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' Outline

e Al,Ga, N pseudo-substrates for UV-emitters and power devices

e AlLGa,,N (x=0.3, 0.7) and AIN templates on sapphire by
overgrowth of patterned Al,Ga,,N & AIN.

e Devices enabled by patterned AlGaN/AIN templates
- UV-Laser Diode (Al,;Ga,;N)

— AlGaN HEMTs (on AIN)

e Summary
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AlGaN Alloys Span UV-A, -B and —-C Spectrum
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Why Wide-Bandgap Semiconductors (WBS)
for power electronics

Wide-Bandgap
Semiconductors

Larger bandgap
» Higher temperature

|
|
I
Bandgap (eV
9ap (%) 1.43 : 6.2 : Larger critical E field
I "
Critical Electric Field 1 | ® Higher voltage
MeV . 4 1 : . .
. : : Higher sat. electron vel.
Saturated electron i : » Higher switching speed
velocity (x107cm/sec) 1.0 1.0 1 20 25 14 ,
: I Higher thermal conductivity
Thermal conductivity I : » High power
(W/emK) 1.5 0.5 | 45 4.0 34
J

N e _/ Radiation tolerant
® Stable devices

AlGaN alloys & heterostructures
» Engineered properties
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» WGS enable applications NOT
possible in Si and GaAs




el
ﬂde-Bandgap Semiconductors (WBS) for power electronics.
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~ 70%-85% AlGaN WBS devices:

» Higher efficiency
Sapphire » Higher thermal conductivity
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'AIGaN Alloys and applications for UV-devices

Wavelength (nm)

6-5 .|II|||||III|III|III AIComposition
o -==-1.0 AIN
l Pseudomorphic limit (Hexatech)
5.5 (relaxation by dislocation generation)
240 ~0.7
S ------
< 50
&
‘i 5 e Ternary (AlGaN) “substrate” needed for
> emitters at many UV wavelengths
5 40 300
=360~ 01
35 GaiN S A Excess tensile strain g\'zmo"o)
leads to crackin a
30 {400 g
2% tension
[FETH NN NN NN NN
3.0 3.1 3.2
In-plane Lattice
Constant (A)

®» How to fabricate a low dislocation template
for UV-emitters and power devices?
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I ‘
Dislocation reduction with Al ;,Ga, ;sN overgrowth of
etched trenches

Mesais 385nm attop!
Trench: ~1.3 um
Mesa (top): ~0.4 um

1. Pattern & etch trenches

<1-100>,6an

Mesa width: 1 um I
Trench width: 1 um
Etch Depth: 0.4 -0.7 um Trench

Alignment

AGIN £ wonch |:> ICP etch
AIN
Sapphire » Sub-micron features are key for ]
uniform reduction of dislocations
2. Overgrow with AlGaN Allerman JCG 76 388 (2014)
Al,,Ga, ;N Overgrowth: 6-10 pm / Reactor: Veeco D-125 \
Chamber: 75 torr, 1060 °C

Al/lll & V/Ill Ratio: 0.32, 1040

trench Group-lll: 34 umoles/min

Sapphire \GTOWth rate: 0.6 pmlhr ﬁ Sandia

AIN
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V |
'Dislocation Bending Near Edges of Posts

e Not necessary to form complete pyramids (11-22) to turn dislocations

e Dislocations will bend when near a free surface (image force)

Cantilever Epitaxy: AIN on SiC

Cantilever Epitaxy: Nanowires

GaN on sapphire

Colby, Nano
Lett. 2010

Sapphire
Post

[lb Expect dislocations emerging from sub-micron wide mesas to bend.]
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athodoluminescence of Al; ;,Ga, ;sN Overgrowth
of Patterned Al ;,Ga, gsN

. . " ‘,'..'
- .#" 4 -‘\ + )
- ."; *

‘ A\.J.'-._. i

(lb Spatially uniform reduction in dislocation density

» Si-doped, N, = 2-4 x 10"7cm-2 (Vertical diodes following sapphire removal)
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\lb Transparent template for bottom emitting LEDs ﬁa ndia



' Two-Beam BF-STEM of Al ;,Ga, 4sN Overgrowth
of Patterned Al,;,Ga, gsN

B. Clarke

(Si) Alg 3,Gag ggN (7 pm)

Etch — 0.66 um

Sapphire

Alg 3,GaggsN, p=2-3X 10}8::'

» Introducing surface roughness
drives dislocation reduction

e Overgrowth of etched trenches

Etched pattern
e Strain induced 3D islanding

e Roughened, transitional layer
with voids




AFM
10 pm x 10 um
RMS: 1.2 nm

Surface Morphology of Al ;,Ga, ;sN Overgrowth
of Patterned Al ;,Ga, gsN

AFM
3umx 3 um
RMS: 0.4 nm

Overgrowth: 6 um
Mask: (1/1) um
Etch Depth: 0.56 um

®» No correlation between
morphology and pattern




Cathodoluminescence of Al, ,Ga, ;N overgrowth
of patterned Al, ;Ga, ;N

280nm QWs

i, y

e’

¢
-

*
2
|
.
-
]
|
.
|
.
-
S

.
S
-
\ 5 -

\ | -

| -

-
-
-
-
.
-
-
-
.

.
.
=
.
.
o
e
i
-
.
-
-

.
it

&

e
i
-
’

-

-
-
-

.
-
-

-
-
i

.
-

-
.
w

o

=
-

.

-

******
.
s
.
.
.
.
e
.

-

-
-
-

-

-
-
-

@
.
<
£
-
-
.
.

E
|
-
e
.
.
-
-
-

-

.
.
.
.

-

-
.
e

-
-

=
.
.
e e
. s
- Lol
- N
vy 1 1Y -~
- L 0 -~
EYy. 1Y ("]
{ 1 i 0P
- e )" AN KR %
o - -

-
-

AV M)
e bl o

AIN (Higher dislocation)
Sapphire (1.3mm)

e 0.7 um etch ] i L ] ]
®» Spatially uniform reduction in dislocation density

e ~12 um overgrowth
®» Transparent template for bottom emitting LEDs

®» Approach is successful all AlIGaN compositions




Nomarski DIC of Al, ;Ga, ;N overgrowth

' Etched
trenches
AIN (Higher dislocation)
1.3 mm thick
sapphire

e Cleaning of patterned template
critical for good morphology

» Morphology of AlGaN overgrowth
is similar to regular growth
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' AIN overgrowth of patterned AIN

X-ray diffraction peak width of AIN epilayers

400 T I |
AIN Overgrowth - | AIN over  AIN on
O Trenches Sapphire
. O
. (5 G_L_'m) ___ Etched » 300 + 31"3. T (<1100°C) — (<1100°C) —
i I T Trenches O £ aalaa
AIN (2um) s | 8 A
s 200 - 03, ~ A
Sapphire T
<
E < ® e
Pattern in AlN/sapphire template e 100 |
e 1pm mesa/1 um trench S T High Temperature
S AN (>1400°C)
e 0.2-0.7 um etch depth ~ 0

0 100 200 300 400 500 600 700 800
(10-11) FWHM (arc. sec.)

e 5.6 um overgrowth

4 )
» Significant reduction in edge-type dislocations

with AIN overgrowth process

National
Laboratories

™ TDD ~ 3-5 x10° cm*? y @ w—



V 3
' AFM and Nomarksi DIC of AIN overgrowth

High Temperature AIN
SNL overgrowth - 1100°C on sapphire by SET (Jones 2015)

e — E— - - ——————

RMS: 0.7A
FWMH 273”
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e | Sapphire |

AIN Overgrowth

=» AIN overgrowth produces AIN epilayers
similar to high temperature growth
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Reduction of wafer bow and cracking using
3x thicker sapphire substrates

AlGaN template

AlGaN -
Overgrowth
(9-12 pm)

Jgtched Trenches

AIGaN

1.3 mm thick
sapphire

1.3 mm thick sapphire

e Tensile strain in thick AlGaN overgrowth causes wafer to
bow and epilayers to crack.

e 3x thicker sapphire reduces wafer bowing and cracking.

e Photolithography over larger areas is enabled with less bow.

®» 3x thicker sapphire reduced wafer bow
and epilayer cracking,

0.4 mm thick sapphire

Optical Image of Al, ;Ga, ; N surface
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PL Intensity (arb. units)
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Photoluminescence and electroluminescence of GaN-

AlGaN QWs on patterned and non-patterned templates

Photoluminescence
(Quantum Wells)

*

> oo ® ,

Patterned

EL Intensity (arb. units)

Non-patterned

Sample

Electroluminescence
(LD structure)

Patterned
(1/1) 7
(1/6)

Non-Patterned

| e
—

N

300 320 340 360 380 400 420 440 460
Wavelength (nm)

-

»
»

With Al, ;Ga, ;N overgrowth of patterned templates:

~7-8x increase in PL

~15x increase in EL

7 (M)
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Doped waveguide laser design

Doped Waveguide Laser Structure
Optical mode 0.5um - (Mg) Al 5,Gag 6N
P-Cladding
Al Ga,,N

800A, (Mg)20%AIGaN Wave guide layer

3x GaN/
20%AIGaN GaN-AlGaN MQW
. Wave guide layer
800A, (Si)20%AlGaN

0.30
= 0.20
0.00

(Si) Aly 3,Ga, 6N

N-Cladding
e Improved carrier injection with doped WGL S Pl P
(Si) Al 3,Gag gN

e Higher optical losses due to doping

Thick (1.3mm) Sapphire
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National
Laboratories



' Doped waveguide design:
spectra and Ll-data (pulsed)

Ridge waveguide process with etched, coated facets

: 3
150 ns, 10 kHz, Ridge: 4 um 150 ns, 10 kHz, Ridge: 3 um
120007 cavity: 1 mm Cavity:’ 1mm e ©
o
m
= 9000 - , —~-20C
= =<
5 = > 20C repeat
= 352.4 nm S
= 22 5KkA/cm? 5 B
. cin
= 2 —40C
€ o1 y
£ \ x —-—50C )
£ 3000 | S %
325 335 345 355 365 375 0 5 10 15 20 25 30 35 40
Wavelength (nm) Current Density (kA/cm?)

®» Lasing from devices with 2-4um ridges, 0.7- 1.3 mm cavities
» Devices are robust to 60°C and 37 kA/cm?

» TE / TM polarization > 100:1 @ Sandia
National
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'AI0_3Ga1_XN “Quasi-Vertical” Pin diode on sapphire

- PContact
p-30%AIGaN
0.3um

Implanted junction edge termination around p-contact

e Drift region: 4.3 um, N_~1e16 cm=2, p ~ 150 cm?/Vs

Dislocation density: 1-2e9 cm-2

N+ 30%AlGaN (2um, 8e19 cm-3)
AIN

e On wafer testing in Fluorinert (150 um dia.)
Sapphire
00— 0.0010 —————
0.8 - 1 0.0008 - Ron,sp:
< | ' - 2-4 mQ-cm?
é 0.6 - Vbr ~ 1500 VOIts., 7 s 0.0006 -
= -
C 04t - Py
o - (leverse @ 1100V: ~ 25 nA) = 0.0004
= >
5 i | .
o ™ © o2l von~4 volts
0.0 i .
0.0000
02600 1400 -1200 -1000 -800 -600 400 200 O a0 5 0 5 1w s
Voltage (V) Voltage (V)

National

[ ®» First report of kilovolt class AlGaN PIN diode ] @ Sandia
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Sheet Resistance and electron mobility of
Al-rich AlGaN heterostructures

Sheet Resistance vs.
Dislocation Density
Hashimoto (1)PSSC 2010, (2 PSSA 2012, (3)PSSC 2012
© 49%/29% HEMT (1)
® AIN/51% HEMT (2)
® 89%/51% HEMT (2)
® 56%/20% HEMT (3) .-~

10,000

N
)
=)
o

5,000

AIN substrate

2,500 {—A—‘
oe -
- @

\

| SNL AIN overgrowth

l

0 200 ~I400 600 800 1000 1200 1400

(10-11) XRD FWHM of AIN (arc. sec.)

Sheet Resistance (ohm/sqr.)

f—'—-\

0

®» Transport of 2DEG in AlGaN
heterostructures improves with
lower TDD

Calculated Electron Mobility vs.
AlGaN Channel Composition

2000 — T T T T T T T 7
2 1- Nango, TED 2014) 1
“u‘;- 2- Hashimoto, PSSC 2012
1500 - 3- Hashimoto, PSSC 20#4
e Bajaj APL 2014. 4- Hiihiﬂifﬁ PSSA 2013
e i 5-Taniusa, APL 2006 |
=
(&)
~ 1000 |- 4
>
: - -
i O /
O 500 |-
= J ?X
”‘O-ﬁ'-o—o—of
0

0.0 0.2 0.8 1.0
Al Mole Fractlon

®» Higher mobility is predicted for
higher Al compositions
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' CV of 85% / 70% AlGaN heterostructure

CV of 85% / 70%AlGaN MODFET Carrier Density Profile (CV)
400A, (Sl)85% hSi-dOped 1.0E+20
~ (0.5um) Barrier ) CV: N, ~ 1.2 x10™ (cm?)
uid-70%AlGaN é 1.0E+19 L ~ 146 ,
o , (cm?/Vs)

S oo & 1
Sapphire Plu'll}lﬁ — :é‘ ’* Ha": NS ~ 1.0 X 10 3 (cm'3)
7.33E-10- : A 2 1.0E+17 __‘\ p~ 135 (cm2/vs)

Rsheet ~ ﬂ“““ununnnn 8 ‘e
SEL 7 1.0E+16 S
3500 ohmisqr. = '§ ¥ .~
5.00E-10- o - -
& 1.0E+15 =
4.00E-10~ O -.“__‘.“
3.00E-10- V 1.0E+14 . .
. 0.0 0.2 0.4 0.6
i 1 pinch-off D
: epth (um

1.00E-10- ~ 5'5V p ( )

- g ®* N, & pn are similar to HEMTs with
Pl 2 T slaslalls sl alalale slala slalala sl . | Lo

1000 a0 600 4bo 200 o lower Al channels

[ » First demonstration of 2DEG in Al,Ga, N channel for x > 0.5 ]
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' CV of AIN / 85% AlGaN heterostructure

CV of AIN / 85%AlGaN MODFET Carrier Density Profile (CV)

100A Si-AIN
4= \/p sensitive to 1.0E+20
100A UID-AIN . o~ .
doping structure @ 1. 0E+19 L1
Lid BEAIG AN g + CV:N, ~3.22 x102 (cm?)
:.? 1.0E+18 1 L~ 278 (cm2Vs)
(Overgrowth) & 1.0E+17 .
Sapphire UL L B B N 8 \
80 | R.peu ~ 8,000 ohmisqr @ 1.08+16 e
| e
& 1.0E+15 S
_. 60 . (&) e
= 1.0E+14 , —==-
O 4oL i 0.0 [;).2 h 0.4 0.6
epth (um
Vpinch-off P ( )
20 - ~ 1.5V . * No indication of parasitic channel
0 ] * Mobility is exceptionally high

20 45 40 05 00 0.5
V (V)

[ » Largest Al mole fraction exhibiting 2DEG ]
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ﬂectron mobility of Al-rich AlGaN heterostructures

Calculated Electron Mobility vs.
AlGaN Channel Composition

2000 I I 1 I Ll I I l I

1- Nango, TED 2014)

2- Hashimoto, PSSC 201
.. 3- Hashimoto, PSSC 20
Bajaj APL 2014. 4- Hashimoto, PSSA 2013

5 5-Taniusa, APL 2006

-
o
o
o

Mobility (cm?/Vs)

O 1 | 1
0.0 0.2

Al Mole Fraction

B AINISS:)%{
*@ . 85%I70% */
oo ™
0.4 0.6

0.8 1.0

AlGaN heterostructures 2
a
tories

[ » Electron mobility of 2DEG increases with higher Al composition




Summary

e Reduced dislocation density of Al,Ga,_N epilayers by growing over
trenches etched in Al,Ga,_N/AIN on sapphire.

p=2-3x100cm? (x=0.3, 0.7)
p=4-5x108cm? (x=1)
— Spatially uniform reduction ® no device alignment to template

— Doped with Si » simplifies vertical structure, PIN diodes
e Diode lasing at 352nm from doped waveguide structures.
e Al,;Ga;; N PIN diode with breakdown voltage of 1500V

e Observed 2DEG formation and higher mobility in AIGaN
heterostructures with Al composition > 0.5 ( 85%/70%, AIN/85%)
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