop time-consistent risk
measures.

Buffered Probability

V1

V2

X ≤ 0 O.K.

X > 0 failure zone

buffer zone

X = q (< 0)

X = 0

I Conservative surrogate for
probabilistic computations.

I Nice mathematical properties:
quasi-convexity, monotonicity,
continuity, etc.

I Efficient optimization formulation.
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Technical Challenges
Risk Mitigation Strategy

1. Large-dimensional space of uncertain parameters
I Optimization-based sampling generates dimension-independent discrete

densities that match desired properties, e.g., distribution tails.
I Adaptive discretizations — in numerical optimization, accuracy is not

required far away from a solution.

2. Rare-event detection and computation
I Buffered probability provides a numerically tractable and conservative

surrogate for probabilistic objectives and constraint.
I Optimization-based samples must account for rare/tail events.

3. Nonsmooth objective functions and constraints
I Epi-regularized risk quadrangles are related to trade-off models of risk,

regret, deviation, and error.
I Higher-moment buffered probability as a smooth, conservative surrogate

for buffered probability computation.

4. Time consistency for continuous-time systems
I Time-consistent risk measures: “At every state of the system, optimality

of our decisions should not depend on scenarios which we already know
cannot happen in the future” (Shapiro et al.)

I Develop time-consistent risk measures using the risk quadrangle.
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Risk Quadrangle — A New Paradigm

Functionals applied to random variable “costs” X

Risk R ←→ D Deviation
Optimization ↑↓ S ↓↑ Statistics

Regret V ←→ E Error

R(X ) provides a numerical surrogate for the cost in X
D(X ) measures the nonconstancy in X
E(X ) measures the nonzeroness in X
V(X ) quantifies the (net) regret in outcomes X > 0 versus X ≤ 0
S(X ) is a “statistic” associated with X through E as well as V

see: Rockafellar and Uryasev.
Surveys in Management Science and O.R. 18 (2013)

downloads: www.ise.ufl.edu/uryasev/files/2013/03/quadrangle.pdf
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Basic Quadrangle Relationships
I Regret and Error differ by Expectation

V(X ) = E[X ] + E(X ), E(X ) = V(X )− E[X ]

I Risk and Deviation differ by Expectation

R(X ) = E[X ] +D(X ), D(X ) = R(X − E[X ])

I Risk and Deviation obtained from Regret and Error

R(X ) = min
C

{
C + V(X − C)

}
, D(X ) = min

C
E(X − C)

I Statistic is a “byproduct” of Regret and Error minimization

S(X ) = argmin
C

E(X − C) = argmin
C

{
C + V(X − C)

}
Example: Mean-Based Quadrangle – Scaling parameter λ > 0

E(X) = λ‖X‖2 = λ(E[X 2])1/2 =⇒ L2-error scaled

S(X) = E[X ] =⇒ mean

D(X) = λσ(X) =⇒ standard deviation, scaled

R(X) = E[X ] + λσ(X) =⇒ safety margin risk

V(X) = E[X ] + λ‖X‖2 =⇒ L2-regret, scaled

D. P. Kouri (PI) DARPA EQUiPS Risk-Averse Optimization 26



Quantiles and “Superquantiles”: VaR and CVaR

FX = cumulative distribution function for random variable X

qp(X) Qp(X)
0

p

1
FX

Quantile: “value-at-risk” in finance
qp(X ) = VaRp(X ) = F−1

X (p)

Superquantile: “conditional value-at-risk” in finance
Qp(X ) = CVaRp(X ) = E[ X |X ≥ qp(X ) ] = 1

1−p

∫ 1
p qt (X )dt

Corresponding concepts of “failure”:
qp(c (x)) ≤ 0 probability of failure is ≤ 1− p
Qp(c (x)) ≤ 0 buffered probability of failure is ≤ 1− p
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Example: Quantile-Based Quadrangle
Probability level p ∈ (0, 1)

E(X ) = E
[

p
1− p

max{0, X}+ max{0,−X}
]

= Koenker-Basset error, normalized

S(X ) = qp(X ) = VaRp(X ) = quantile

D(X ) = Qp(X − E[X ]) = CVaRp(X − E[X ])

= superquantile deviation

R(X ) = Qp(X ) = CVaRp(X ) = superquantile

V(X ) =
1

1− p
E[max{0, X}]

= expected absolute loss, scaled
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Applications in Optimization

I Minimizing Risk through Regret

R(X ) = min
C∈R

{
C + V(X − C)

}
min
X∈X

R(X ) = min
X∈X

min
C∈R

{
C + V(X − C)

}
= min

X∈X ,C∈R

{
C + V(X − C)

}
I Minimizing Deviation through Error

D(X ) = min
C∈R

E(X − C)

min
X∈X
D(X ) = min

X∈X
min
C∈R
E(X − C) = min

X∈X ,C∈R
E(X − C)

I Statistic is a “byproduct” of Regret and Error minimization

S(X ) = argmin
C∈R

E(X − C) = argmin
C∈R

{
C + V(X − C)

}
D. P. Kouri (PI) DARPA EQUiPS Risk-Averse Optimization 29



Example: Minimizing CVaR
CVaRp(X ) = min

C∈R

{
C +

1
1− p

E[ max{0, X − C} ]
}

for p ∈ (0, 1)

VaRp(X ) = argmin
{

C +
1

1− p
E[ max{0, X − C} ]

}
Minimization in x ∈ Rn

minimize CVaRp0 (c 0(x))

subject to CVaRpi (c i (x)) ≤ bi , i = 1, . . . , m

Minimization in x and auxiliary variables C0, C1, . . . , Cm

minimize C0 +
1

1− p0
E[ max{0, c 0(x)− C0} ]

subject to Ci +
1

1− pi
E[ max{0, c i (x)− Ci} ] ≤ bi , i = 1, . . . , m

Convex/Linear programming when ci (x) a linear combination of
random variables, or a mixture of distributions (e.g., normal).
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Applications in Statistics

Y = dependent random variable
X1, . . . , Xn = independent random variables (“factors”)

Approximation scheme: Y ≈ f (X1, . . . , Xn)
C = some specified class of functions f : Rn → R

e.g. linear, f (X1, . . . , Xn) = c0 + c1X1 + · · ·+ cnXn

residual: Zf = Y − f (X1, . . . , Xn) for f ∈ C

Regression
minimize E(Zf ) over all f ∈ C for some error measure E

Standard regression: E(Zf ) = (E[Z 2
f ])1/2 “least squares”

Quantile regression: using Z + = max{0, Z}, Z−= max{0,−Z}
E(Zf ) = E[ p

1−p Z +

f + Z−f ] at probability level p ∈ (0, 1)

Koenker-Basset error, normalized
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Risk Quadrangle

Preliminary Results
I Optimal control of steady, viscid Burgers equation using smoothed CVaR
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I D. P. Kouri and T. M. Surowiec, “Risk-Averse PDE-Constrained Optimization
using the Conditional Value-at-Risk”, SIAM Journal on Optimization, to appear.

Research Tasks
I Develop smooth risk quadrangles to enable risk-averse PDE-optimization.

I Path-following continuation scheme coupled with Newton-type methods.

I Time-consistent, application-specific risk quadrangles for control of thermal fluids.
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Failure: Standard Engineering Perspective

X = c(x1, . . . , xn; V1, · · · , Vr ) = “cost” signaling “danger”

V1

V2

X ≤ 0 O.K.

X > 0 failure zone

threshold depending on (x1, x2)

Probability of failure: pf = prob
{

X > 0
}

• How to compute or at least estimate?
• How to cope with control variables x1, . . . , xn in optimization?

both pf and the threshold shift with changes in x1, . . . , xn!

Troubles with this concept:
• poor mathematical behavior is a serious handicap
• failure probability ignores the degree of failure
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Buffered Failure: Better Approach to Safety

Utilizing CVaR (superquantile) in place of VaR (quantile) in reliability

V1

V2

X ≤ 0 O.K.

X > 0 failure zone

buffer zone

X = q (< 0)

X = 0

Buffered probability of failure: Pf = prob
{

X > q
}

with q determined by CVaR1−Pf (X ) = E[ X |X > q ] = 0

Proposal: use Pf in place of pf
safer by integrating tail information, and
easier also to work with in computation!

See: Rockafellar and Royset (2010). On Buffered Failure
Probability in Design and Optimization of Structures.
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Definitions: POE and bPOE

X = random variable
x ∈ R = threshold
α ∈ [0, 1] = probability level

Probability of Exeedance (POE) = 1 - Inverse of VaR (Quantile)

1− {α : qα(X ) = x} = prob{X > x} = px (X )

Buffered Probability of Exceedance (bPOE) = 1 - Inverse of CVaR

1− {α : CVaRα(X ) = x} = p̄x (X )

bPOE is an extension of Buffered Probability of Failure for x 6= 0 .

[1] Mafusalov and Uryasev (2014). Buffered Probability of
Exceedance: Mathematical Properties and Optimization Algorithms.

[2] Norton and Uryasev (2014). Maximization of AUC and
Buffered AUC in Classification.
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bPOE Explanation

POE = prob{X > x},
bPOE = prob{X > q(x)}, where q(x) satisfies E[X |X > q(x))] = x

“Buffer”= x − q(x)
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bPOE vs POE

POE characteristics
I POE is concerned with the proportion of events exceeding some

threshold x ∈ R
I DOES NOT consider the magnitude of these events
I Considers only a count of events exceeding the threshold
I Poor mathematical properties: discontinuous!

bPOE characteristics
I bPOE is concerned with the proportion of events, that when

considered together, have average magnitude equal to some
threshold x ∈ R

I bPOE is a probability measurement, which takes into account the
magnitude of tail events

I Excellent mathematical properties
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Why is bPOE important?

POE can “hide” critical information

When the distribution of X is heavy tailed, the magnitude of tail
events is important.

Example: Hurricane Damage Data

Threshold POE bPOE
(Damage in $ billions) (%) (%)

100 1 3
50 4 10
10 15 69
1 48 100

0.1 79 100

I Hurricane damage data
forms a heavy-tailed
distribution

I Notice how bPOE reflects
heavy-tail (e.g. at
threshold $10 billion)
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Preliminary Results

bPOE Mathematical Properties
I bPOE equals a minimum of simple “partial moment” functions!

Surprisingly, the minimum value is always between 0 and 1.

p̄x (X ) = min
λ≥0

E[λ(X − x) + 1]+

I bPOE is quasi-convex in X w.r.t. addition and concave w.r.t. the
mixture operation; it is monotonic w.r.t. X .

I bPOE is a strictly decreasing function of the parameter x .

I 1/p̄x (X ) is a convex function of x , and a piecewise-linear
function for discrete distributions.

I CVaR and bPOE constraints are equivalent

CVaRα(X ) ≤ z ⇐⇒ p̄z(X ) ≤ 1− α.
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Buffered Probability of Exceedance

Preliminary Results
I If X = ~a>~x + b then bPOE opt. reduces to Convex/Linear Programming!
I ~x are opt. variables, ~a is a random vector and b is a random variable

min
~x

p̄z(~a>~x + b) = min
~x

min
λ≥0

E
[
λ(~a>~x + b − z) + 1

]+

= min
~x ,λ≥0

E
[
~a>λ~x + (b − z)λ+ 1

]+

= min
~y ,λ≥0

E
[
~a>~y + (b − z)λ+ 1

]+

.

Research Tasks
I Prove functional and MC approximation properties of bPOE.
I Smooth bPOE objective to enable use of Newton-type algorithms.
I Developed algorithms to minimize bPOE for nonlinear X .
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Dynamic Decision Process

Motivation
I Consider the multistage decision process

decision (x1)  observation (ξ2)  decision (x2)  
. . .  observation (ξT )  decision (xT )

I Example: Time-dependent optimal control of thermal fluids
I ξ[t] = (ξ1, . . . , ξt ) is the history up to time t ∈ {1, . . . , T}
I At time t , the past ξ[t] is observed, but the future is uncertain
I Decision xt only depends on the history ξ[t], not future observations

Guiding Principle
“An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision” (Bellman)
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Time Consistent Risk Measures

Our Approach
I Define conditional risk measures Rt ,T for every period t ∈ {1, . . . , T}.
I Time Consistency: For all 1 ≤ τ < θ ≤ T , if Zt and Z ′t such that

I Zt = Z ′t for t = τ , . . . , θ − 1

I Rθ,T (Zθ, . . . , ZT ) < Rθ,T (Z ′θ, . . . , Z ′T )

then Rτ ,T (Zτ , . . . , ZT ) < Rτ ,T (Z ′τ , . . . , Z ′T ).

I Sufficient condition for Bellman’s principle of optimality.

I A. Shapiro. “Time consistency of dynamic risk measures”, Operations Research
Letters, vol. 40, pp. 436-439, 2012.

I A. Shapiro. “On a time consistency concept in risk averse multi-stage stochastic
programming”, Operations Research Letters, vol. 37, pp. 143-147, 2009.

Research Tasks
I Extend time consistency theory to continuous time systems.
I Develop application relevant and computationally tractable time-consistent risk

measures.
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Optimization-Based Sampling

Motivation
I Abstract operator equation

M(S, X) = 0, S ∈ S, X ∈ X .

I The probability law of X is known and image of X is high-dimensional.
We need to estimate the probability law of S.

Our Approach
I We seek a discrete random variable X̃ that is “close” to X with atoms

x = {x1, . . . , xm} and corresponding probabilities p = {p1, . . . , pm} satisfying

pk ≥ 0 ∀ k and p1 + · · ·+ pm = 1.

I The atoms x and probabilities p solve:

Minimize
x, p

HX (x, p)

subject to pk ≥ 0 ∀ k

p1 + · · ·+ pm = 1

GX (x, p) ∈ FX .
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Preliminary Results
Problem Setup

I Optimal control of elastic structure in acoustic medium, e.g., DFAT.
I Excitation over four sides using a single frequency: 2Hz.
I Wave speed in fluid c = 1.
I Assumed shear and buld moduli with iid beta random variables.
I Minimize CVaR with probability level p = 0.95.
I Optimization-based samples: m ∈ {5, 10, 15}.
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Error: Calculated with respect to 2000 sample Monte Carlo solution.
Clock Time: 10 minutes versus 18 hours for Monte Carlo.
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Optimization-Based Sampling

Preliminary Results

m Objective CPU Time (sec) # of iterations
5 0.00551 0.91 5

10 0.00321 1.71 7
50 0.00079 3.92 9
100 0.00034 10.53 13

Table: Approx. of a distribution with 448 atoms by optimizing both atom positions and probabilities.

I B. Ergashev, K. Pavlikov, S. Uryasev, and E. Sekeris, “Estimation of Truncated Data

Samples in Operational Risk Modeling”. Journal of Risk and Insurance, 2015.
I J. E. Warner, M. D. Grigoriu, and W. Aquino, “Stochastic Reduced Order Models for Random

Vectors: Application to Random Eigenvalue Problems”, Probabilistic Engineering Mechanics,

vol. 31, 2013.

Research Tasks
I Develop HX , GX , FX to approx., e.g., tail info. in risk and bPOE computations.
I A priori and a posteriori error estimation will enable adaptive approximation.
I Incorporate adaptive optimization-based sampling with trust-region algorithm to

efficiently solve large-scale thermal-fluid control problems.
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