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‘ Sandia’ s Historical Roots in

Hypersonic Reentry Systems
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U.S. RV Performance

- Ballistic vehicle dynamic
behavior

- Component environments
and performance

Materials Development

- Heatshields

- All carbon-carbon vehicles
- Antenna windows

- Nosetips

Hypersonic Vehicle Recovery

- Pioneered the soft
recovery of hypersonic
vehicles for post-flight
inspection
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Aerothermal
Flight Vehicle Support

Minuteman Launch
= from VAFB

More than 100 Instrumented RV/RB’ s
flown (1968-present)

7 Carbon-Carbon vehicles

6 RV’ s soft recovered

10 RV’ s on 9 AO’ s [USAF;MM Ill & PK]
9 RB’s on 4 DASO’ s [USN]

Most vehicles, One-of-a-kind, unique R
& D tests

High risk, excellent track record
[>96% of flight test objectives satisfied]

MaST Recovery

Vehicle E
MaST NASA SHARP-B01
Payload

Vehicle § 221

SAMAST/MINT
All Carbon-Carbon
Vehicle

GRANITE
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| Emerging Needs v
Boost-Glide Vehicles

* Boost-Glide Vehicles cruise
for long periods of time in the
atmosphere and typically have
complex geometries.
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Altitude (ft)

* Analysis techniques developed
for short-duration flights of
axisymmetric vehicles are no
longer adequate for modeling
these vehicles.
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 New Material Thermal Response codes are necessary to model
these next-generation flight vehicles, including significant shape

change and complex internal structures.
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‘ Sandia Current Capabilities v
Aeroheating Environment
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* Aeroheating tools are necessary to
determine boundary conditions for
Material Thermal Response codes.

» Current tools vary in sophistication and
complexity:

— Correlation-based codes

— Inviscid-Boundary Layer codes

— Full Navier-Stokes codes
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‘ Sandia Current Capabilities
Aeroheating Environment
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 Correlation-Based Codes:
— HANDI

« Analytical/lempirical relationships applied to
specialized heating & engineering design problems

* Inviscid-Boundary Layer Codes:
— 2IT/ISANDIAC/HIBLARG

» 2IT — Solves for the inviscid flow on the spherical
portion of the nosetip

 SANDIAC - Solves the Euler equations for the
inviscid flow over the afterbody

 HIBLARG - Solves the integral boundary layer
equations over the complete body

» Used for sphere/multi-conic geometries and
relatively simple 3-D shapes
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‘ Sandia Current Capabilities
Aeroheating Environment
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* Full Navier-Stokes Codes
— DPLR

* Full three-dimensional Structured
Navier-Stokes code Mach

* Maintained at NASA Ames
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* Used at Sandia primarily as a flowfield
and heating code, but has not yet been
used for material thermal response
calculations

— US3D

* Full three-dimensional Unstructured
Navier-Stokes code

OC=-=NWAONNXWO

* Developed at the University of
Minnesota

* Used at Sandia as a flowfield, heating,
and material thermal response
boundary condition code
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‘ Sandia Current Capabilities
Boundary Layer Transition Prediction
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« A Boundary Layer Transition (BLT) prediction capability is
necessary to determine the Aeroheating Environment.

* BLT correlations have been used for decades and are currently
incorporated within existing Aeroheating Environment codes.

* Two three-year internally-funded R&D projects have been
completed to investigate the applicability of Stability Theory to
realistic hypersonic flight vehicles.
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Sandia
Ballistic Range Schlieren Photograph of a Sharp Cone Undergoing Boundary Layer National
Transition, from Dan Reda, NASA Ames Laboratories



‘ Sandia Current Capabilities
Boundary Layer Transition Prediction
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* Modal Linear Stability Analysis

— Based on linear stability theory and the parabolized stability
equations

« Assumes locally parallel and slowly varying flow in the streamwise
direction

— Transition analysis based on the N Factor
e N(w) = — f;; o(s,w)ds

Predicted Transition

* Codes
— STABL
. Developed_ at the Un!versity of Minnesota
« 2D and AX|-symmetr|c NFactor: 1 3 5 7 9 1113
— STABL3D

* Developed at the University of Minnesota

« Parabolized stability equations not yet implemented
» Applies to 2D manifolds derived from 3D flowfields
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‘ Sandia Current Capabilities
Material Thermal Response Codes
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« Several Material Thermal Response
Codes are currently in use at Sandia

 The code used for a particular
analysis depends upon:
— Vehicle geometry
— Vehicle complexity
— Vehicle materials
— Desired thermal response

« Code types include:
— 1-Dimensional
— Dedicated Nosetip
— 3-Dimensional
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‘ Sandia Current Capabilities
Material Thermal Response Codes

* 1-Dimensional Codes

— CMA (Charring Material Ablation)
« Originally developed by Aerotherm

« Heavily integrated into multiple automated analysis
codes in use at Sandia

Reacting Gas

— Chaleur —

* Relatively new code developed at Sandia by Ben
Blackwell and Micah Howard

* Real-time equilibrium chemistry, B’ table look-up
capabilities, and approximate finite-rate carbon

ablation chemistry model based on the work of Welsh
and Chung available

— ParChaleur
* Fortran driver code for Chaleur

+ Uses heating data extracted from US3D solutions of
complex geometries at each surface node

* 1-D Material Thermal Response solutions then
performed at each surface node

Subliming Material
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‘ Sandia Current Capabilities

Material Thermal Response Codes

* Dedicated Nosetip Codes
— ASCC (ABRES Shape Change Code): - Ablated Shape

220kft
100kft
76 kft
56 kft
43 kft
28 kft
16 kft

- Originally developed by Aerotherm A

« 2-D Axisymmetric Nosetip Code

* Inviscid flowfield computed with an engineering-
based approaches, heating computed with
Momentum/Energy Integral Technique (MEIT)

0 1 2 3 4
Axial Position (in)

« Surface ablation model only (no decomposition)

— SMITE (Simple Multi-dimensional In-depth
Thermal Evaluation):

* Relatively new code currently under development at
Sandia

+ Two-dimensional code with unstructured internal grid
generation

- Temperature Contours

5 6

3400
3200
3000
2800
2600
2400
2200
2000
1800
1600

+ Axisymmetric sphere-cones & two-dimensional cross
sections
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‘ Sandia Current Capabilities

Material Thermal Response Codes

 3-Dimensional Codes

— COYOTE-ab

Developed at Sandia for complex thermal problems

Finite Element program for non-linear heat transfer
problems

Moving mesh for ablation problems (non-
decomposing ablators only)

Multiple boundary condition types available

— SPARC (Sandia Parallel Aerosciences
Research Code)

Research code for compressible CFD and ablation
model & algorithm development

Cell-centered finite volume method for CFD problems

Galerkin finite element method for ablation/thermal
problems

Continued development is underway
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‘ Arc-Jet Simulations Using

US3D and SPARC

« CFD Simulations of Arc-Jets
— Using framework laid out by Prabhu et.al.*

— Simulating arc-jet conditions for 2 NASA ARC arc-jets

* AHF - 20-MW Aerodynamic Heating Facility
* IHF - 60-MW Interaction Heating Facility

— Flowfield simulated with the US3D CFD code

* Modeling assumptions:
— 6 specie gas model (N2, 02, NO, N, O, Ar)
Chemical and thermal non-equilibrium
Park’s T-Tv model for thermal non-equilibrium
Uniform inflow conditions for the plenum for both AHF and IHF
Cold isothermal wall BC (293K)

+ Both AHF and IHF CFD grids are axisymmetric with ~ 60 — 70 k cells
+ Both CFD simulations converge in 8 — 10 k iterations

Sandia
* Prabhu, D., et al., “CFD Analysis Framework for Arc-Heated Flowfields, I: Stagnation Testing in Arc-Jets at NASA National
ARC?”, Proceedings of the 415 AIAA Thermophysics Conference, 22-25 June 2009, San Antonio, Texas. laboratories
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US3D and SPARC

« CFD Simulation of NASA Ames AHF
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‘ Arc-Jet Simulations Using

US3D and SPARC
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« CFD Simulation of NASA Ames IHF
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‘ Arc-Jet Simulations Using
US3D and SPARC

 Ablation Simulation of Iso-Q Models

— 2-D axisymmetric arc-jet/lso-Q ablation test

Both non-decomposing (graphite) & decomposing (TACOT) ablators
LI-2200 insulating model holder material

CFD-based arc-jet flowfield heating on the ablating surface
— Post-process CFD solution for p,u,Cy, h,, and p,

— Interpolate data to a “surface transfer file” (not necessarily matching the CFD grid)
— 60 second heat up, 240 second cool down

0.1

| Graphite or TACOT
008 |

Case 1: Graphite Iso-Q in AHF
[ LI-2200 (Pstag = 30.4 kPa, qg,,= 174 W/icm?)
0.06 : \

Case 2: Graphite Iso-Q in IHF
(Pstag = 171 kPa, qg4g= 780 W/cm?)

0.02

Case 3: TACOT Iso-Q in AHF
| (Pstag = 30.4 kPa, qg,,= 174 W/cm?)
(I) L I L I 1 I I
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‘ Arc-Jet Simulations Using

US3D and SPARC

» Graphite Iso-Q — AHF Simulation
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‘ Arc-Jet Simulations Using

US3D and SPARC

» Graphite Iso-Q — IHF Simulation
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US3D and SPARC

 Tacot Iso-Q — AHF Simulation
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Arc-Jet Simulations Using
US3D and SPARC

 Tacot Iso-Q — AHF Simulation
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Summary

- Sandia has multiple Aeroheating and Material Thermal Response
codes used in the design and analysis of hypersonic flight vehicles.

* The choice of tools depends on the particular vehicle being analyzed
and the type of thermal information needed.

* Development of additional 3-D ablation modeling capabilities,
motivated by increasingly complex flight vehicles, continues.
— Numerical test problems have demonstrated the capability.

— Code-to-code comparisons have shown relatively good agreement.

- Efforts Recently Underway

— Development of a fully-coupled aerodynamic-aerothermodynamic
capability.

— Development of CFD codes compatible with upcoming computer

architectures.
Sandia
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