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● AlxGa1-xN pseudo-substrates for UV-emitters and power devices

● AlxGa1-xN (x = 0.3, 0.7) and AlN templates on sapphire by 

overgrowth of patterned AlxGa1-xN & AlN. 

● Devices enabled by patterned AlGaN/AlN templates

− UV-Laser Diode (Al0.3Ga0.7N)

− PIN diodes  (Al0.3Ga0.7N)

− AlGaN HEMTs  (on AlN)

● Summary

Outline
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Germicidal 
260-275 nm 

(water, air, surfaces)

Solar-blind flame 
detection,  <280 nm

(launch, fire)

UV-Induced Fluorescence
340, 280 nm

(biological agents) 

Raman Spectroscopy
225-250 nm

(biological agent identification)         

UV Processing
300-360 nm
(inks, epoxy) 

 AlGaN alloys can be used for 

UV-emitters and detectors 



Why Wide-Bandgap Semiconductors (WBS) 
for power electronics

WGS enable applications NOT 
possible in Si and GaAs

Property Si GaAs
4H-
SiC

GaN AlN

Bandgap (eV)
1.1 1.43 3.3 3.4 6.2

Critical Electric Field
(MeV/cm) 0.3 0.4 2.0 3.3 11.7

Saturated electron 
velocity (x107 cm/sec) 1.0 1.0 2.0 2.5 1.4

Thermal conductivity 
(W/cm.K) 1.5 0.5 4.5 4.0 3.4

Larger bandgap                           
 Higher temperature

Larger critical E field                        
 Higher voltage

Higher sat. electron vel.              
 Higher switching speed

Higher thermal conductivity      
 High power

Radiation tolerant                     
 Stable devices

AlGaN alloys & heterostructures                            
 Engineered properties

Decreasing TRL
Wide-Bandgap 

Semiconductors
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Critical Electric Field (MV/cm)

WBS devices:

 Higher efficiency

 Higher thermal conductivity

Wide-Bandgap Semiconductors (WBS) for power electronics.

PIN Diode

Power HEMT



AlGaN Alloys and applications for UV-devices
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Pseudomorphic limit
(relaxation by dislocation generation)

 How to fabricate a low dislocation template 
for UV-emitters and power devices?

Excess tensile strain 
leads to cracking

● Ternary (AlGaN) “substrate” needed for 
emitters at many UV wavelengths
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1.  Pattern & etch trenches

Trench 
Alignment

<1-100>AlGaN

 Sub-micron features are key for 
uniform reduction of dislocations

Dislocation reduction with Al0.32Ga0.68N overgrowth of 
etched trenches

2.  Overgrow with AlGaN

Mesa width:  1 m

Trench width:  1 m

Etch Depth:  0.4 – 0.7 m

1 m

ICP etch

Al0.3Ga0.7N Overgrowth:   6-10 m Reactor:               Veeco D-125

Chamber:                   75 torr,  1060 °C 

Al/III &  V/III Ratio:      0.32,      1040

Group-III:       34 moles/min 

Growth rate:                0.6 m/hr   

Trench:  ~1.3 m

Mesa (top):  ~0.4 m

Allerman JCG 76 388 (2014)



GNC2681B

SiC post

AlN

Nanowires

 Expect dislocations emerging from sub-micron wide mesas to bend.

● Not necessary to form complete pyramids (11-22) to turn dislocations

● Dislocations will bend when near a free surface (image force)

Cantilever Epitaxy:
GaN on sapphire

Cantilever Epitaxy:  AlN on SiC

Dislocation Bending Near Edges of Posts



Cathodoluminescence of Al0.32Ga0.68N Overgrowth 
of Patterned Al0.32Ga0.68N

VNA2367a

10 m

VNA2367a

2 m

 Spatially uniform reduction in dislocation density 

 Si-doped,  No = 2-4 x 1017cm-2 (Vertical diodes following sapphire removal)

 Transparent template for bottom emitting LEDs 

Al0.32Ga0.68N

ρavg. = 2-3 x 108 cm-2



Two-Beam BF-STEM of Al0.32Ga0.68N Overgrowth 
of Patterned Al032Ga0.68N 

● Overgrowth of etched trenches

● Strain induced 3D islanding

● Roughened,  transitional layer 
with voids

VNA2583a

AlN,  ρ = 4-6 x 109 cm-2

Al0.32Ga0.68N,   ρ = 2-4 x 109 cm-2

Al0.32Ga0.68N,   ρ = 2-3 x 108 cm-2

STEM

Etched pattern

 Introducing surface roughness 
drives dislocation reduction

Sapphire 

AlN 

(Si) Al0.32Ga0.68N  (7 m)

Etch – 0.66 m

B. Clarke



Surface Morphology of Al0.32Ga0.68N Overgrowth 
of Patterned Al0.32Ga0.68N

Overgrowth:  6 m

Mask:  (1 / 1) m

Etch Depth:  0.56 m

AFM

3 m x 3 m

RMS:  0.4 nm

VNA2068a

AFM

10 m x 10 m

RMS:  1.2 nm

VNA2068a

VNA2068a

DIC

50x

50 m

VNA2068a

DIC

50x

50 m

 No correlation between 
morphology and pattern



Cathodoluminescence of Al0.7Ga0.3N overgrowth 
of patterned Al0.7Ga0.3N

 Spatially uniform reduction in dislocation density 

 Transparent template for bottom emitting LEDs 

 Approach is successful all AlGaN compositions 

2 m

VNA4281aVNA4281a

10 m

Al0.70Ga0.30N

ρavg. = 3-4 x 108 cm-2

● 0.7 m etch

● ~12 m overgrowth



Nomarski DIC of Al0.7Ga0.3N overgrowth

 Morphology of AlGaN overgrowth 
is similar to regular growth

Growth on non-patterned 
AlGaN template

● Cleaning of patterned template 
critical for good morphology

Etched 
trenches



Etched 
Trenches

AlN overgrowth of patterned AlN

Pattern in AlN/sapphire template

● 1 m mesa / 1 m trench

● 0.2 – 0.7 m etch depth

● 5.6 m overgrowth

X-ray diffraction peak width of AlN epilayers

 Significant reduction in edge-type dislocations 
with AlN overgrowth process

 TDD ~ 3-5 x108 cm-2



AFM and Nomarksi DIC of AlN overgrowth

SNL overgrowth - 1100°C
High Temperature AlN 

on sapphire by SET (Jones 2015)

 AlN overgrowth produces AlN epilayers 
similar to high temperature growth



Reduction of wafer bow and cracking using 
3x thicker sapphire substrates

 3x thicker sapphire reduced wafer bow 
and epilayer cracking, 

● Tensile strain in thick AlGaN overgrowth causes wafer to 
bow and epilayers to crack.

● 3x thicker sapphire reduces wafer bowing and cracking.

● Photolithography over larger areas is enabled with less bow.

1.3 mm thick sapphire  0.4 mm thick sapphire

Wafer bow

AlGaN template

AlGaN –
Overgrowth 

(9-12 m)

(Etched Trenches)

AlGaN 

AlN

1.3 mm thick 
sapphire

Optical Image of Al0.3Ga0.7 N surface



Photoluminescence and electroluminescence of GaN-
AlGaN QWs on patterned and non-patterned templates

Photoluminescence
(Quantum Wells)

With Al0.3Ga0.7N overgrowth of patterned templates:

 ~7-8x increase in PL 

 ~15x increase in EL 
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Official Use Only

Doped waveguide laser design

Doped Waveguide 

● Improved carrier injection with doped WGL

●Higher optical losses due to doping

Laser Structure

(Si) Al0.32Ga0.68N

Thick (1.3mm) Sapphire 

AlN

(Si) Al0.32Ga0.68N

N-Cladding

Wave guide layer  

Wave guide layer

GaN-AlGaN MQW

0.5um - (Mg) Al0.32Ga0.68N

P-Cladding

P-GaN Contact

800Å, (Mg)20%AlGaN

3x GaN /
20%AlGaN

800Å, (Si)20%AlGaN



 Lasing from devices with 2-4um ridges, 0.7- 1.3 mm cavities

 Devices are robust to 60°C and 37 kA/cm2

 TE / TM polarization > 100:1

Ridge waveguide process with etched, coated facets

Doped waveguide design:  
spectra and LI-data (pulsed)

150 ns, 10 kHz, Ridge:  4 m  
Cavity:  1 mm 

150 ns, 10 kHz, Ridge:  3 m  
Cavity:  1 mm 



● Implanted junction edge termination around p-contact

● Drift region:  4.3 m,  No~ 1e16 cm-2,  ~ 150 cm2/Vs

● Dislocation density: 1-2e9 cm-2

● On wafer testing in Fluorinert (150 m dia.)

Al0.3Ga1-xN “Quasi-Vertical” Pin diode on sapphire
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Vbr ~ 1500 Volts!

 First report of kilovolt class AlGaN PIN diode

-10 -5 0 5 10 15

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

C
u

rr
e

n
t 

(A
)

Voltage (V)

VNA4758B

Ron,sp:

2-4 mΩ·cm2

Von~ 4 volts

(Ireverse @ 1100V:  ~ 25 nA)



Sheet Resistance vs.
Dislocation Density

Hashimoto (1)PSSC 2010, (2)PSSA 2012, (3)PSSC 2012

SNL AlN overgrowth

Sheet Resistance  and electron mobility of 
Al-rich AlGaN heterostructures

 Transport of 2DEG in AlGaN 
heterostructures improves with 
lower TDD

Calculated Electron Mobility vs. 
AlGaN Channel Composition

 Higher mobility is predicted for 
higher Al compositions 



 First demonstration of 2DEG in AlxGa1-xN channel for x > 0.5 

Vpinch-off

~ 5.5V

Rsheet ~ 

3500 ohm/sqr.

VNA5073b

CV of 85% / 70%AlGaN MODFET

• Ns &  are similar to HEMTs with 

lower Al channels

Carrier Density Profile (CV)

CV: Ns ~ 1.2 x1013 (cm-3)

 ~ 146  (cm2/Vs)

Hall: Ns ~ 1.0 x 1013 (cm-3)

 ~ 135 (cm2/Vs)

AlN (Overgrowth)

Sapphire

(0.5um) 
uid-70%AlGaN 

400Å, (Si)85% Si-doped
Barrier

CV of 85% / 70% AlGaN heterostructure



 Largest Al mole fraction exhibiting 2DEG

CV of AlN / 85%AlGaN MODFET

• No indication of parasitic channel

• Mobility is exceptionally high

Carrier Density Profile (CV)

Rsheet ~ 8,000 ohm/sqr.

Vpinch-off

~ 1.5V

CV: Ns ~ 3.22 x1012 (cm-3)

 ~ 278  (cm2/Vs)

CV of AlN / 85% AlGaN heterostructure



Calculated Electron Mobility vs. 
AlGaN Channel Composition

 Electron mobility of 2DEG increases with higher Al composition 
AlGaN heterostructures

Electron mobility of Al-rich AlGaN heterostructures



Summary

● Reduced dislocation density of AlxGa1-xN epilayers by growing over 
trenches etched in AlxGa1-xN/AlN on sapphire. 

− Spatially uniform reduction  no device alignment to template

− Doped with Si  simplifies vertical structure, PIN diodes

● Diode lasing at 352nm from doped waveguide structures.  

● Al0.3Ga0.7 N PIN diode with breakdown voltage of 1500V

● Observed 2DEG formation and higher mobility in AlGaN 
heterostructures with Al composition > 0.5   (  85%/70%,  AlN/85%)

ρ = 2-3 x 108 cm-2 ( x= 0.3,  0.7)

ρ = 4-5 x 108 cm-2 ( x= 1)


