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Research Motivation )

= Develop shell models which capture structural damping and
joint stiffness in a reduced manner.

= Capture Micro- and Macro-Slip with physics incorporated directly into
the shell.

= Bar-like model developed by Quinn and Segalman.
= Shearable beam-like model developed by Brink and Quinn.

= Develop a convenient framework to include the nonlinear
joint into modal dynamics.

= Quinn developed a method which incorporates joint forces into the
modal equations of motion.




Importance of Including Shear
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Importance of Including Shear 1) ..
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Shearable Shell Derivation ) i,

We use a geometrically exact formulation for shell theory presented by
Libai and Simmonds (restricted here to quasi-static behavior)
Strains and Internal Forces

. B q
y=(1+e)T +gB. T
Q1. 5}

g =k . VAT
m=kxy,
F=NT+QB

Linear and Angular Momentum Balance
. L\ / . X
(NT+QB) +p=0 M’+m-(NT+QB)—|—E:O.

Constitutive Laws

N=FEHecie, Q=FHcyg, M=FEH’c5k
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Shearable Shell Derivation ) i,

External forces and moments

p . Ft él‘ + (Rn, = El) éy,
{=h (F; cos 8+ (Rn, + Fy,) sinf3).

The contact force is assumed to follow
Coulomb’s law:

Stick: u =v — h sinf3
Slip: F; = pR,, sgn(v)

The equations of motion reduce to

(N'=B'Q)+ F; cos 3 — (R, — F,) sinf3 =0,
(Q’ + & N) + F; sing + (R, — F,) cos B =0,
M+(14+e)N—-—gQ+h (F; cosB+ (R, + F,) sinB) =0.




Shearable Shell Derivation ) i,

The equations of motion can be nondimensionalized and linearized in the
deformation

Linear ku' + F; =0, —kc1 '+ (R, — F,) =0,
Angular an? B+ ke B+n (F+ (R, + F,)B8) =0.

«: nondimensional bending stiffness
r: nondimensional axial stiffness

1. nondimensional height

The external loading is prescribed at the boundaries




Some Shell Results
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Non-Dimensional Forcing Amplitude

Hysteresis curves and energy dissipated per cycle versus forcing amplitude
are as expected.



More Shell Results

Non-Dimensional Energy Dissipation
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Modal Analysis h) =,

= Quinn solves modal equations of motion for a monolithic
structure, then adds the effect of the joint back in.

[ [ 6w paala) 1(2) dx] At
M

0oi(x) doi(x)
+!/M Jx Edm(z) dx e

Monolithic Response = — (¢i(s1) 0Q1(t) + ¢i(s2) 0Q2(1))}

Forces Arising From Joint at Interfaces
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Modal Analysis — Elastic Bar ) .

Consider the response of an elas-

tic rod with simply supported P2y 9u

boundaries and a distributed in- — =0, x€(0,1),
ot?2  Ox?

terface.

The response of the monolithic structure can be expressed as

u(@,t) =Y Apt)or(z),  or(z) =V2sin(krx).

k=1

An N mode truncation
Aj+2¢(Gm) A+ ()% A

N
+ (0j(s2) — 0j(s1)) 0Q (Z Ag(t) (dr(s2) — Gbk(-sl))) =0,

k=1
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Modal Analysis — Elastic Bar ) .

The interface is located between s; = 0.20 and so = 0.30 and the initial
conditions only excite the fundamental mode of the rod.
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Conclusions )

= A nonlinear shearable elastic shell is developed which directly
incorporates friction into its formulation.

= The shell is capable of modeling micro- and macro-slip
phenomena.

= Quinn’s modal analysis method is a concise way to introduce
joint nonlinearities into modal framework.




Future Work )

= Compare the shearable elastic shell to the elastic bar using
the modal analysis techniques.

= |ntroduce the reduced order shell models and Quinn’s modal
analysis techniques into a finite element framework.




