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Evolving Cyber Threats ) .

= Cyber threats continue to expand
= Qutpacing ability to train and deploy skilled human analysts
= Network traffic far exceeds capacity for human processing

= Attacks becoming more sophisticated

= Signature-based defenses not adequate
= Polymorphic code (self-modifying programs)
= Steganography (hiding data in plain sight)
= “Zero-day” attacks
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The Human Analyst

= Large knowledge of prior threat “signatures”

= Specific code or knowledge of “bad” websites

= Recognizes previously observed attack methods
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= Man-in-the-middle, “phishing” or Distributed Denial of Service (DDoS)

= Discovers anomalous patterns
= Temporal

—> = “Spatial” (within individual temporal events)
= Caninfer new threats based on evidence

= e.g. discovered new class of computer worm
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Problem Statement and Hypothesis [@JE:.

= Analyst often faced with untrusted BLOBs of data
= What is this data, really?

= Can we learn a model of normal, trusted data?
= Without dictionaries, signatures, specific features or other prior
knowledge?

= Can this model reliably identify unknown data: distinguish file
types?

= We propose: (1) A set of transformations for representing
data. (2) Automated feature discovery and learning with a
neural network.




Background ) s,

= Predominantly binary classification (good/bad executables)

= Feature sets
= Entropy within sliding window?
= Short-time Fourier Transform of entropy (proposed)?
= Byte frequency?
= Byte n-grams (e.g. CPU instructions)*

= Classifiers
= Support Vector Machines34>
= Decision Trees
= Naive Bayes>
= Neural Networks®
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Neural Networks: Brief Overview

= Well suited for wide range of data (learns features):

= |mages, video, speech and other signals

= Word or sentiment vectors in a hyper-space
" e.g. “Germany” is close to “Austria” in the vector space

= There are many types of data (with more everyday). We do not want
to develop features for all of them.
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Neural Network Classifier ) i

= Pre-training (2006)?!

= |nitializes network closer to good minimum
= Dropout regularization (2014)?

= Prevents overfitting on deep networks
= De-noising (2010)3

= |mproves generalization 1‘
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Entropy within Sliding Window 1) .

H(X,t)= —;P(xi,t)logz P(x,,1)
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Byte Frequency Distribution ) s,
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Performance )

= Widely varying performance between representations

= Entropy performs worst

= Many compressed formats look similar

= Byte frequency distribution performs best

= Reveals common characters, instructions, etc.
= Combining all three yields best performance (97.4%)
= Good performance despite small training set?

= Dropout and denoising help
P H S P,H P, S H, S P,H,S

Accuracy’*? (%) 95.30 77.11 81.26 96.74 96.63 94.44  97.44

File types (9): HTML, PNG, JPEG, GIF, PDF, DOC, ELF, GZIP, AES
P: Byte freq. distribution

1. Average of three trainings. H: entropy within window
2. Training set size is 500 per class. S: power spectrum
3. Cross-validation set size is 100 per class. - P p 11
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Confusion Matrix

= Six of nine types achieve 299%
= AES readily distinguished (95%)
= Only confused with PNG
= PNG has worst performance (91%)

= Can be very high entropy or have large amount of metadata
Predicted Class

HTML PNG JPEG GIF PDF DOC ELF GZIP AES
HTML | 100
PNG 91 1 1 1 1 1 4
§ JPEG 1 99
&) GIF 100
= PDF 1 3 1 95
£ Doc 1 99
< ELF 100
GZIP 100
AES 5 95




Concluding Remarks ) S,

= Recent advances improve neural network performance

= Pre-training, dropout and denoising
= Minimal feature engineering or tuning
= Benefits from variety of input representations
= Effective for identifying unknown data

= e.g. distinguishes between high-entropy formats

= Future work: automating temporal tasks
= Recent advances in recurrent neural networks are promising

= More powerful optimization techniques! and pre-training?

1. Martens, James, and llya Sutskever. "Learning recurrent neural networks with hessian-free optimization." ICML. (2011).
2. Hermans, Michiel, and Benjamin Schrauwen. "Training and analysing deep recurrent neural networks." NIPS. (2013). 13




Confusion Matrix — Entropy Alone

Actual Class
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Predicted Class

HTML PNG JPEG GIF PDF DOC ELF GZIP AES
HTML 100
PNG 46 4 2 2 3 43
JPEG 86 2 1 1 5
GIF 14 2 37 2 45
PDF 3 7 4 2 83 1
DOC 1 98 1
ELF 5 95
GZIP 3 68 29
AES

100




