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Introduction

» Estimation of fields (2D/3D) from limited data quite common
— E.g., estimation of material properties

e Limited data
— Could be a property of the the field measured at a few locations and/or
— Observation of a dynamical process affected by the material
e E.g. flow breakthrough times, modulation of waves through it etc.
e Estimation of properties often posed as a model-fitting problem
— Called aninverse problem

— Requires a model or parameterization of the field being inferred from data
* Called the Random Field Model (RFM)
e Often has a large number of parameters
— A model that, given a realization from the RFM, simulates the dynamics being
observed
e (Called the forward problem
e Can be computationally expensive



Uncertainties in inferences

* Because of limited observations, the (large number of) parameters in RFM
cannot be estimated accurately

— Also, a priori, we don’t know the subset of parameters that can be informed
by the observations

* Two ways out:
* — Way # 1: Keep all parameters in the RFM and estimate them using Bayesian
inference

* Bayesian inference estimates parameters as a joint probability density function
(PDF); capture the uncertainty very concisely

* Requires one to pose a statistical inverse problem
e Require sampling methods such as Markov chain Monte Carlo (MCMC) to solve
* Forward model invokes O(10%) — O(10°) times
— Way # 2: Use shrinkage regression to simplify the RFM (set “un-estimatable”
parameters to zero / nominal / prior-belief values
* Does not capture the uncertainty in the parameters that are estimated
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The problem setup

* Aim: Given a material with spatially variable properties, estimate
structural properties at all scales from sparse measurements

e Slight relaxation:
— Need to know large-scale variations/structures accurately

— Need to know statistics of the fine structures

* Given: measurements/observations which are impacted by both the fine
& coarse structures

*  Why? Materials with random & multiscale structures abound and cannot
be imaged/measured at all scales

— Geophysical materials are random & multiscale (geological strata, soil
properties etc)

— Mesoscale O(1u) electrochemical & catalytic processes at fuel cell anodes
— Material degradation/aging — e.g., “bubbles” in explosive “cook-off”



Challenges in estimation

Never enough data to infer fine & coarse scales simultaneously
— If possible to observe / image all scales, why bother to infer anything?
— Corollary: inferences are always done with incomplete data

* Most inferential methods are iterative

— Propose, compare with observations, reject/accept

— Involve a forward model that links the objects of inference with the
observables

* So even if a gigantic model resolving all scales is available, can’t be used in
a inferential setting (aka inverse problem)
— Takes too long
— Plus, never enough observables to inform the gigantic model’s gigantic d.o.f
* Net result: Inferences are always uncertain
— Due to the use of simplified models and incomplete observations
— So how to capture the uncertainty?



Inference in a binary medium

Figure of F(x) with mesh
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* Given: A porous medium with 2 phases
— A low permeability matrix
— With fine, high-permeability inclusions
— Inclusions are unevenly distributed in the domain
— Domain is rectangular—1.5x 1.0
* Scale separation: Impose a 30 x 20 grid on
domain
— Inclusions are 1/10% the grid-block size
* fine scale variable, 6

— Each grid-block has an inclusion proportion (F(x))

* Resolved on the 30 x 20 mesh; coarse scale
variable

* Impact: Permeability in a grid-block affected by
both fine- and coarse-scale variables - o o
Figure of inclusions (white) in a

— k= %4;( F(x), o) grid-box




Informative observations

Consider a set of 20 grid-blocks with sensors
— {k°Ps} given info on {F, &} at the sensors
— OK for inferring structures > inter-sensor
spacing
Water-flood experiment for finer structures
— What s this?
— Inject water at one corner, pump it out at the
diagonally opposite corner
— Flow impacted by structures at all scales

— Water breakthrough time at sensors {t°bs}
contain the integrated impact of multiscale
structures

Teasing out the contributions of the fine-
and coarse-scale to {t°*s} could allow
inference of both scales

— But how?
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Recap, and an idea for inference

Permeability k(x) = 6{%( F(x), o)
— But we don’t know what the functional form of SC% is
Breakthrough time t = 9 ( k(x) )

— But we have only 20 measurements of t, {t°bs}
— And 30 x 20 = 600 grid-blocks of unknown Fand 6

The idea
— Model #1: Develop a “pointwise” model for k = Ky (F, 0)inagrid-block

e Subgrid model

— Model #2: Develop a parameterized model for F to describe its spatial variation
* Have a about 20 — 30 parameters in it — reduced order modeling of F(x)

— With 20 {k°?s} and 20 {t°?s}, should be able to infer all unknowns
* 20-30 parameters for F(x) and one 6

Caution
— With 40 observations, none of these parameters will be estimated well

* Fine, but how inaccurate are the estimations?



Inversion

C ~ N(O,F) multiGaussian process — defines spatially varying proportion field

2 2
[, =C(x;,x;)=aexp(—|x;,—x, | /D7)

1 C_, (X) Definition of Gaussian cdf provides
F(X) = 5[1 + €7f£ \/5 jj trar:sflolrm betw;enliand F !

Ke — L(F(X),6,K1,K2) Link function provides K at the coarse scale

. M(K ) Flow model operating on fine scale K provides travel times

. | KL modes 1, K,)
d={K(x),t,} i=1..,Ns M(K)

@LC-)F(X)-)K >t




Model # 1 — a sub-grid model

Data collected at one level informs values at other levels

Multiscale random fields with averaging “link” between them
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Upscaling problem

e Weneed: k=X(F, o)

* Knudby’s theory, restricted to rectangular
inclusions of size d

— k= SCKnudby( F o L/A )
e L =flow path in the matrix

* Problem: Our inclusions are arbitrarily shaped

e (Questions:

A

A

Matrix

Inclusion
o)

D E—

A

Y

\ 4

— Can we create a field of arbitrary inclusions, given
F and 6?

— Can we find L in such cases? Just the expected
value.

— Can we do so analytically, without actually
creating a field and instantiating an inclusion-in-
matrix field?

e Subgrid modeling, but solely geometric

12




Subgrid geometric modeling

* Consider a grid-block divided into 100 x 100 grid-
cells

e |nitialize a 100 x 100 white-noise field
* Convolve with a Gaussian kernel with FWHM of 6

— Creates a correlated field with correlation length &

8
Index

* Truncate at a level Zthreshold 1d white noise field
— Flat sections are inclusions! Coreston o b
— Zyreshoig decides the inclusion proportion Fin the  ——
grid-block .

* The theory of truncated pluriGaussian fields
provides analytical expressions for expected values

— Number of inclusions

— Total area in the inclusions L

— licit f i fF :
These are explicit functions of Fand o Truncated, correlated field



Subgrid upscaling with Knudby

* |If {F, 0} specified for each grid-block, we can analytically predict
— Number of inclusions and total area of the inclusions
— Ditto, area per inclusion

* Assume that the inclusions are round

— Inclusion radius can be calculated

* Assume that the centroids of the inclusions are distributed per a Poisson
point process

— Expected value of inter-inclusion distance obtained
* Expected value of flowpath length in matrix L can be calculated
* Pluginto X ,4,, and you're done

— Not quite, but that’s the rough outline of the subgrid model

14



Linking Function

= ;DI: 0.8
- \ \ ) 0.6F FWHM
\ \I» T | T R :r/;.;-*‘- < >
% =N % /"High in low” R, g ] 02
.E:!E - ”'J'?%i\::'. ' i / I % 30 20 0 0 10 20 30 40
. Qe 0 250 . —Distaree
2 | “Lowin high” ©  Basic
w n n e - , . L | 200 + TG-DBU
Truncation Threshold, u (standard deviations) o + DBU
Decreasing proportion of high permeability material 3] 0 Streamline -
".'E LS =
. . . . 0 O O
New upscaling function uses proportions (tied to )
truncation threshold) and average estimated 5 ' #g oo
. . . . as « ¢ O | ] o] -
distances between inclusions to estimate upscaled “ ‘e O T
. o F E O O .t |
effective permeability ~ T——---F 630808880
Lt
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
McKenna, et al., (in review), Truncated MultiGaussian Fields and Effecti Proportion High Conductivity

Conductance of Binary Media, Submitted: November, 2010



Eftective Conductivity

Eftective Conductivity

Link Function Results
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Results compare well with
DBU and another EMT-based
approach

Numerical results are the
average of 30 realizations

For results shown today,
model errors are assumed
mean zero and i.i.d.

H53E-1073: The Effect of Error
Models in the Multiscale Inversion of
Binary Permeability Fields



Model #2: Reduced order modeling of {(x)

* ({(x) varies in space and is described on a 30 x 20 mesh

— Don’t want to infer all 600 values

— But {(x) is smooth — can’t we exploit this to make a lower-dimension model?
Model {(x) as a 600 variate Gaussian

— Smoothness guaranteed

— Assume correlation function known (~ exp( - x? ) ) i.e. covariance I of
multiGaussian is known

Any multiGaussian can be expanded in a Karhunen-Loeve series

— WeEé'll truncate at 30 terms
— @ (x; I')are called KL modes; w; are the weights

c<x>=2wﬂ/xi<r>®<x;r>

Inferring {(x) means inferring w;

17



Posing the inverse problem

Given: {ko°bs, tobs} at 20 sensors

Models:
— F =sum of KL modes with unknown weights w;
— k= SQ% (F 0)—the subgrid model
— t=91( k(x) ) - Darcy flow model, solved using finite-difference method

Infer weights w;, i=1...30and o

— Develop distributions for these quantities, not point values
Generating synthetic {kobs, tobs}

— Start with a “ground-truth” binary medium on a 3000 x 2000 mesh

— Push water through it and measure breakthrough times at 20 sensors — {t°s}
* Done with MODFLOW, a Lagrangian code distributed by USGS

— Superimpose a coarse 30 x 20 mesh
* Pick out the grid-blocks with sensors

e Solve a 1D flow equation in each and estimate effective grid-block permeability —
{kobs}

18



Bayesian Inverse Problem

* Objects of inference, @ = {F(x), 6} ={w, i =1...30, 6}

e Bayesian inverse problem

to —on(@))2 k™ -%,(©)}) (©-0,)
—210g7r(®)oc{ > (©); _|_{ jﬁﬁ( )} -I-{ 2 p}
(O § GK O o
— 9I, Darcy flow model to relate ® to breakthrough times {t°®s}

— SC%, subgrid model to relate ® to observed permeability at certain sampling
points

— 0O, prior beliefs regarding the values of ®

— Oy 1y Std. dev. of various measurement errors

* 7(®) evaluated by Markov Chain Monte Carlo sampling

— Particular algorithm called DRAM
19



What is MCMC?

* A way of sampling from an arbitrary distribution

The samples, if histogrammed, recover the distribution

Given a starting point (1 sample), the MCMC chain will sequentially find the
peaks and valleys in the distribution and sample proportionally

Drawback: Generating each sample requires one to evaluate the expression
for the density ©t

* Anexample

Given: (Y°bs, X), a bunch of n observations
Believed: y=ax+b
Model: y°> = ax. + b + &, € ~ /N0, o)
We also know a range where a, b and o might lie
* i.e. we will use uniform distributions as prior beliefs for a, b,
For a given value of (a, b, 5), compute “error” g =y.°® — (ax; + b;)
* Likelihood of the set (a, b, 5) = ITexp( - ¢2/c?)
Solution: 7 (a, b, o | Yobs, X') =TT exp( - €%/c? ) * (bunch of uniform priors)



MCMC, pictorially

Solution method:

— Samplefromm(a, b, o | YoPs, X)
using MCMC; save them

— Generate a “3D histogram” from the
samples to determine which region
in the (a, b, o) space gives best fit

— Histogram values of a, b and G, to
get individual PDFs for them

Choose a starting point,

— P"=(acym beurr)

Propose a new a, a, ., ~ MNa,, c,)
Evaluate 7 ( aprop, beyre | )/ T (@i

curr | ) =
— Accepta o (i-e. 2, <-a,,0,) With

probabillty mm(l m)
Repeat with b

Loop over till you have enough
samples

“good” values of (a

l y
N
v 7

A

v




Results

25

Get 10% samples of {w, o}

From each {w, d}, develop 10°
instances of F(x) and i}gﬁ( F(x), o)

Take the mean & std dev of the 10°
F(x) instances

Take standard deviations too
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Estimated Proportion (F) Fields

e MCMC runs met convergence diagnostics

e Results obtained with 1,500,000 iterations

— Approximately 50 hours on workstation
— Results in 9500 realizations of proportion field

kean Proporion Field

3 0. 06 o 0 0 04 06
Inferred Proportions (10,10) Inferred Proportions (10,15) Inferred Proportions (10,20)

Comparison of posterior pdfs for seven points on proportion field



PDFS of {w, o}

0.8

* Use the 10% samples of {w, o} e
to develop PDFs

1.0
0.6

D n=ity
D ns=ity
0.4

* Take w,, w;s and wy, as

oz

proxies for large, medium
and small (but resolved)
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* Inversions performed with

0.4
05

7 Prior

{k°Ps} only also plotted - =

0.3

* Takeaways:

0.3
i

D n=ity
0.z

D ns=ity

0.z
]

— Large-scale structures easy
to infer

o1
01

— Gets harder as we get
smaller 4 2 o 2 4 2 o

0o
0o
o

— Doesn’t apply to inclusions
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Developing fine-scale realizations

The inferences
can be used to
develop fine- B
scale binary /
media

* Flow simulations can be used to obtain an ensemble of predicted
breakthrough times at sensors

25




Posterior predictive checks

Fine-scale binary media
realizations (on a 3000 x
2000 mesh) can be used to
calculate breakthrough
times at 20 sensors

— Did so with 1,000

realizations, not all 108
possible

— Allowed us to plot 1%,
50t and 99t percentiles

— Measurements plotted as
references
Why are some
breakthrough times well
predicted and others are
not?

M

Breakthrough time (non-dimensional)
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Circle plots

2':] 1 1 1
Sensor: Dots

Circles 0 O (a ;D @

— Red: PPC using 15 L il
reconstructions using

just {k°bs} 3
— Cyan: Using {kebs, tobs} ol ¢ © @ G) o .
Circle radius:
— Prop to the 95% Cl of . 5 o *)
breakthrough times
Circle center offset:

— Prop to diff between
measured and mean
pred. breakthrough 0 L 10 15 20

e Takeaway: Further the measurement from injector/producer, bigger the uncertainty in
predictions from reconstructions. Two reasons

1. Longer breakthrough times — the % uncertainty may not be large

2. Smaller flow rates lead to less info gathered and bigger uncertainties -



Summary

* Reduced-order modeling and Bayesian inference allows us to estimate
smooth random fields without worrying about overfitting

— High-order KL modes have posterior densities = prior densities
— We can quantify the uncertainty in the inference
* Due to the sub-grid model, one can infer mesh-unresolved structures
— Requires proper data
— Will only provide statistics of the subgrid structures
 We may also be able to generate an ensemble of fine-scale structures
which are consistent with the observations

— Made possible by the fact that we don’t develop a unique/deterministic
inference, but rather a distribution

— What if the fields are not smooth and multiGaussian RFMs don’t work?

— And what if the forward problem is expensive and O(10°) evaluations are not
feasible?



What if the field is rough?
Shrinkage regression

J. Ray, V. Yaday, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution
spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via
atmospheric inversions", Geoscientific Model Development, 7, 1901-1918, 2014.

J. Ray, J. Lee, V. Yaday, S. Lefantzi, A.M. Michalak, and B. van Bloemen Waanders, "A sparse
reconstruction method for the estimation of multi-resolution emission fields via atmospheric
inversion" Geoscientific Model Development, 8, 1259-1273, 2015.



Estimation of rough fields

* Rough fields cannot be represented easily using mGaussian models (for C)

— But wavelets can. However, wavelet-based RFMs have tons(!) of parameters
* As many as the grid-blocks in the mesh

e But they are multi-resolution. Low index wavelets can represent large-scale
structures; high index stand for fine details

 Example: Estimation of fossil-fuel CO2 (ffCO2)emission fields in US

— Rough, and limited to where people live

True emissions in 8-day period 33 [microMoIes/m2/sec]

 {x}is agridded ffCO2 emission field

o {Ylobs)} = yector of CO2 concentration
measurements over a year @ sensors

o {Y)}=[H] {x} = [H] [®] {w}

— His a linear operator that maps
emissions to conc. measurements

— [F] is the matrix of wavelet bases

— {w} are wavelet weights which are to be
estimated from 30



Reducing dimensionality

Dimensionality of {w} is the same as {x} i.e., number of grid-blocks on
which x is defined

— Too many w; to infer from Y(obs)

Dimensionality reduction
— Restrict wavelets to those that inform regions where humans live
— Use images of nightlights to do so

31



Estimation thru shrinkage

Coefficient value

How to estimate the minimum number
of wavelets supported by data?

Minimize | Y(©bs)— [H][®@]w |, + A |w];

Choose A based on how sparse you
want {w} to be

Will affect | Y(°bs)— [H][@]w |,

Wavelet coefficients, for mid-complexity RF model
T T T T

e L L L L L L
0 100 200 300 400 500 600 700
Wavelet coefficient #

Reconstructed emissions in 8-day period 35 [microMoIes/mZ/sec]

10

20

25

10 20 30 40 50 60

Shrinkage allows us to infer the

large-scale patterns of emission
field (above)

And it zeros out the weights of
many wavelets (left)
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What if the forward problem is
computationally expensive?
Surrogates.

J. Ray, Z. Hou, M. Huang, K. Sargsyan and L. Swiler,"Bayesian calibration of the Community Land
Model using surrogates" SIAM Journal on Uncertainty Quantification, 3(1):199-233, 2015.

J. Ray, S. Lefantzi, S. Arunajatesan and L. Dechant, "Bayesian calibration of a RANS model with a
complex response surface - A case study with jet-in-crossflow configuration", 45 AIAA Fluid
Dynamics Conference, Dallas, TX, June 22-26, 2015. Conference paper: AIAA-2015-2784.



Surrogate modeling

* If the forward model Y = M(p) is expensive, replace it with a statistical
curve-fit
— Called emulators / surrogates / proxies

* Requires one to

— sample the parameter space to get N samples p, and run the the model to get
N outputs Y, = M(p.)

— Runs can be done in batch; embarrassingly parallel runs
— Fita curve MU)(p)i.e., Y,~ MS)(p) +n
— Use M) instead of M

* There are many ways of doing this curve-fit
— Review papers on surrogate models
— Automated via software packages like DAKOTA (http://dakota.sandia.gov)

— Can be used in MCMC estimation of really expensive climate and engineering models

— No guarantee that you will manage to do a curve fit OR
— Which of the hundreds of curve-fit forms/methods will work ”


http://dakota.sandia.gov

BONEYARD



Coarse Scale Evaluation

Proportion AAE per field
AAE per field, Propotior
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Coarse Field Estimation

Proportion Errors Log10 (K) Errors
AAE, Coarse Only, Propottion AAE, Coarse Only, log10(K)

10 15 20
AAE, Coarse and Fine, log10{K)

5 10 15 20 25 30

Coarse & Fine Data

20

5 10 15

5 10 15 20 25 30

Coarse scale performance across 100 realizations evaluated at every cell
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Median Travel Time Estimation

AAE of Times True times

Fraction Under

Estimation

Coarse Data Only

Log10 Median Travel Times, True Fiel
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Two Scales

Model domain 3x2km, Coarse Scale: 30x20 cells, Continuous variables
True F field True Coarse K field 20 Well Locations

i

B _NEEER BEEER |

-
-
-
-

0

Location of sensors
I ||
|
5 10 15 20 25 30

[]
F = proportion of high conductivity

Fine Scale:
Binary Media
3000x2000 cells

Measured travel times to 20 sensors

1600
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1200
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Injector in lower left
Producer in upper right

True binary fine-scale K field with example
particle tracks




Posterior Evaluation

Inferred coarse-scale F fields and FWHM values provide
information necessary to create fine-scale binary fields

F field Z field Binary field

. o
Z=(-1.0)*G(f;0,1) If (MG -Z>0.0), Binary = 1, else O
\ ] | J
Coarse scale estimation provides the Convolution of fine-scale uncorrelated
proportion of high permeability field with estimated kernel produces
material within each coarse cell smoothly varying field that is truncated to

a binary field by Z-field 40



Switching Flow Direction

Distributions of the spatial average of the AAE of the median times (one
value per realization)

Original Configuration
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Adding fine-scale data maintains small travel time
error even for scenario of flipped source and sink
locations "




