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Introduction
• Estimation of fields (2D/3D) from limited data quite common

– E.g., estimation of material properties

• Limited data

– Could be a property of the the field measured at a few locations and/or

– Observation of a dynamical process affected by the material

• E.g. flow breakthrough times, modulation of waves through it etc.

• Estimation of properties often posed as a model-fitting problem

– Called an inverse problem

– Requires a model or parameterization of the field being inferred from data

• Called the Random Field Model (RFM)

• Often has a large number of parameters

– A model that, given a realization from the RFM, simulates the dynamics being 
observed

• Called the forward problem

• Can be computationally expensive
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Uncertainties in inferences

• Because of limited observations, the (large number of) parameters in RFM 
cannot be estimated accurately

– Also, a priori, we don’t know the subset of parameters that can be informed 
by the observations

• Two ways out:

– Way # 1: Keep all parameters in the RFM and estimate them using Bayesian 
inference

• Bayesian inference estimates parameters as a joint probability density function 
(PDF); capture the uncertainty very concisely

• Requires one to pose a statistical inverse problem

• Require sampling methods such as Markov chain Monte Carlo (MCMC) to solve

• Forward model invokes O(104) – O(106) times

– Way # 2: Use shrinkage regression to simplify the RFM (set “un-estimatable” 
parameters to zero / nominal / prior-belief values

• Does not capture the uncertainty in the parameters that are estimated
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Bayesian estimation of a binary 
medium’s permeability field

J. Ray, S. A. McKenna, B. van Bloemen Waanders and Y. M. Marzouk, "Bayesian reconstruction of
binary media with unresolved fine-scale spatial structures" in Advances in Water Resources , 44:1--
19, 2012.

S. A. McKenna, J. Ray, Y. Marzouk and B. van Bloemen Waanders, "Truncated multiGaussian fields
and effective conductance of binary media", in Advances in Water Resources , 34:617-626, 2011.
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The problem setup

• Aim: Given a material with spatially variable properties, estimate 
structural properties at all scales from sparse measurements

• Slight relaxation:

– Need to know large-scale variations/structures accurately

– Need to know statistics of the fine structures

• Given: measurements/observations which are impacted by both the fine 
& coarse structures

• Why? Materials with random & multiscale structures abound and cannot 
be imaged/measured at all scales

– Geophysical materials are random & multiscale (geological strata, soil 
properties etc)

– Mesoscale O(1) electrochemical & catalytic processes at fuel cell anodes

– Material degradation/aging – e.g., “bubbles” in explosive “cook-off” 
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Challenges in estimation

• Never enough data to infer fine & coarse scales simultaneously

– If possible to observe / image all scales, why bother to infer anything?

– Corollary: inferences are always done with incomplete data

• Most inferential methods are iterative

– Propose, compare with observations, reject/accept

– Involve a forward model that links the objects of inference with the 
observables

• So even if a gigantic model resolving all scales is available, can’t be used in 
a inferential setting (aka inverse problem)

– Takes too long

– Plus, never enough observables to inform the gigantic model’s gigantic d.o.f

• Net result: Inferences are always uncertain

– Due to the use of simplified models and incomplete observations

– So how to capture the uncertainty?
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Inference in a binary medium

• Given: A porous medium with 2 phases

– A low permeability matrix

– With  fine, high-permeability inclusions

– Inclusions are unevenly distributed in the domain

– Domain is rectangular – 1.5 x 1.0

• Scale separation: Impose a 30 x 20 grid on 
domain

– Inclusions are 1/10th the grid-block size

• fine scale variable, 

– Each grid-block has an inclusion proportion (F(x))

• Resolved on the 30 x 20 mesh; coarse scale 
variable

• Impact: Permeability in a grid-block affected by 
both fine- and coarse-scale variables

– k = Keff( F(x),  )
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Informative observations

• Consider a set of 20 grid-blocks with sensors
– {kobs} given info on {F, } at the sensors

– OK for inferring structures > inter-sensor 
spacing

• Water-flood experiment for finer structures
– What is this?

– Inject water at one corner, pump it out at the 
diagonally opposite corner

– Flow impacted by structures at all scales

– Water breakthrough time at sensors {tobs} 
contain the integrated impact of multiscale 
structures

• Teasing out the contributions of the fine-
and coarse-scale to {tobs} could allow 
inference of both scales
– But how?
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Recap, and an idea for inference

• Permeability k(x) = Keff ( F(x),  )

– But we don’t know what the functional form of Keff is

• Breakthrough time t = M ( k(x) )

– But we have only 20 measurements of t, {tobs}

– And 30 x 20 = 600 grid-blocks of unknown F and 

• The idea

– Model #1: Develop a “pointwise” model for k = Keff ( F,  ) in a grid-block

• Subgrid model

– Model #2: Develop a parameterized model for F to describe its spatial variation

• Have a about 20 – 30 parameters in it – reduced order modeling of F(x)

– With 20 {kobs} and 20 {tobs}, should be able to infer all  unknowns

• 20-30 parameters for F(x) and one 

• Caution

– With 40 observations, none of these parameters will be estimated well

• Fine, but how inaccurate are the estimations?
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Inversion
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Model # 1 – a sub-grid model

x0

x1

X0,j

x2

After Ferreira and Lee, 2007, 
Multiscale Modeling: A Bayesian 
Perspective

Data collected at one level informs values at other levels

Multiscale random fields with averaging “link” between them

Infer statistical summaries of the fine-scale, conditional on the 
observations at two scales, and generate fine-scale realizations that 
could plausibly reproduce them



Upscaling problem

• We need: k = K( F, )

• Knudby’s theory, restricted to rectangular 
inclusions of size d

– k = KKnudby( F, , L/ )

• L = flow path in the matrix

• Problem: Our inclusions are arbitrarily shaped

• Questions:

– Can we create a field of arbitrary inclusions, given 
F and ?

– Can we find L in such cases? Just the expected 
value.

– Can we do so analytically, without actually 
creating a field and instantiating an inclusion-in-
matrix field?

• Subgrid modeling, but solely geometric
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Subgrid geometric modeling

• Consider a grid-block divided into 100 x 100 grid-
cells

• Initialize a 100 x 100 white-noise field

• Convolve with a Gaussian kernel with FWHM of 

– Creates a correlated field with correlation length 

• Truncate at a level zthreshold

– Flat sections are inclusions!

– Zthreshold decides the inclusion proportion F in the 
grid-block

• The theory of truncated pluriGaussian fields 
provides analytical expressions for expected values

– Number of inclusions

– Total area in the inclusions

– These are explicit functions of F and  13

1d white noise field

Truncated, correlated field



Subgrid upscaling with Knudby

• If {F, } specified for each grid-block, we can analytically predict

– Number of inclusions and total area of the inclusions

– Ditto, area per inclusion

• Assume that the inclusions are round

– Inclusion radius can be calculated

• Assume that the centroids of the inclusions are distributed per a Poisson 
point process

– Expected value of inter-inclusion distance obtained

• Expected value of flowpath length in matrix L can be calculated

• Plug into KKnudby and you’re done

– Not quite, but that’s the rough outline of the subgrid model
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Linking Function
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McKenna, et al., (in review), Truncated MultiGaussian Fields and Effective 
Conductance of Binary Media, Submitted: November, 2010

Binary mixtures are modeled using truncated Gaussian fields

New upscaling function uses proportions (tied to 
truncation threshold) and average estimated 
distances between inclusions to estimate upscaled 
effective permeability
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Link Function Results
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New function is TG-DBU 
(Truncated Gaussian –
Distance Based Upscaling)

Results compare well with 
DBU and another EMT-based 
approach

Numerical results are the 
average of 30 realizations

For results shown today, 
model errors are assumed 
mean zero and i.i.d. 

Estimated K’s Percent Error

H53E-1073: The Effect of Error 
Models in the Multiscale Inversion of 
Binary Permeability Fields



Model #2: Reduced order modeling of (x)

• (x) varies in space and is described on a 30 x 20 mesh
– Don’t want to infer all 600 values

– But (x) is smooth – can’t we exploit this to make a lower-dimension model?

• Model (x) as a 600 variate Gaussian
– Smoothness guaranteed

– Assume correlation function known (~ exp( - x2 ) ) i.e. covariance  of 
multiGaussian is known

• Any multiGaussian can be expanded in a Karhunen-Loeve series
– We’ll truncate at 30 terms

– ( x; ) are called KL modes; wi are the weights

• Inferring (x) means inferring wi
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Posing the inverse problem
• Given:  {kobs, tobs} at 20 sensors

• Models:

– F = sum of KL modes with unknown weights wi

– k = Keff ( F,  ) – the subgrid model

– t = M( k(x) )  - Darcy flow model, solved using finite-difference method

• Infer weights wi, i = 1 … 30 and 

– Develop distributions for these quantities, not point values

• Generating synthetic {kobs, tobs} 

– Start with a “ground-truth” binary medium on a 3000 x 2000 mesh

– Push water through it and measure breakthrough times at 20 sensors – {tobs}

• Done with MODFLOW, a Lagrangian code distributed by USGS

– Superimpose a coarse 30 x 20 mesh

• Pick out the grid-blocks with sensors

• Solve a 1D flow equation in each and estimate effective grid-block permeability –
{kobs}
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Bayesian Inverse Problem

• Objects of inference,  = {F(x), } = {wi, i = 1…30, }

• Bayesian inverse problem

– M, Darcy flow model to relate   to breakthrough times {tobs}

– Keff, subgrid model to relate  to observed permeability at certain sampling 

points

– p, prior beliefs regarding the values of 

– {K, T}, std. dev. of various measurement errors

•  evaluated by Markov Chain Monte Carlo sampling

– Particular algorithm called DRAM
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What is MCMC?
• A way of sampling from an arbitrary distribution

– The samples, if histogrammed, recover  the distribution

– Given a starting point (1 sample), the MCMC chain will sequentially find the 
peaks and valleys in the distribution and sample proportionally

– Drawback: Generating each sample requires one to evaluate the expression 
for the density 

• An example

– Given: (Yobs, X), a bunch of n observations

– Believed: y = ax + b

– Model: yi
obs = axi + b + i,  ~ N(0, )

– We also know a range where a, b and  might lie 

• i.e. we will use uniform distributions as prior beliefs for a, b, 

– For a given value of (a, b, ), compute “error” i = yi
obs – (axi + bi)

• Likelihood of the set (a, b, ) =   exp( - i
2/2 )

– Solution:  ( a, b,  | Yobs, X ) =  exp( - i
2/2 ) * (bunch of uniform priors)



MCMC, pictorially
• Solution method:

– Sample from  ( a, b,  | Yobs, X ) 
using MCMC; save them

– Generate a “3D histogram” from the 
samples to determine which region 
in the (a, b, ) space gives best fit 

– Histogram values of a, b and , to 
get individual PDFs for them

• Choose a starting point, 
– Pn = (acurr, bcurr)

• Propose a new a, aprop ~ N(acurr, a)

• Evaluate  ( aprop, bcurr | ...) /  ( acurr, 
bcurr | … ) = m 
– Accept aprop (i.e. acurr <- aprop) with 

probability min(1, m)

• Repeat with b

• Loop over till you have enough 
samples

b

a

Proposal distribution

“good” values of (a, b)



Results
• Get 104 samples of {wi, }

• From each {wi, }, develop 106

instances of F(x) and Keff( F(x),  )

• Take the mean & std dev of the 106

F(x) instances

• Take standard deviations too
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Estimated Proportion (F) Fields
• MCMC runs met convergence diagnostics
• Results obtained with 1,500,000 iterations 

– Approximately 50 hours on workstation
– Results in 9500 realizations of proportion field

Comparison of posterior pdfs for seven points on proportion field



PDFS of {wi, }
• Use the 104 samples of {wi, } 

to develop PDFs

• Take w1, w15 and w30 as 

proxies for large, medium 

and small (but resolved) 

scale variations

• Inversions performed with 

{kobs} only also plotted

• Takeaways:

– Large-scale structures easy 

to infer

– Gets harder as we get 

smaller

– Doesn’t apply to inclusions
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Developing fine-scale realizations

• The inferences 
can be used to 
develop fine-
scale binary 
media
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• Flow simulations can be used to obtain an ensemble of predicted 
breakthrough times at sensors



Posterior predictive checks
• Fine-scale binary media 

realizations (on a 3000 x 

2000 mesh) can be used to 

calculate breakthrough 

times at 20 sensors

– Did so with 1,000 

realizations, not all 106

possible

– Allowed us to plot 1st, 

50th and 99th percentiles 

– Measurements plotted as 

references

• Why are some 

breakthrough times well 

predicted and others are 

not?
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Circle plots
• Sensor: Dots

• Circles
– Red: PPC using 

reconstructions using 
just {kobs}

– Cyan: Using {kobs, tobs}

• Circle radius: 
– Prop to the 95% CI of 

breakthrough times

• Circle center offset:
– Prop to diff between 

measured and mean 
pred. breakthrough
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• Takeaway: Further the measurement from injector/producer, bigger the uncertainty in 
predictions from reconstructions. Two reasons

1. Longer breakthrough times – the % uncertainty may not be large

2. Smaller flow rates lead to less info gathered and bigger uncertainties



Summary
• Reduced-order modeling and Bayesian inference allows us to estimate 

smooth random fields without worrying about overfitting

– High-order KL modes have posterior densities = prior densities

– We can quantify the uncertainty in the inference

• Due to the sub-grid model, one can infer mesh-unresolved structures

– Requires proper data

– Will only provide statistics of the subgrid structures

• We may also be able to generate an ensemble of fine-scale structures 
which are consistent with the observations

– Made possible by the fact that we don’t develop a unique/deterministic 
inference, but rather a distribution

• But …..

– What if the fields are not smooth and multiGaussian RFMs don’t work?

– And what if the forward problem is expensive and O(106) evaluations are not 
feasible?
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What if the field is rough? 
Shrinkage regression

J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution
spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via
atmospheric inversions", Geoscientific Model Development, 7, 1901-1918, 2014.

J. Ray, J. Lee, V. Yadav, S. Lefantzi, A.M. Michalak, and B. van Bloemen Waanders, "A sparse
reconstruction method for the estimation of multi-resolution emission fields via atmospheric
inversion" Geoscientific Model Development, 8, 1259-1273, 2015.
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Estimation of rough fields
• Rough fields cannot be represented easily using mGaussian models (for )

– But wavelets can. However, wavelet-based RFMs have tons(!) of parameters

• As many as the grid-blocks in the mesh

• But they are multi-resolution. Low index wavelets can represent large-scale 
structures; high index stand for fine details

• Example: Estimation of fossil-fuel CO2 (ffCO2)emission fields in US

– Rough, and limited to where people live

30

• {x} is a gridded ffCO2 emission field 

• {Y(obs)} = vector of CO2 concentration 
measurements over a year @ sensors

• {Y(obs)} = [H] {x} = [H] [] {w}

– H is a linear operator that maps 
emissions to conc. measurements

– [F] is the matrix of wavelet bases

– {w} are wavelet weights which are to be 
estimated from 



Reducing dimensionality
• Dimensionality of {w} is the same as {x} i.e., number of grid-blocks on 

which x is defined

– Too many wi to infer from Y(obs)

• Dimensionality reduction 

– Restrict wavelets to those that inform regions where humans live

– Use images of nightlights to do so
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Estimation thru shrinkage
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• How to estimate the minimum number 
of wavelets supported by data? 

• Minimize | Y(obs) – [H][]w |2 + |w|1

• Choose  based on how sparse you 
want {w} to be

• Will affect | Y(obs) – [H][]w |2

• Shrinkage allows us to infer the 
large-scale patterns of emission 
field (above)

• And it zeros out the weights of 
many wavelets (left) 



What if the forward problem is 
computationally expensive?

Surrogates.

J. Ray, Z. Hou, M. Huang, K. Sargsyan and L. Swiler,"Bayesian calibration of the Community Land
Model using surrogates" SIAM Journal on Uncertainty Quantification, 3(1):199-233, 2015.

J. Ray, S. Lefantzi, S. Arunajatesan and L. Dechant, "Bayesian calibration of a RANS model with a
complex response surface - A case study with jet-in-crossflow configuration", 45 AIAA Fluid
Dynamics Conference, Dallas, TX, June 22-26, 2015. Conference paper: AIAA-2015-2784.
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Surrogate modeling
• If the forward model Y = M(p) is expensive, replace it with a statistical 

curve-fit

– Called emulators / surrogates / proxies

• Requires one to 

– sample the parameter space to get N samples pi and run the the model to get 
N outputs Yi = M(pi)

– Runs can be done in batch; embarrassingly parallel runs

– Fit a curve M(s)(p) i.e., Yi ~ M(s)(pi) + 

– Use M(s) instead of M

• There are many ways of doing this curve-fit
– Review papers on surrogate models

– Automated via software packages like DAKOTA (http://dakota.sandia.gov)

– Can be used in MCMC estimation of really expensive climate and engineering models

• But …..

– No guarantee that you will manage to do a curve fit OR

– Which of the hundreds of curve-fit forms/methods will work 34

http://dakota.sandia.gov


BONEYARD
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Coarse Scale Evaluation
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Proportion AAE per field Log10(K) AAE per field

Coarse scale performance across 100 realizations evaluated for every field



Coarse Field Estimation
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Proportion Errors Log10 (K) Errors

Coarse scale performance across 100 realizations evaluated at every cell
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Median Travel Time Estimation
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Coarse Data Only
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Two Scales
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Model domain 3x2km,  Coarse Scale: 30x20 cells, Continuous variables

Fine Scale:
Binary Media
3000x2000 cells
Measured travel times to 20 sensors

Injector in lower left
Producer in upper right

True binary fine-scale K field with example 
particle tracks

True F field True Coarse K field 20 Well Locations

True Fine K field
F = proportion of high conductivity



Posterior Evaluation
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F field Z field MG field Binary field

Z = (-1.0)*G-1(f;0,1) If (MG - Z > 0.0), Binary = 1, else 0

Gaussian Field, FWHM = 11.774
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Inferred coarse-scale F fields and FWHM values provide 
information necessary to create fine-scale binary fields
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Coarse scale estimation provides the 
proportion of high permeability 
material within each coarse cell

Convolution of fine-scale uncorrelated 
field with estimated kernel produces 
smoothly varying field that is truncated to 
a binary field by Z-field



Switching Flow Direction
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Distributions of the spatial average of the AAE of the median times (one 
value per realization)

Adding fine-scale data maintains small travel time 
error even for scenario of flipped source and sink 
locations

Original Configuration

Flipped Configuration


