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Project approach: Coordinated activities to enable

consistent, rigorous, and accepted safety analysis
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: lé | & 8Hydrogen and Fuel Cells Program
Accelerating deployments via science & engineering
hydrogen behavior and quantitative risk assessment

Goal: Facilitate the safe use of hydrogen »
NFPA®

technologies by providing a science &
engineering basis for assessing safety (risk) of gen s
H2 systems. |

(QRA)

s Extinction

Demonstrated Impact

e Enabling the deployment of refueling stations
by developing science-based, risk-informed
decision making processes for specification
of safety distances in existing code

e Sandia's analysis has enabled the indoor use of
fuel cell powered vehicles




Radiative
properties of H2
flames quantified

Flame Centerline

Ignition of under- I .

expanded H2 jets |y i J\{e 5
Discharge | . o= ™ 15

. Point / \50 % “[ r

Buoyant jet flame model
with multi-source radiation

Barrier walls for
risk reduction

2007 2009 2011 2013 2015

]

Laboratory-scale
characterization of |
LH2 plumes and jets

Ignition limits of
I turbulent H2 flows

Experiment and
simulation of
Advanced laser indoor H2

diagnostics applied to releases

turbulent H2 combustion A — |

Floa 2
30 30 §
20 5 |
20 >3
' . ) i
0 0 10 0 o 10
yid

v
|




- s
e I-é | & Hydrogen and Fuel Cells Program
= > q‘

Quantitative Risk Assessment is enabling infrastructure
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Impact and future potential of QRA and behawor

e Ongoing activities applying QRA & behavior models in H2 C&S —
reducing barriers

GH2 separation distances - NFPA2 Ch. 7 (SAND2014-3416)
Indoor fueling requirements - NFPA2 Ch. 10 (SAND2012-10150)
Performance-based compliance option - NFPA2 Ch. 5 (SAND2015-4500)

Generalized approach for defining country-specific mitigations (e.g., safety
distances) —1SO TC197 WG24 (1SO TR-19980-1)

Revision of LH, separation distances — NFPA 2 (In progress)

* Additional possible areas of application: Enclosures (NFPA2 Ch7 and I1SO
TC197); Evaluate safety impact of different designs; Understand which components
drive risk/reliability (and which don’t); Quantitative mitigation credit (e.g., the value
of flame detector)




QRA Methodology

Risk metrics calculations: FAR, PLL, AIR
e Scenario models & frequency

Release frequency

e Harm models

Generic freq. & prob. data

e Ignition probabilities

e Component leak frequencies (9 types)
Physics models

* Properties of Hydrogen

* Unignited releases: Orifice flow; Notional
nozzles; Gas jet/plume; Accumulation in
enclosures

e Ignited releases: Jet flames w/ and w/o
buoyancy; overpressures in enclosures

Mathematics Middleware

e Unit Conversion System

e Math.NET Numerics

Documentation
e Algorithm report (DRAFT ~*Nov 2015)
e User guide (SAND2015-7380 R)
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Motivation for HyRAM: Elements of QRA quality

= Repeatability
= Defined objectives and scope;
= (Clear definitions of failure modes, consequences, criteria, models, and data
= Document the system, assumptions,
Validity & Verifiability
= Data, models, system, and analysis must be sufficiently documented for a
peer reviewer to evaluate assumptions, completeness, etc.

= Use experimentally validated models (as available) and published models
and data.

Comparability
= Necessitates flexible modeling tools, documentation of methodology

Completeness
= Ability to update models as knowledge improves
= Ensure that analyzed system matches the system as built and operated




HyRAM updates since April (Demo in software)

e Overpressure model in physics mode — initial Ul & internal testing

* Reconfigured jet flame physics Ul & added more variables for user
inputs

e New Uls in QRA mode — occupant/target position, master input editor
e Engineering toolbox
e Testing & validation activities

— Alpha testers from 8 external partners (industry, labs)

— Internal software testing & experimental validation

* Documentation: HyRAM software & technical basis
— KM Groth, ES Hecht & JT Reynolds. Methodology for assessing the safety of Hydrogen
Systems: HYRAM 1.0 technical reference manual SAND2015-DRAFT, “Nov 2015.)

— KM Groth and ES Hecht. HyRAM: A methodology and toolkit for Quantitative Risk Assessment of
Hydrogen Systems. ICHS 2015.

—  HR Zumwalt and KM Groth. HyRAM V1.0 User’s Manual . -- SAND2015-7380 R.
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Recent (FY15) SNL R&D building and using HyRAM

: Appllcatlons for C&S
AC LaFleur, AB Muna & KM Groth. Fire Protection Engineering Design Brief Template:
Hydrogen Refueling Station SAND2015-4500.

= A.C. LaFleur, A. B. Muna and K. M. Groth “Application of Quantitative Risk Assessment
for Performance-Based Permitting of Hydrogen Fueling Stations” ICHS 2015.
= |SO TR-19880 (Accepted via all voting countries Oct. 2015).

= Experimental work to validate models Turbulent Combustion Lab.

ES Hecht et al. Design of the Cryogenic Hydrogen Release Laboratory. SAND2015-7521.
= |W Ekoto et al. Liquid Hydrogen Release and Behavior Modeling: State-of-the-Art

Knowledge Gaps and Research Needs for Refueling Infrastructure Safety. SAND2014-
18776.
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Next steps

e FY16:
— Integration of overpressure model into QRA mode; Add risk-features (Fault
Trees);
— Public release of HYRAM 1.0; Documentation & website
— Use of HYRAM to develop examples for NFPA 2; ISO-19880 Annex A
e FY17:
— Addition of cold H, release models

e Qut-years
— Highly accessible (web-based/app) tool for enabling end-users to
implement these algorithms
— Continue experimental work to generate needed validation data and
develop necessary science-based models (e.g. wall interactions)

Long-term vision Fully configurable, tested software product available for
users to calculate hydrogen risk values and consequences to design,
develop and adapt system designs globally.




Remaining challenges & barriers

Need for financial support from industry via CRADA with CaFCP

Hydrogen Behavior
* Address missing/unvalidated behavior models -- provides ability to overcome
station-siting barriers
—  Flow/flame surface interactions
— Physical model based ignition probability
— High-pressure cryogenic H, release behavior

QRA/ HYyRAM
Extend ability to get system-specific insights

— Enable sensitivity and uncertainty analysis
— Deflagration (unconfined) and detonation models

» Additional reliability/failure data for H2 systems
e Software validation activities

e Transition HyRAM beyond prototype (e.g., formal software development
activities, software quality assurance)




Summary

HyRAM is an integration platform for state-of-the-art H2 safety
models — enables consistent industry-led QRA and consequence
analysis with documented, referenceable, validated models

HyRAM 1.0 public release expected in 3-6 months — free download,
use-at-your-own-risk.

Additional models and features are being integrated into HyRAM —
cryo, engineering toolkit.

Ongoing activities for stakeholder engagement, evaluation,
verification, and acceptance




HYDROGEN RISK ASSESSMENT MODELS

Thankyou!

Katrina Groth
Sandia National Laboratories

keroth@sandia.gov

Research supported by DOE Fuel Cell Technologies Office (EERE/FCTO)



mailto:kgroth@sandia.gov

-and Fuel Cells Program

Sources of models & data in HYyRAM 1.0

[1] J. M. Ohi, C. Moen, J. Keller, & R. Cox, “Risk assessment for hydrogen codes and standards,” ICHS 2005. corrections,” JAE, 39, no. 35, 20 570-20 577, Dec. 2014.

[2] J. LaChance, W. Houf, B. Middleton, & L. Fluer, “Analyses to support development of risk-informed
separation distances for hydrogen codes and standards,” SAND2009-0874, March 2009.

[3]J. LaChance, “Risk-informed separation distances for hydrogen refueling stations,” IJHE, 34, no. 14,
5838-5845, 2009.

[4] ). LaChance, A. Tchouvelev, J. Ohi, “Risk-informed process and tools for permitting hydrogen fueling
stations,” IJHE 34, no. 14, 5855-5861, 2009.

[5]J. L. LaChance, B. Middleton, K. M. Groth, “Comparison of NFPA and ISO approaches for evaluating
separation distances,” IJHE 37, no. 22, 17 488-17 496, November 2012.

[6] K. M. Groth, J. L. LaChance, A.P. Harris, “Early-stage quantitative risk assessment to support
development of codes and standard requirements for indoor fueling of hydrogen vehicles,” Sandia
National Laboratories, Albuquerque, NM, SAND2012-10150, November 2012.

[7] K. M. Groth, J. L. LaChance, A. P. Harris, “Design-stage QRA for indoor vehicular hydrogen fueling
systems,” ESREL 2013, Amsterdam, September 29 - October 2 2013, 2247-2256.

[8] H. J. Pasman, “Challenges to improve confidence level of risk assessment of hydrogen technologies,”
International Journal of Hydrogen Energy, 36, no. 3, 2407-2413, 2011.

[9] K. Groth A. Harris, “Hydrogen quantitative risk assessment workshop proceedings,” Sandia National
Laboratories, Albuquerque, NM, SAND2013-7888, August 2013.

[25] J. LaChance, A. Tchouvelev, A. Engebg, “Development of uniform harm criteria for use in quantitative
risk analysis of the hydrogen infrastructure,” IJHE, 36, no. 3, 2381-2388, 2011.

[26] NA Eisenberg, CJ Lynch, R.J. Breeding, “Vulnerability model. A simulation system for assessing
damage resulting from marine spills,” U. S. Coast Guard, Rep. SA/A-015 245, 1975.

[27] CK Tsao & WW Perry, “Modifications to the vulnerability model: a simulation system for assessing
damage resulting from marine spills,” U. S. Coast Guard, Rep. ADA 075 231, 1979.

[28] TNO, “Methods for the determination of possible damage,” The Netherlands Organization of Applied
Scientific Research (TNO), CPR 16E, 1992.

[29] F. P. Lees, “The assessment of major hazards: a model for fatal injury from burns,” Process safety and
environmental protection, 72, no. 3, 127-134, 1994.

[30] HSE, Major hazard aspects of the transport of dangerous substances. UK Health and Safety Executive
(HSE), 1991.

[31] E. Lemmon, M. Huber, M. McLinden, “NIST standard reference database 23: Reference fluid
thermodynamic and transport properties - REFPROP, Version 9.1,” NIST, 2013.

[32] J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, E. W.Lemmon, “Fundamental equations of state for
parahydrogen, normal hydrogen, and ortho-hydrogen,” Journal of Physical and Chemical Reference Data,
38, no. 3, 721-748, 2009.

[10] K. Ham et al “Benchmark exercise on risk assessment methods applied to a virtual hydrogen refuelling [33] A. D. Birch, D. J. Hughes, F.Swaffield, “Velocity decay of high pressure jets,” Combustion Science and

station,” IJHE 36 (3), 2666-2677, 2011.

[11] A. Kotchourko et al, “State of the art and research priorities in hydrogen safety,” Joint Research
Centre of the European Commission (JRC), ,2014.

[12] A. V. Tchouvelev, “Risk assessment studies of hydrogen and hydrocarbon fuels, fuelling stations:
Description and review,” IEA HIA Task 19, Tech. Rep., 2006.

[13] A. V. Tchouvelev, K. M. Groth, P. Benard, T.Jordan, “A hazard assessment toolkit for hydrogen
applications,” in World Hydrogen Energy Conference (WHEC 2014), 2014.

Technology, 52, no.1-3, 161-171, 1987.

[34] A. D. Birch, D. R. Brown, M. G. Dodson, F.Swaffield, “The structure and concentration decay of high
pressure jets of natural gas,” Combustion Science and Technology, 36, no. 5-6, 249-261, 1984.

[35] B. C. R. Ewan K. Moodie, “Structure and velocity measurements in underexpanded jets,” Combustion
Science and Technology, 45, no. 5-6, 275-288, 1986.

[36] V. Molkov, D. Makarov, M. Bragin, “Physics and modelling of under-expanded jets and hydrogen
dispersion in atmosphere,” 24th inte’l confon interaction of intense energy fluxes with matter, March 1-6

[14] KM Groth and AV Tchouvelev, “A toolkit for integrated deterministic probabilistic risk assessment for 2009.

hydrogen infrastructure,” PSAM 12, Honolulu, HI, 22-27, June 2014.

[37] K. B. Yceil M. V. Otugen, “Scaling parameters for underexpanded supersonic jets,” Physics of Fluids,

[15] Center for Chemical Process Safety (CCPS), Guidelines for Chemical Process Quantitative Risk Analysis. 14, no. 12, 4206-4215, 2002.

American Institute of Chemical Engineers, 1999.
[16] T. Aven, Foundations of risk analysis. John Wiley & Sons, 2003.
[17] M. Modarres, Risk Analysis in Engineering: Techniques, Tools, and Trends. CRC Press, 2006.

[18] SFPE, “SFPE engineering guide to performance-based fire protection analysis and design of buildings,

National Fire Protection Association, Quincy, MA, USA, Tech. Rep., 2007.

[19] S. E. Rose, S. Flamberg, F. Leverenz, Guidance Document for Incorporating Risk Concepts into NFPA
Codes and Standards. Fire Protection Research Foundation, March 2007.

[20] J.-E. Vinnem, Offshore Risk Assessment: Principles, Modelling and Applications of QRA Studies, 2nd
ed. Springer, 2007, Springer Series in Reliability Engineering.

[21] T. Aven, Quantitative risk assessment: the scientific platform. Cambridge University Press, 2011.

[22] T. Aven, “On the new ISO guide on risk management terminology,” Reliability Engineering & System
Safety, 96, no. 7, 719-726, 2011.
[23] W. Houf R. Schefer, “Predicting radiative heat fluxes and flammability envelopes from unintended

HI

[38] K. Harstad J. Bellan, “Global analysis and parametric dependencies for potential unintended
hydrogen-fuel releases,” Combustion and Flame, 144, no. 12, 89 — 102, 2006.

[39] W. Houf R. Schefer, “Analytical and experimental investigation of small-scale unintended releases of

, hydrogen,” IJHE, 33, no. 4, 1435— 1444, 2008.

[40] B. Lowesmith, G. Hankinson, C. Spataru, M. Stobbart, “Gas build-up in a domestic property following
releases of methane/hydrogen mixtures,” IJHE, 34, no. 14, 5932-5939, July 2009.

[41] G. Hankinson & B. J. Lowesmith, “A consideration of methods of determining the radiative
characteristics of jet fires,” Combust. Flame, 159, no. 3, 1165-1177, Mar. 2012.

[42] A. Molina, R.W. Schefer, & W. G. Houf, “Radiative fraction and optical thickness in largescale
hydrogen-jet fires,” Proc. Combust. Inst., 31, no. 2, 2565-2572, Jan. 2007.

[43] C. Bauwens & S. Dorofeev, “CFD modeling and consequence analysis of an accidental hydrogen
release in a large scale facility,” IJHE, 39, no. 35, 20 447-20 454, Dec. 2014.

[44] Math.net numerics. Available: http://numerics.matdotnet.com




_ iﬁwrﬁydragen and Fuel Cells Program

HyRAM in one slide
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et ﬂames are calcula led ing the model Id cribed by Ekoto et al. (Internatior ICo fen Hydrogen Safety, 2013}, which includes buoyancy and wind
Relea: are b low and radiative heat flux at vari Iocat output.

— Standardized scenarios and S

The Multi-Source model breaks uplheflameintosegmems along its tral sjectory a nd sums the heat flux contr bt ata point from each segment. The Single-
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L L T i

input | Output
Radiative heat flux calculated (KW/m"2):
X fm) Y ) Zim) Fluse fW/m"2)
» 0.0100 0.0100 0.0100 21.0629
— H2 phenomena (gas release, T m——r plotso Output

0.0400 0.0400 0.0400 215744

Iy

ignition, heat flux, overpressure) e ”sz:}

e Software built to enable o=
industry-led quantitative risk
assessments (QRAS)

— Puts the R&D into the hands
of H2 industry safety experts




Example HyRAM calculation: Jet FIame physics

Consequence-only modeling
Input

e Leak size and known
conditions.

Input | Dutput

Notional Nozzle Model: | Birch2

Plot routine
@ PletT ) Plotlso

Variable Value Uit

Ambient Temperature 15 Celsius -
Ambient Pressure 1 Atm -
Hydrogen Temperature 15 Celsiug -
Hydrogen Pressure 10000 PS5l -
Leak Diameter 0.0 Meter -

2 Relative Humidity 0
Leak Height from Floor fyl) 1 Meter -

Ly Lﬁ &Hydrogen and Fuel Cells Program

Output

e Shows flame temperature
at different distances --
direct analog to original
safety distance work.
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Example HyRAM calculation: Fu

Allows credit for mitigations that reduce likelihood of events & provides
system-specific risk-reduction insight

Input Output
e Total system risk

— Enables comparisons, e.g. risk with vs.
gas detection

| Risk Metric Value Unit
Potential Loss of Life (PLL) 4.500=-04 | Fatalties/system-year
Fatal Accident Rate (FAR)/100M exposed hours 0.1027 | Fatalties in 1078 person-ho...
Average individual risk (AIR) 2 055e-06 | FataltiesAvear
Walue Uit
5.000e-04 | Fatalties,system-year
0.1141 | Fatalties in 10™8 person-ho...

» System description (components,
parameters, facility description)

Companerts | System Parameters | Faciity Parameters |
Fiping | Viehicles

Wariable

Potential Loss of Life (FLL)
Fatal Accident Rate (FAR)/100M exposed hours

Fipe Wall Thickness

intemal TemperatComponents | System Parameters | Facity Parameters | Average individual isk (AIR) | 2283206 | Fataities/year
Intemal Pressure o . . . o
P — W Court Ut * Insight into risk drivers: scenario
Extemal Pressure ’ g f & H k k'
IS # Cylinders 0 requency « riskK ranking
5 . End State Avg. PLL
H Valves 5 cenana Type Events/fear Contribution
# Instruments 2 0.01pct Release Mo Ignition 0.03448206 0.00%
0.1pct Release Mo Ignition 0.00495318 0.00%
# Joints 35 Tpct Releass No Igrition 0.00148741 0.00%
# Hoses 1 10pct Release Mo Ignition 0.00116683 0.00%
- - 100pct Release No Ignition 0.00071471 0.00%
Facility Oeccuparnts i 0.07pct Release Jet fire 0.00025097 000%
- |D.D‘Ipct Release Explosion 0.00012448 0.01%
Input Details | Distribution [1000ct Release Jet fire 0.00003669 0.00%
Variahle Value |D.‘Ipct Release Jet fire 0.00003605 0.00 %
0.1pct Release Explosion 0.00001788 0.00 %
Population (Mumber of persons) 50 100pct Release Explosion 0.00001770 95.15%
Work.ing hours per year 1pct Release Jet fire 0.00001083 0.00 %
: = S . 10pct Release Jet fire 0.00000249 0.00%
5 - 1pct Release Explosion 0.00000537 0.03%
10pct Release Explosion 0.00000421 481%




