Co-Extrusion: Advanced Manufacturing for
Energy Devices

Corie L. Cobb, Ph.D.

Senior Research Scientist
PARC, a Xerox Company, Hardware Systems Laboratory, Palo Alto, CA USA
Corie.Cobb@parc.com

2016 AIChE Annual Meeting
November 14, 2016

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or

any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.



Co-Extrusion (CoEx) for Energy Devices

* CoEXx is deposition technology developed at PARC for “printing”
high aspect ratio features with highly loaded, viscous inks

* Applications: To date, CoEx has been applied to solar cell
metallization and battery electrodes
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Co-Extrusion (CoEx): How it Works

First applied to printing silver metallization lines on solar cells
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Co-extrusion (CoEx) for Solar:
Printing Metal Gridlines on Solar Cells

Co-extruded
 front-side
E metallization

Screen prlnted
front side

A0 pm

e By getting more height on the gridlines, they can be made narrower
compared to screen printing, thus covering less of the surface area
of the solar cell

* This technique can yield a 3 to 6% relative efficiency benefit

« A100 MW fab turns into a 103 to 106 MW fab!

L.P. Richter, G. Fischer, L. Sylla, M. Hentsche, S. Steckemetz, M. Miller, C.L. Cobb, S.E. Solberg, R. Rao, S. Elrod, P. Palinginis, E. Schneiderléchner, H. Neuhaus,
“Progress in Fine Line Metallization by Co-extrusion Printing on Cast Mono Silicon PERC Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 142, pp. 18-23, 2015.
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CoEx for Solar at Pilot Production Scale

Production
Tool

* In 2015, demonstrated
record efficiency of 21.42%

* CoEx has integrated into
high speed, high volume
production
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Co-Extrusion (CoEXx): Applying Solar Technology
to Battery Electrodes for Electric Vehicles (EVs)
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Co-Extrusion (CoEx) for Enhanced lon Transport
in Thick Battery Electrodes

High Density Lithium High Conductivity
Storage Region Region

Li-ion flow

CoEx Cathode

Current Collector

Hypothesis: Using conventional battery materials, thick CoEXx
electrodes can change conduction pathways in lithium-ion batteries,
decoupling power and energy trade-offs with novel geometry layout

o
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Lithium lon Batteries for Electric Vehicles (EVS)

Specific Energy (Wh/g)
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2D & 3D battery designs
show great promise for
high energy and high
power batteries

Large-area, low cost
processes are required to
realize the benefits of 2D
& 3D battery designs -
CoEX
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Batteries for Electric Vehicles
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Challenges for Batteries in Transportation

State of the Art*
400

* Department of Energy (DOE) calls for
reducing the cost, volume, and weight
of batteries for electric vehicles (EVSs)
while simultaneously improving
performance
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* Lithium-ion batteries (250 Wh/kg) are
the most popular chemistry option, but
their high cost is a barrier to widespread
adoption

Battery Cost ($/kWh)

Radical changes to manufacturing
are required for a drastic $/kWh
cost reduction and performance
increase

2012 2022
$500/kWh, 100 Wh/kg, 200 Wh/L $125/kWh, 250 Wh/kg, 400 Wh/L
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CoEx Geometry Exploration with Macrohomogeneous
Porous Electrode Model in COMSOL

What are the required thicknesses and feature sizes for a CoEx cathode electrode?
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Lithium Utilization Plots — Conventional Cells
(End of a 1C Discharge Cycle)
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Note: COMSOL model was compared against DUALFOIL and a
conventional 1D COMSOL model and before moving to 2D models

Parameters from: G. Ning, R.E. White, B.N. Popov, Electrochimica Acta 51(10) (2006) 2012-2022

o
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Lithium Utilization Plots — 200 um Thick CoEx Cathodes

(End of a 1C Discharge Cycle)
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1C discharge rate results shows that designs (c) and (d) have the best performance

based on specific capacity
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Capacity of a Single CokEx Cathode Layer

Gravimetric capacity vs. ratio of co-extruded pillar widths
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Result: 150 pum thick CoEx cathode with w, -o/Wg. = 20
was the best performing design & translates to a ~15%
improvement in gravimetric capacity at the pouch cell level
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Modeling Summary

* Pure (100%) electrolyte channels enhance lithium utilization in
thick cathodes but impact the total capacity

* Additional modeling is being conducted on structures with higher
porosity material in the ‘electrolyte’ regions to reduce total capacity

Impact h
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CoEXx Structure 1 CoEx Structure 2
(modeled) (switch to NMC for ARPA-E funded project)
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CoEx Batteries: Making it Work

(In collaboration with Lawrence Berkeley National Laboratory)
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Lithium-lon Battery Manufacturing

ARPA-E Impact: Potential ~10-15% reduction in $/kWh costs through
the elimination of process steps with a printable separator
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CoEx Print Cross-Section

Heterogeneous cathode and separator print where the dried
separator layer ranged from 16 to 21 um

Top View
separator
. . . . l current
Cross-section view of dried, uncalendered print
collector
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Electrochemical Test Results
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Co-Extrusion (CoEx): Advanced Manufacturing
for Batteries

Co-extrusion Printhead CoEx 1: NMC Cathode
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We are currently
leveraging ARPA-E
Investment to optimize the
CoEx cathode for Electric
Vehicle (EV) applications

EERE, Award Number DE-EE0007303

+~— Separator

separator

B 1 oce

current
collector
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Conclusions

* Modeling results estimate a >15% !
Improvement in gravimetric capacity

* Successfully fabricated a separator Battery
and a heterogeneous cathode in a

single pass with a path towards an
~15% reduction in $/kWh costs

* Current Research:

* Partnered with Ford and Oak Ridge
National Lab on $3M award to optimize
and implement the CoEx cathode
technology for EV pouch cells
(Contract No. DE-EE0007303)
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