
Sandia National Laboratories is a multi-program laboratory managed and operated by 
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the 
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000. 

A Probabilistic Fracture Mechanics Approach to 
Weld Stability in Nuclear Power Plant Piping

Scott E. Sanborn 

sesanbo@sandia.gov

Department 6233 – Structural & Thermal Analysis

Sandia National Laboratories

University of Notre Dame, CEEES Seminar, November 19, 2015

SAND2015-XXXXX

SAND2015-10112PE

mailto:sesanbo@sandia.gov


11/19/2015 2

Sandia National Laboratories
“Exceptional service in the national interest”

Largest National Lab in 
the U.S. Department of 
Energy Laboratory 
Complex

Missions
 Energy and climate

 Nuclear security 
engineering

 Defense systems

 Homeland security

Livermore, California

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of 
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2013-

8635P



06/02/2015 3

Energy & Climate

Vehicle Technologies, Biomass, Fuel Cells & 
Hydrogen Technology

Climate & Environment
Measurement & Modeling, Carbon Management, Water 

& Environment, and Biofuels

Energy Research
ARPAe, BES Chem Sciences, ASCR, CINT, Geo Bio 
Science, BES Material Science

Renewable Systems & 
Energy Infrastructure

Nuclear Energy & Fuel Cycle

Transportation Energy 
& Systems

Renewable Energy, Energy Efficiency, 

Grid and Storage Systems

Commercial Nuclear Power & Fuel, 
Nuclear Energy Safety & Security, DOE 
Managed Nuclear Waste Disposal

http://energy.sandia.gov/wp/wp-content/gallery/uploads/Sandia-SCO2.jpg


11/19/2015 4

Outline

• Why nuclear power?

• The LBB problem

• Probabilistic Framework

• Deterministic Models

• Some results

• Wrap Up



11/19/2015 5

Acknowledgements

Inputs Group
Guy DeBoo – Exelon
Gary Stevens – U.S. NRC
Matt Homiack – U.S. NRC
Ashok Nana – AREVA NP Inc.
Nathan Palm – Westinghouse

QA Group
Nancy Kyle – Theseus
xLPR Team

Program Manager
Nate Leech – Demark

Program Integration Board
Denny Weakland - Ironwood Consulting
Bruce Bishop – Westinghouse
Rob Tregoning – U.S. NRC
Jay Collins – U.S. NRC

Computational Group
Remi Dingreville– Sandia National Laboratories
Mike McDevitt– EPRI
Cédric Sallaberry – EMC2

Aubrey Eckert-Gallup– SNL
Mariner, Paul– SNL
Patrick Mattie – SNL
Scott Sanborn – SNL
Dusty Brooks – SNL
Robert Kurth – EMC2

Dilip Dedhia – Structural Integrity Associates
David Harris– Structural Integrity Associates
Paul Williams – ORNL
Ken Geelhood – PNNL
Naveen Karri - PNNL
Ian Miller – GoldSim
Ryan Roper - GoldSim

Models Group
Marjorie Erickson – PEAI
Mike Benson– U.S. NRC
Mark Kirk – U.S. NRC
Kyle Schmitt – Dominion Engineering
John Broussard – Dominion Engineering
Glenn White – Dominion Engineering
Chris Casarez – Dominion Engineering
Do-Jun Shim – Emc2
Elizabeth Kurth – Emc2
Bud Brust – Emc2
Suresh Kalyanam – Emc2
Sean Yin – ORNL
Richard Bass – ORNL
Cliff Lange – Structural Integrity Associates
Steven Xu – Kinectrics
Doug Scarth – Kinectrics
Russ Cipolla – Aptech
Mike Hill – UC Davis
Steve Fyfitch – AREVA NP Inc.
Rick Olson – Battelle
Andrew Cox – Battelle
Lee Fredette – Battelle
Bruce Young – Battelle
Mark Dennis - EPRI
Carl Latiolais- EPRI
Thiago Seuaciuc-Osorio- EPRI

Code Development Leads David Rudland – US NRC, Craig Harrington – EPRI 



11/19/2015 6

Nuclear Power - Importance
• 19% of electricity 

generated in the US[1]

• 63% of emissions-free 
electricity[2]

• Licenses will be expiring; 
power lost if not renewed

• New plants are costly
[1]

[1]

[3]
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Nuclear Power - Aging 

• Many plants are 
old

• Materials aging 
and degradation 
have brought 
about some 
unique challenges

[4]

[1]
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Leak Before Break (LBB) Problem
• 10CFR50 Appendix A General Design Criterion 4: local dynamic effects of 

piping rupture may be excluded from design basis

• LBB procedure used to justify approval of plant design excluding dynamic 
effects (no pipe whip restraints)

 Assumes no active degradation mechanisms exist

 However, after approval of LBB primary water stress corrosion cracking (PWSCC) 
was observed in many weld locations

• eXtremely Low Probability of Rupture (xLPR)

Probabilistic fracture mechanics tool that fully addresses and quantifies 
uncertainties and may be used to directly assess compliance with GDC-4

[5]

 Language in regulation
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Primary Water Reactor Welds

[6]
[7]
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Example Dissimilar Metal Weld
Pressurizer Surge Nozzle

[7]
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Probabilistic Fracture Mechanics
• To demonstrate an extremely low probability of 

rupture a probabilistic approach is necessary

Deterministic
Model

↓
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Uncertainty representation in xLPR

• Aleatory uncertainty
• Inherent randomness. Represented with 

probability distributions.

• Epistemic uncertainty
• Uncertainty originated from lack of knowledge on 

a fixed quantity. Represented with probability 
distributions.

• Experts disagree on how to categorize 
certain inputs

• Inner aleatory loop

• Outer epistemic loop
• Allows evaluation of epistemic (model) 

uncertainty.
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xLPR V2.0 – Sampling strategy

• For each loop, the xLPR allows:

 Simple random sampling (sometimes called 
Monte Carlo)

 Latin Hypercube Sampling (LHS)

• dense stratification of each input into equal 
probably intervals, then random sample in 
interval

 Discrete Probability Distribution (DPD)

• dense stratification of each input into equal 
probably intervals, then use conditional 
mean in interval

• better multidimensional coverage than LHS 
– better if variables are important conjointly 
and a reasonable range of values (not as 
dense as LHS) is required/sufficient

 Importance sampling applied to selected 
values

LHS

DPD

[8]

[8]
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xLPR V2.0 – Sampling strategy

• For each loop, the xLPR allows:

 Importance sampling applied to selected values

• Define regions to focus sampling on but reduce the weights applied to 
those results

Areas poorly covered by sampling A lot more sampling in the critical regions
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Stability

xLPR V2.0 – Conceptual flow
Deterministic Model Within Probabilistic Framework
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Deterministic Model

• Must be realistic representation of 
physical phenomena but also fast 
enough to run ~106 realizations

• Key assumptions
 Cracks can be either circumferential (circ.) 

or axial oriented cracks

 Idealized crack shapes

 No interaction between circ. and axial 
cracks

• Each deterministic model individually 
validated against available data (field 
data, lab data, other models, etc.)

• Probabilistic framework ties 
deterministic models together and 
evolves cracks through time

Ideal surface crack 
(SC)

Ideal through wall 
crack (TWC)
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Deterministic Model
Crack Initiation

• PWSCC 
 3 models available

 Calibrated to field data

• Fatigue  

• Initial Flaw (pre-existing)

• Flaw is initiated at engineering 
size

[10]

[11]
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• Loads – WRS, bending, axial, transients, etc.

• Stress intensity factors – “K”

 Many solution methods available for ideal crack 
geometries 

• K drives Growth

 General PWSCC form

 General fatigue form

Deterministic Model
Crack Growth
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Deterministic Model
Crack Coalescence

• Only applicable to 
circumferential cracks

• Cracks assumed to be 
in the same plane

• Rule based to 
determined if two 
cracks are close enough 
to interact

[12]
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• Ultrasonic test inspection 

• Given a flaw of certain 
depth:

• What is the probability of 
detection?

• What is the “depth” 
evaluated from the 
inspection?

 Repair weld if evaluated 
depth is > some threshold

• Mitigation

 Stress/structural: Inlay, 
Onlay, MSIP

 Chemistry: H2, Zinc

Deterministic Model
Inspection and Mitigation
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• For ideal shaped TWCs 
under given loads: 
 crack opening 

displacement (COD) 
obtained by analytical 
solutions that have 
been benchmarked 
against finite element 
analyses

 COD  COA

• LEAPOR (leak rate 
preprocessor) 
generates look-up 
tables prior to running 
simulation

Deterministic Model
Leak Detection

[15]

[16]
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• Loads on cracked pipe are greater than the 
remaining section can maintain

 With and without Safe Shutdown Earthquake loads

• Circumferential cracks

 Surface Crack (SC) – Net Section Collapse

 Through Wall Crack (TWC) – Net Section Collapse and/or 
elastic-plastic tearing instability

• Axial cracks

 SC – limit load analysis in Ductile Fracture Handbook

 TWC – limit load and elastic-plastic tearing instability

Deterministic Model
Stability
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Deterministic Model – Crack Stability

• Circumferential cracks
 Surface Crack (SC) – Net Section Collapse

 Through Wall Crack (TWC) – Net Section Collapse and/or 
elastic-plastic tearing instability

• Axial cracks
 SC – limit load analysis in Ductile Fracture Handbook [21]

 TWC – limit load and elastic-plastic tearing instability

• For Dissimilar Metal (DM) welds material properties 
used in stability modules are a combination of the 
base metal material properties

• Stability checked with/without SSE loads
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Results Available form xLPR Runs

• Crack specific results  - type, depth, location, etc.

• LOCA results – by user defined leak rate thresholds 
or crack opening area thresholds

• Probabilities of cracking, leakage, rupture

• Individual histories available and statistics (mean, 
median, quantiles)

• Can turn results off and/or reduce reporting 
frequency for very large number of realizations
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Some Example Results

• The following results are meant to demonstrate 
different options available in the code and their effects 
on the important results.
 Beta version of the xLPR V2.0 code – bugs may still exist

 Not all inputs may be realistic – input databases still being 
created

• The results presented are based on a dissimilar metal 
weld for a reactor pressure vessel nozzle
 Base metals - SA-508 and SA-182

 Weld material – Inconel 182 

• Same geometry, materials, loads (except transients), 
WRS, and sample size used for all the following 
demonstrations
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Zero for this case

• Axial increases crack and leak occurrence
• No effect on rupture when leak rate detection 

(LRD) is not considered
• Considering LRD, no ruptures found when axial 

cracks are included
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Effect of ISI Interval
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• No significant change in occurrence of crack or leak
• Rupture nearly levels off after 10 yrs or 20 yrs; i.e. 

for this case most cracks are found before they 
rupture
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Effect of Mechanical Mitigation
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• Little effect on occurrence of crack and 
leak – though by 20 yrs the mean 
probability is already very large

• Rupture decreases after mitigation 
time
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Use of Importance Sampling
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• Used to estimate very low probability events with 
less realizations (for example the early life mean 
rupture probabilities due to SSE) 

• Will converge to random sampling with large 
enough simulations

Importance Sampling can get smoother curves earlier in life
More realizations with event happening
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Wrap Up

• LBB Problem

• Probabilistic Approach

• Deterministic Models

• Some results

• Questions
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