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Develop integrated 
methods and 
algorithms 

for enabling 
consistent, logical and 

defensible QRA

Apply QRA & 
behavior models to 

real problems 

in hydrogen 
infrastructure and 

emerging technology

Develop and validate 
scientific models

to accurately predict 
hazards and harm 

from liquid releases, 
flames, etc.

Project approach: Coordinated activities to enable 
consistent, rigorous, and accepted safety analysis

Risk R&D Behavior R&DApplication in C&S



Accelerating deployments via science & engineering 
hydrogen behavior and quantitative risk assessment 
(QRA)

Goal: Facilitate the safe use of hydrogen 

technologies by providing a science & 

engineering basis for assessing safety (risk) of 

H2 systems.

Demonstrated Impact

• Enabling the deployment of refueling stations 

by developing science-based, risk-informed 

decision making processes for specification

of safety distances in existing code

• Sandia's analysis has enabled the indoor use of 

fuel cell powered vehicles
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Advanced laser 
diagnostics applied to 

turbulent H2 combustion

Ignition of under-
expanded H2 jets

Buoyant jet flame model 
with multi-source radiation

Laboratory-scale 
characterization of 

LH2 plumes and jets

Barrier walls for 
risk reduction

Hydrogen Behavior studies enable predictive capabilities

Radiative
properties of H2 

flames quantified

Experiment and 
simulation of 

indoor H2 
releases

Ignition limits of 
turbulent H2 flows
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Risk assessment 
proposed for 

hydrogen systems 
at ICHS

QRA applied to indoor 
refueling to inform 

code revision

Established risk-
informed processes for 

separation distances

Public release of 
HyRAM R&D tool 

QRA-informed 
separation distances 

in NFPA 2

Quantitative Risk Assessment is enabling infrastructure 
deployment

20% station penetration 
potential due to QRA

ISO TC197 WG24 
incorporating QRA and 

behavior modeling

Performance-based 
system layout 
demonstrated



Impact and future potential of QRA and behavior

• Ongoing activities applying QRA & behavior models in H2 C&S –
reducing barriers

– GH2 separation distances - NFPA2 Ch. 7  (SAND2014-3416)

– Indoor fueling requirements - NFPA2 Ch. 10 (SAND2012-10150)

– Performance-based compliance option - NFPA2 Ch. 5 (SAND2015-4500)

– Generalized approach for defining country-specific mitigations (e.g., safety 
distances)  – ISO TC197 WG24 (ISO TR-19980-1)

– Revision of LH2 separation distances – NFPA 2 (In progress)

• Additional possible areas of application: Enclosures (NFPA2 Ch7 and ISO 

TC197); Evaluate safety impact of different designs; Understand which components 
drive risk/reliability (and which don’t); Quantitative mitigation credit (e.g., the value 
of flame detector)
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Major elements of HyRAM software
QRA Methodology 
• Risk metrics calculations: FAR, PLL, AIR
• Scenario models & frequency
• Release frequency
• Harm models

Generic freq. & prob. data 
• Ignition probabilities
• Component leak frequencies (9 types)

Physics models 
• Properties of Hydrogen
• Unignited releases: Orifice flow; Notional 

nozzles; Gas jet/plume; Accumulation in 
enclosures

• Ignited releases: Jet flames w/ and w/o 

buoyancy; overpressures in enclosures

Mathematics Middleware 
• Unit Conversion System
• Math.NET Numerics

Documentation
• Algorithm report (DRAFT ~Nov 2015)
• User guide (SAND2015-7380 R) + Anticipated free download via web (~2016)



Motivation for HyRAM: Elements of QRA quality
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 Repeatability

 Defined objectives and scope; 

 Clear definitions of failure modes, consequences, criteria, models, and data

 Document the system, assumptions, 

 Validity & Verifiability

 Data, models, system, and analysis must be sufficiently documented for a 
peer reviewer to evaluate assumptions, completeness, etc. 

 Use experimentally validated models (as available) and published models 
and data.

 Comparability

 Necessitates flexible modeling tools, documentation of methodology

 Completeness

 Ability to update models as knowledge improves

 Ensure that analyzed system matches the system as built and operated



HyRAM updates since April (Demo in software)

• Overpressure model in physics mode – initial UI & internal testing

• Reconfigured jet flame  physics UI & added more variables for user 
inputs

• New UIs in QRA mode – occupant/target position, master input editor

• Engineering toolbox

• Testing & validation activities

– Alpha testers from 8 external partners (industry, labs)

– Internal software testing & experimental validation

• Documentation: HyRAM software & technical basis
– KM Groth, ES Hecht & JT Reynolds. Methodology for assessing the safety of Hydrogen 

Systems: HyRAM 1.0 technical reference manual SAND2015-DRAFT, ~Nov 2015.)

– KM Groth and ES Hecht. HyRAM: A methodology and toolkit for Quantitative Risk Assessment of 
Hydrogen Systems. ICHS 2015.

– HR Zumwalt and KM Groth.  HyRAM V1.0 User’s Manual . -- SAND2015-7380 R.



Recent (FY15) SNL R&D building and using HyRAM
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 Applications  for C&S
 AC LaFleur, AB Muna & KM Groth. Fire Protection Engineering Design Brief Template: 

Hydrogen Refueling Station SAND2015-4500.
 A. C. LaFleur, A. B. Muna and K. M. Groth “Application of Quantitative Risk Assessment 

for Performance-Based Permitting of Hydrogen Fueling Stations“ ICHS 2015.
 ISO TR-19880 (Accepted via all voting countries Oct. 2015).

 Experimental work to validate models Turbulent Combustion Lab.
 ES Hecht et al. Design of the Cryogenic Hydrogen Release Laboratory. SAND2015-7521.
 IW Ekoto et al. Liquid Hydrogen Release and Behavior Modeling: State-of-the-Art 

Knowledge Gaps and Research Needs for Refueling Infrastructure Safety. SAND2014-
18776.



Next steps

• FY16:
– Integration of overpressure model into QRA mode; Add risk-features (Fault 

Trees); 
– Public release of HyRAM 1.0; Documentation & website
– Use of HyRAM to develop examples for NFPA 2; ISO-19880 Annex A

• FY17:
– Addition of cold H2 release models 

• Out-years
– Highly accessible (web-based/app) tool for enabling end-users to 

implement these algorithms
– Continue experimental work to generate needed validation data and 

develop necessary science-based models (e.g. wall interactions)

Long-term vision Fully configurable, tested software product available for 
users to calculate hydrogen risk values and consequences to design, 
develop and adapt system designs globally.
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Remaining challenges & barriers

• Need for financial support from industry via CRADA with CaFCP

• Hydrogen Behavior

• Address missing/unvalidated behavior models -- provides ability to overcome 
station-siting barriers 

– Flow/flame surface interactions 

– Physical model based ignition probability

– High-pressure cryogenic H2 release behavior 

• QRA/ HyRAM

• Extend ability to get system-specific insights

– Enable sensitivity and uncertainty analysis 

– Deflagration (unconfined) and detonation models

• Additional reliability/failure data for H2 systems

• Software validation activities

• Transition HyRAM beyond prototype (e.g., formal software development 
activities, software quality assurance)
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Summary

• HyRAM is an integration platform for state-of-the-art H2 safety 
models – enables consistent industry-led QRA and consequence 
analysis with documented, referenceable, validated models

• HyRAM 1.0 public release expected in 3-6 months – free download, 
use-at-your-own-risk.

• Additional models and features are being integrated into HyRAM –
cryo, engineering toolkit.

• Ongoing activities for stakeholder engagement, evaluation, 
verification, and acceptance 
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HyRAM in one slide

• Integration platform for 
state-of-the-art hydrogen 
safety models & data

– Generic reliability data for H2 
systems

– Standardized scenarios and 
models

– H2 phenomena (gas release, 
ignition, heat flux, overpressure)

• Software built to enable 
industry-led quantitative risk 
assessments (QRAs)

– Puts the R&D into the hands 
of H2 industry safety experts



Example HyRAM calculation: Jet Flame physics

Input Output

• Shows flame temperature 
at different distances --
direct analog to original 
safety distance work.

17

• Leak size and known 
conditions.

Consequence-only modeling



Example HyRAM calculation: Full QRA 

Input Output
• Total system risk

– Enables comparisons, e.g. risk with vs. without
gas detection

• Insight into risk drivers: scenario 
frequency & risk ranking
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• System description (components, 
parameters, facility description)

Allows credit for mitigations that reduce likelihood of events & provides 
system-specific risk-reduction insight


