

Exceptional service in the national interest

A signal processing approach for cyber data classification with deep neural networks

Jonathan A. Cox, Conrad D. James, James B. Aimone

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Evolving Cyber Threats

- Cyber threats continue to expand
 - Outpacing ability to train and deploy skilled human analysts
 - Network traffic far exceeds capacity for human processing
- Attacks becoming more sophisticated
- Signature-based defenses not adequate
 - Polymorphic code (self-modifying programs)
 - Steganography (hiding data in plain sight)
 - “Zero-day” attacks

The Human Analyst

- Large knowledge of prior threat “signatures”
 - Specific code or knowledge of “bad” websites
- Recognizes previously observed attack methods
 - Man-in-the-middle, “phishing” or Distributed Denial of Service (DDoS)
- Discovers anomalous patterns
 - Temporal
 - ▪ “Spatial” (within individual temporal events)
- Can *infer* new threats based on evidence
 - e.g. discovered new class of computer worm

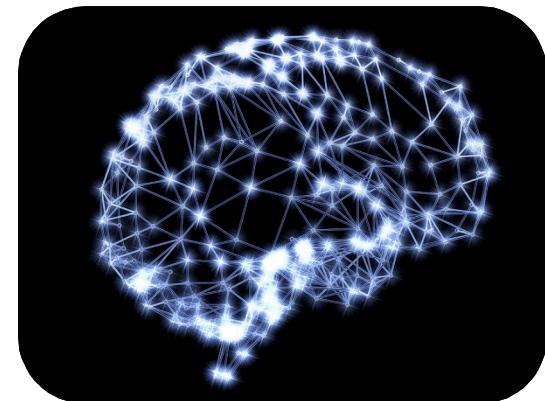

```

BA 00 B8 01-02 8B DC 33-C9 83 FF 05-7F 03 8B 4E
25 03 4E 02-CD 13 72 29-BE 46 07 81-3E FE 7D 55
AA 74 5A 83-EF 05 7F DA-85 F6 75 83-BE 27 07 EB
8A 98 91 52-99 03 46 08-13 56 0A E8-12 00 05 5A EB
D5 4F 74 E4-33 C0 CD 13-EB B8 00 00-00 00 00 00
56 33 FE 56-56 52 50 06-53 51 BE 10-00 55 8B F4
50 52 B8 00-42 8A 56 24-CD 13 5A 58-8D 64 10 72
0A 40 75 01-42 80 C7 02-E2 F7 F8 5E-C3 EB 74 49
6E 76 61 6C-69 64 20 70-61 72 74 69-74 69 6F 6E
20 74 61 62-6C 65 00 45-72 72 6F 72-20 6C 6F 61
64 69 6E 67-20 6F 70 65-72 61 74 69-6E 67 20 73
79 73 74 65-6D 00 4D 69-73 73 69 6E-70 20 6F 78
65 72 61 74-69 6E 67 20-73 79 73 74-65 6D 00 00
00 00 00-00 00 00 00-00 00 00 00-00 00 00 00 00
00 00 00-00 00 00 00-00 00 00 00-00 00 00 00 00
00 00 00 8B-FC 1E 57 8B-F5 CB 00 00-00 00 00 00 00

```

Problem Statement and Hypothesis

- Analyst often faced with untrusted BLOBs of data
 - What is this data, really?
- Can we learn a model of normal, trusted data?
 - Without dictionaries, signatures, specific features or other prior knowledge?
- Can this model reliably identify unknown data: **distinguish file types?**
- *We propose:* **(1)** A set of transformations for representing data. **(2)** Automated feature discovery and learning with a neural network.



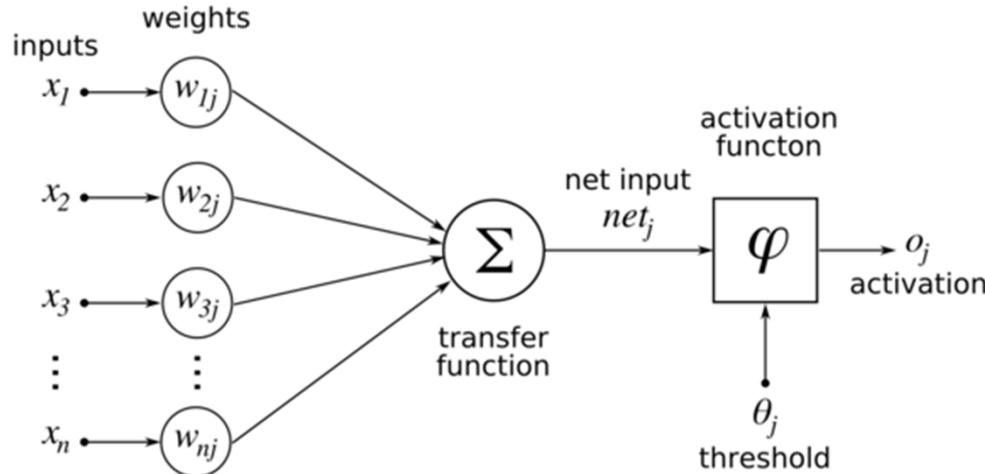
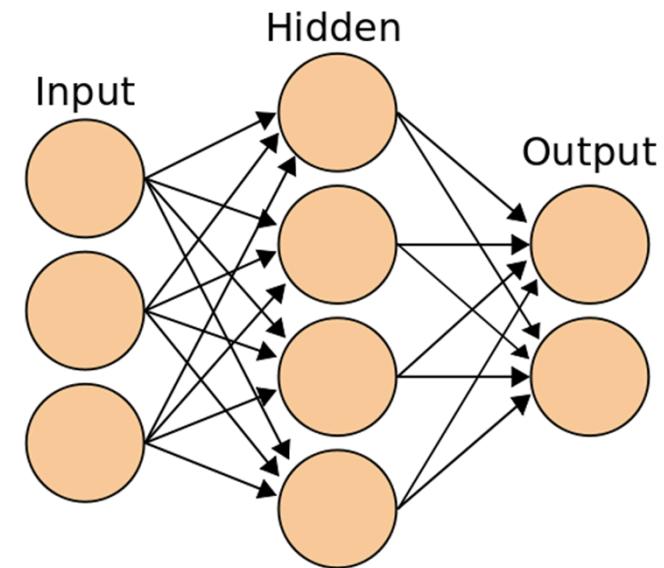
Background

- Predominantly binary classification (good/bad executables)
- Feature sets
 - Entropy within sliding window¹
 - Short-time Fourier Transform of entropy (proposed)²
 - Byte frequency³
 - Byte n-grams (e.g. CPU instructions)⁴
- Classifiers
 - Support Vector Machines^{1,3,4,5}
 - Decision Trees⁵
 - Naïve Bayes⁵
 - Neural Networks⁶

1. Hall, Gregory A. "Sliding window measurement for file type identification." (2006).
2. Thomas C. Schmidt et al. "Context-adaptive Entropy Analysis as a Lightweight Detector of Zero-day Shellcode Intrusion for Mobiles." ACM WiSec (2011).
3. Zhang, Like, and Gregory B. White. *Parallel and Distributed Processing Symposium, 2007. IPDPS*.
4. Reddy, D. et al. "N-gram analysis for computer virus detection." *Journal in Computer Virology* 2.3 (2006).
5. J.Z. Kolter et al. "Learning to detect malicious executables in the wild." *Proc. of the 10th ACM SIGKDD* (2004).
6. Wright, Jason L., and Milos Manic. "Neural Network Approach to Locating Cryptography in Object Code." *ETFA*. 2009.

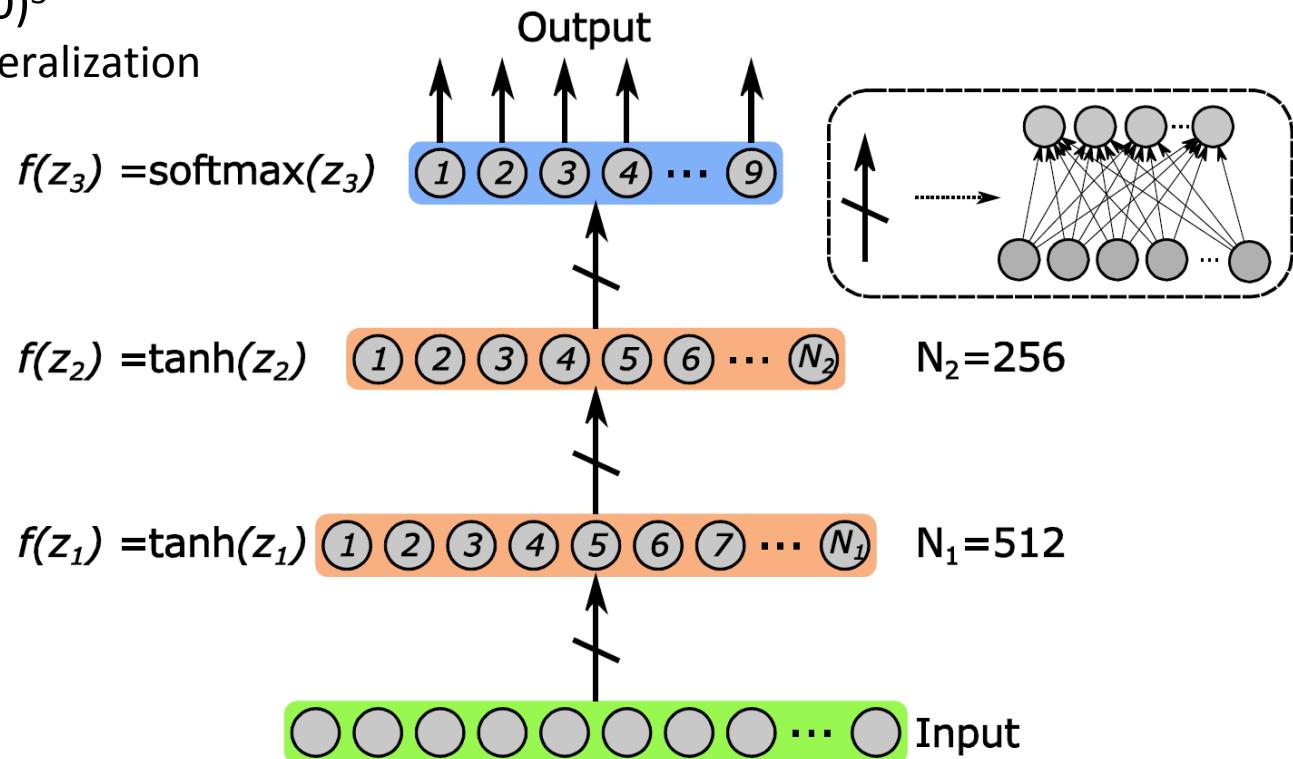
Neural Networks: Brief Overview

- Well suited for wide range of data (learns features):
 - Images, video, speech and other signals
 - Word or sentiment vectors in a hyper-space
 - e.g. “Germany” is close to “Austria” in the vector space
 - There are many types of data (with more everyday). We do not want to develop features for all of them.



Neural Network Classifier

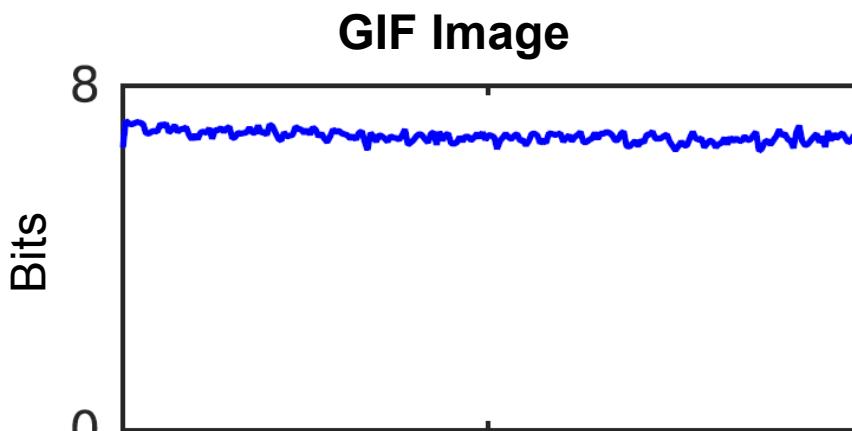
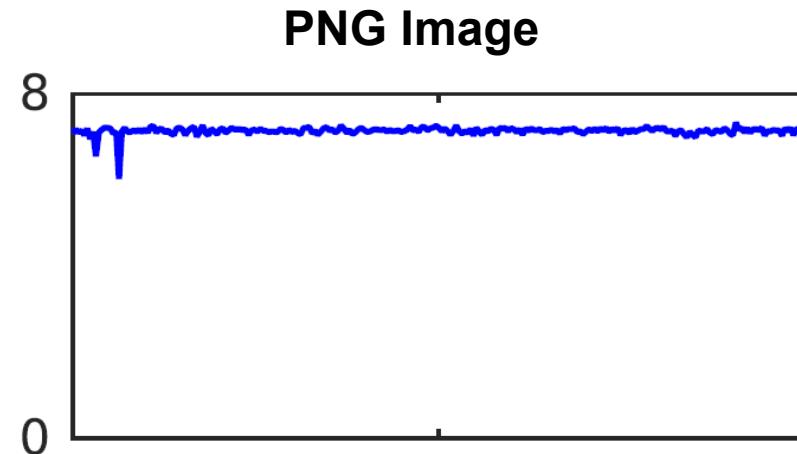
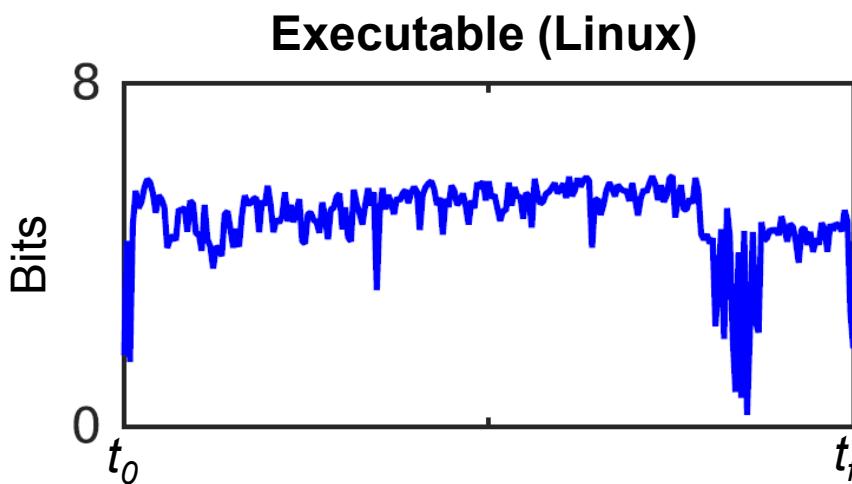
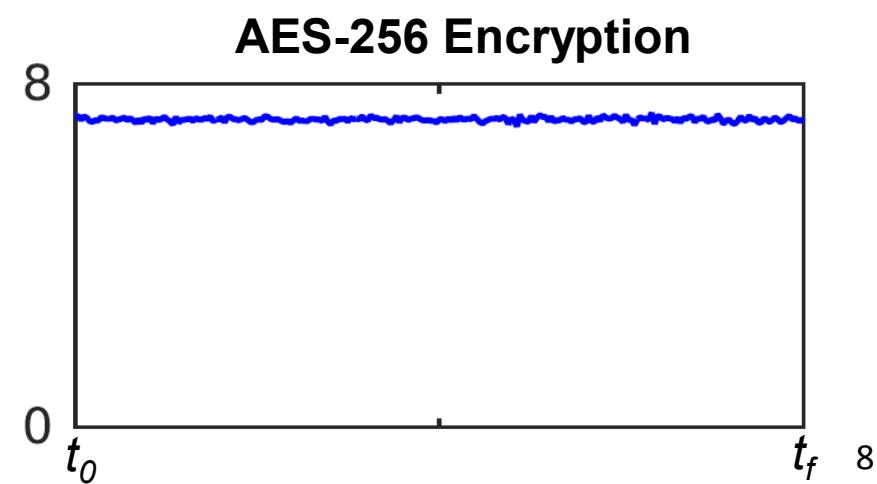
- Pre-training (2006)¹
 - Initializes network closer to good minimum
- Dropout regularization (2014)²
 - Prevents overfitting on deep networks
- De-noising (2010)³
 - Improves generalization



1. G.E. Hinton et al. "Reducing the dimensionality of data with neural networks." *Science* 313.5786 (2006): 504-507.
2. N. Srivastava, et al. "Dropout: A simple way to prevent neural networks from overfitting." *J. Machine Learning Research* 15.1 (2014).
3. P. Vincent et al. "Stacked denoising autoencoders" *J. Machine Learning Research* 11 (2010).

Entropy within Sliding Window

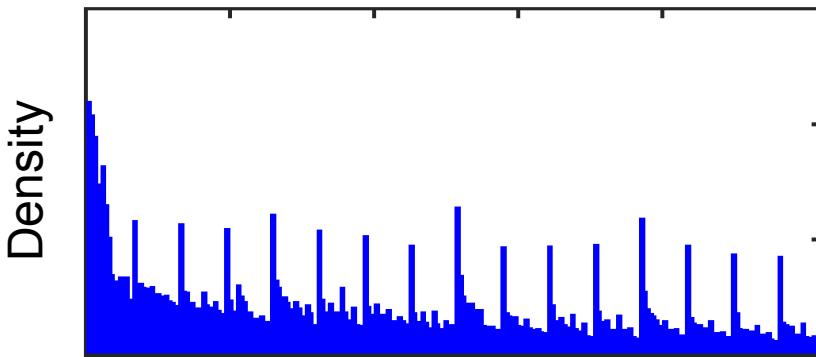
$$H(X, t) = -\sum_{i=0}^{255} P(x_i, t) \log_2 P(x_i, t)$$



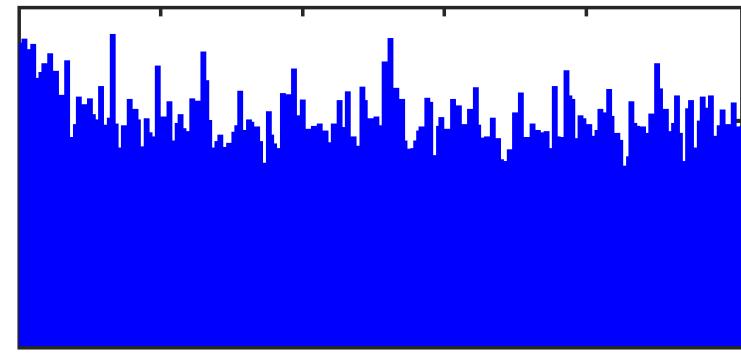
Byte Frequency Distribution

$$P(x_i) = \frac{\text{hist}(x_i)}{N}$$

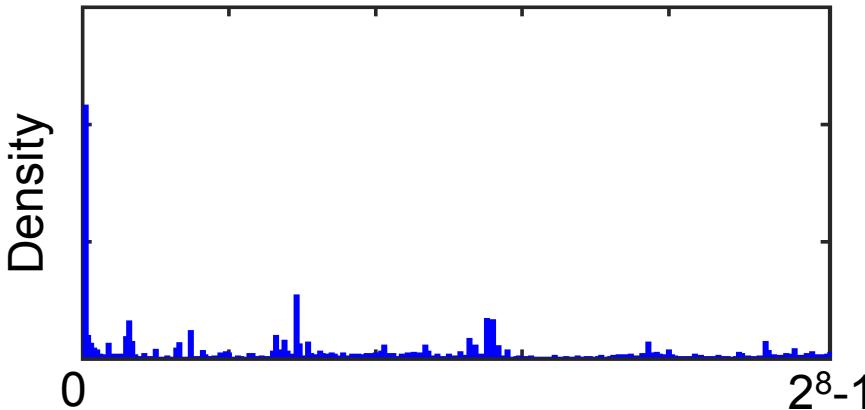
GIF Image



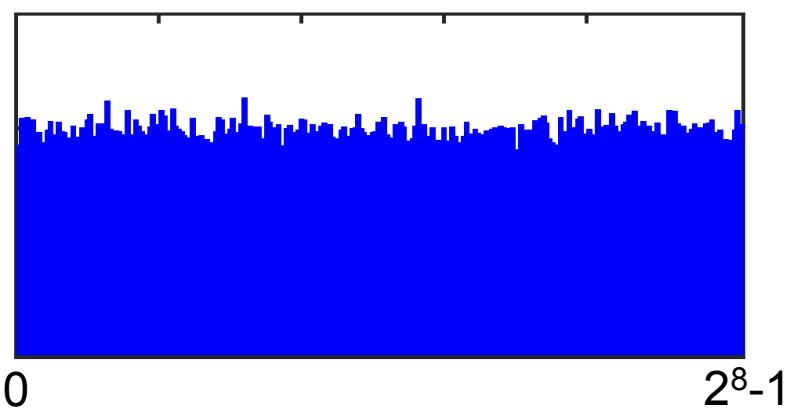
PNG Image



Executable (Linux)



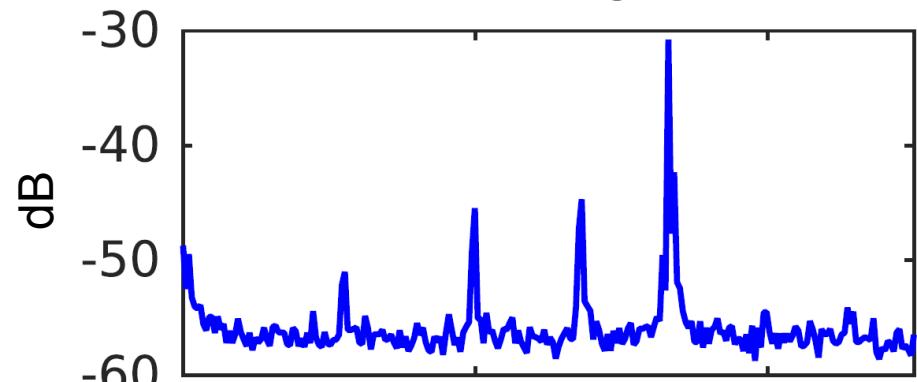
AES-256 Encryption



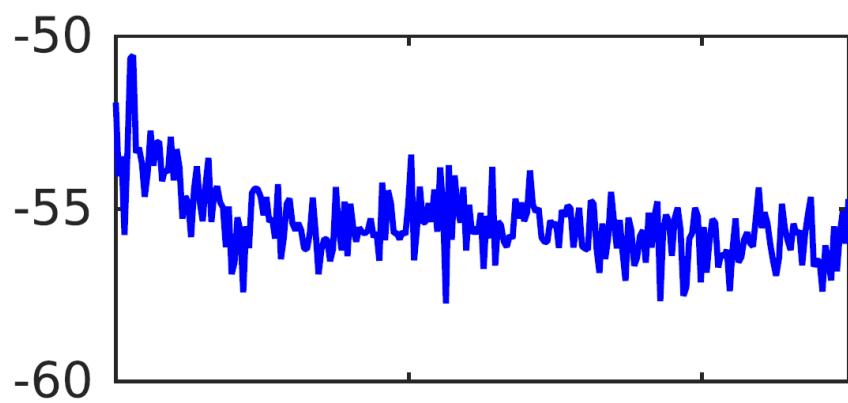
Power Spectral Density

$$S[\omega] \approx \sum_t \left\{ \left| \sum_n x[n] w[n-t] e^{-j\omega n} \right|^2 \right\}$$

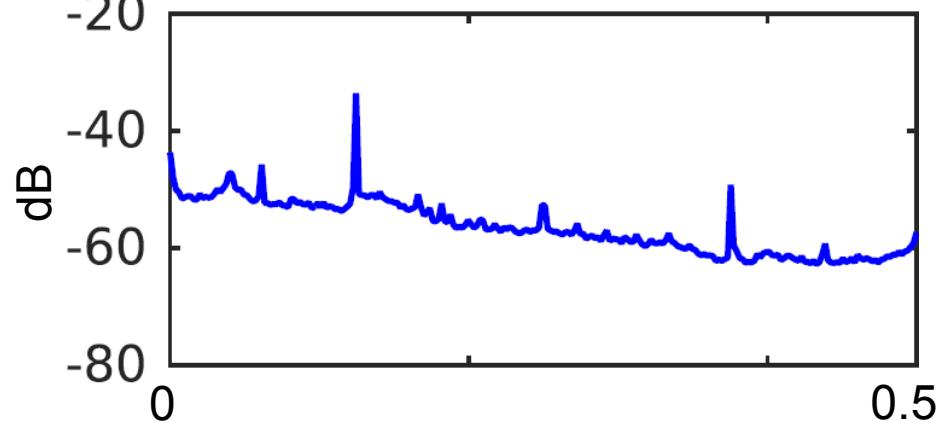
GIF Image



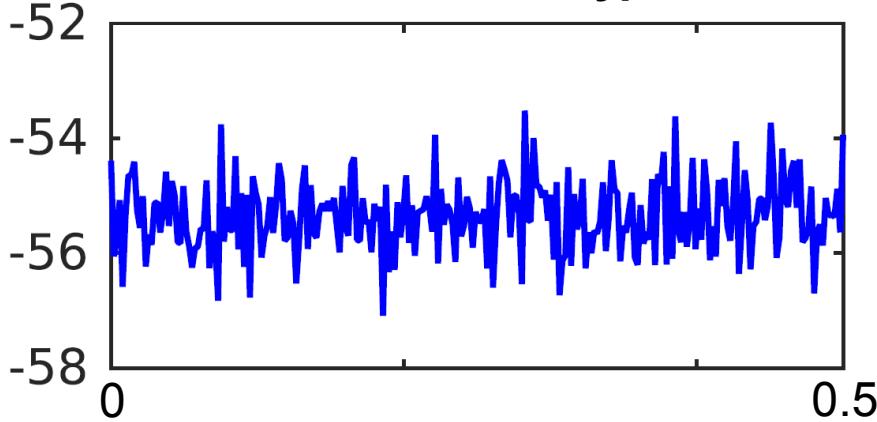
PNG Image



Executable (Linux)



AES-256 Encryption



Performance

- Widely varying performance between representations
- Entropy performs worst
 - Many compressed formats look similar
- Byte frequency distribution performs best
 - Reveals common characters, instructions, etc.
- Combining all three yields best performance (97.4%)
- Good performance despite small training set²
 - Dropout and denoising help

	P	H	S	P, H	P, S	H, S	P,H,S
Accuracy ^{1,2,3 (%)}	95.30	77.11	81.26	96.74	96.63	94.44	97.44

File types (9): HTML, PNG, JPEG, GIF, PDF, DOC, ELF, GZIP, AES

1. Average of three trainings.
2. Training set size is 500 per class.
3. Cross-validation set size is 100 per class.

P: Byte freq. distribution
H: entropy within window
S: power spectrum

Confusion Matrix

- Six of nine types achieve $\geq 99\%$
- AES readily distinguished (95%)
 - Only confused with PNG
- PNG has worst performance (91%)
 - Can be very high entropy or have large amount of metadata

		Predicted Class								
		HTML	PNG	JPEG	GIF	PDF	DOC	ELF	GZIP	AES
Actual Class	HTML	100								
	PNG	91	1		1	1	1	1	4	
	JPEG	1	99							
	GIF			100						
	PDF	1	3	1	95					
	DOC	1				99				
	ELF						100			
	GZIP							100		
	AES	5							95	

Concluding Remarks

- Recent advances improve neural network performance
 - Pre-training, dropout and denoising
- Minimal feature engineering or tuning
- Benefits from variety of input representations
- Effective for identifying unknown data
 - e.g. distinguishes between high-entropy formats
- Future work: automating temporal tasks
 - Recent advances in recurrent neural networks are promising
 - More powerful optimization techniques¹ and pre-training²

1. Martens, James, and Ilya Sutskever. "Learning recurrent neural networks with hessian-free optimization." ICML. (2011).

2. Hermans, Michiel, and Benjamin Schrauwen. "Training and analysing deep recurrent neural networks." NIPS. (2013).

Confusion Matrix – Entropy Alone

		Predicted Class								
		HTML	PNG	JPEG	GIF	PDF	DOC	ELF	GZIP	AES
Actual Class	HTML	100								
	PNG		46	4	2	2	3			43
	JPEG		5	86	2	1	1		5	
	GIF		14	2	37			2		45
	PDF	3	7	4	2	83		1		
	DOC				1	98	1			
	ELF					5	95			
	GZIP				3			68		29
	AES								100	