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1. Sandia and Energy-Related R&D
2. Photovoltaics (PV) deployment and trends

3. Challenges to future large-scale deployment
= Grid access
= Operational integration

Q&A (time permitting)




Sandia National Laboratories () i

Total Sandia workforce: 12,609
Regular employees: 10,330
Advanced degrees: 5,790 (56%
Total Expenditures: $2.7B

Data as of July 20, 2015
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Energy crisis of the 1970s spawned the beginning
of significant energy work
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Racing toward massive PV deployment...

= |nstalled PV capacity is growing fast, and future potential is
very high. Are we ready?

2020-2030
100+ GW




Solar and the future of world electricity @&z

= Qver one year, global electricity
consumption is 20 Million GWh.
= QOver 20% of this total consumed by the US.

= Due to practical considerations
(conversion efficiency, geography, land
use), solar is the best carbon-free non-
nuclear long-term option

Geoth #12  World Electricity Technical
- Potential (in Millions GWh)
Hyd ro Data from Ecofis, Global Potential or
0 ] 9 1 Renewable Energy Resources, 2008
cean
§ More energy from sunlight strikes the
Wind 111 Earth in one hour than all the energy
I consumed on the planet in one year.
Solar 746 p y
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US Generation Stats (2012) ) o

By Capacity (Nameplate) By Annual Energy Produced
Total = 1,167 MW Total = 4,058 Million MW-h

Geoth., 0.4%

Bi?ngzgl/ss, Geoth., 0.3% Biom'zlss, Other, 0.3%
Other, 5.0%__<"° | __Solar, 0.3% Wind, 4.1% 1.5% /Solar, 0.2%
Wind, 5.1%_____ Hydro,
Hydro, 6.6%
8.5% Coal, 28.8%
Nuclear, Coal, 39.1%

19.4%

Source: IEA, 2014




US solar (PV) deployment ) e

= US installed PV capacity by Dec 2014: 19 GW

= Ranks 5t after Germany, China, Italy and Japan
= Growth rate and technical potential are very high!
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PV Capacity (MW) supplied by PV
40000 | | | |

5%

A

35000 +— =#=Germany -

™

—=—|taly
30000 )
=4—United States ,10
25000
/ '
20000 / ~8% ¢
el

ya :
15000 / /"..0_ 2%
10000 // /

i, § 5000 4= / &
& S F % 4
\ge solar rescurce data are for a salar :olleduroﬂemedlnmﬂim'éium ca@n hcfiﬂm;de The :::h Hawaii and t h:inem:éjus 0 __= T T
;ﬁ‘;:':ﬂi"T&":’:;.Tff:‘:;hi"ﬁﬁ&;i“;mﬂfmm,T'*'“L"“ﬁ“mdfml“é“;“:ﬁ,h“::*ﬂ:’mr 2007 2008 2009 2010 2011 2012 2013 2014 2015

Joint Research Centre of the European Commission and is the yearly sum of global irradation optimally-inclined surface for the period 1881-1800.
uasp-m by
mﬁm ‘mahl:g
1,000 Mies mpmﬁ% ‘I‘I.“a-




PV and Wind in New Mexico rh) i,

NM ranks high in both wind & solar potential Cumulative Solar Electric Capacity
Califorria
arizena [N
= |nstalled (Q2, 2014): 312 MW (9th) e sorey R
= Enough for 71,000 homes North Carolia |l
Massachusetts [
SEIA, Solar Energy
Newda Facts, Q2 2014
Hawaii [
Colorado [
New Mexico I\
New York [
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Wind Projects = 1MW

Ny ® Newin 2013
@ Priorto 2013

Wind Power Capacity
Megawatts (M)

!M = Wind in NM: 778 MW (17th)

[New Capacity 2013] 2100

. = Enough for 345,000 homes
+INREL : '
Note: Numbers within states represent cumulative installed wind capacity and, in brackets, annual additions in 2013. 9




How much does PV cost? rh) toies

Calculated LCOE for Photovoltaics Systems In the United States
30% Federal ITC in 2015 (when included) and no Federal ITC in SunShot Scenarios. 1120 to 2380 kWh/kW systems.
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How much does PV cost?

—i— Total Installed Price (Median)

= Historical perspective since 1980 " omeur/smmson e
= Module price: $35/watt to $0.65/watt  $t]
O §l) Fo=mmmmmmmmmmmmn D

= Module efficiency: 6% to 18% é‘
= Lifetime: 5 years to 30 years

= = = mplied Non-Module Costs

58. ______________________________________
$6_

2012

= Costs still falling! -
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Federal/State tax incentives and RPS [,
Renewable Portfolio Standard Pol:c:es

m:ﬂﬁaﬂm | September 2014
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Source: http://www.dsireusa.org/documents/summarymaps/RPS_map.pdf 12
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3. Challenges to future large-scale deployment
= Grid access




So much potential... what’s the hold-up? @)

= Resource potential

= Geography & land use

= Market demand

= Policy goals & incentives

= Competiveness Vs. alternatives
= (Capital cost

"  Financing
= Grid integration



Grid access for large-scale deployment

United States
transmission grid
Source: FEMA
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Grid access for large-scale deployment

= How to tap NM’s large
wind and solar potential
(1000’s of MW)?

o Displace existing
conventional
generation

Or

o Build substantial new
transmission to large
regional load centers

Greenk?
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How about an EHV grid overlay? LUE

» Studies show positive ROI, but scope and upfront cost are prohibitive
« Federal Highway 2.07?




Similar ideas from other regions... )z

DESERTEC-EUMENA

I i Concentrating |

% Solar Power ﬁ; Hydro
Photovoltaics n Biomass

Wind B Geothermal

Demand Leveling (Time Zone & Climate Difference)
Stable Supply (through regional interdependence)
Fair Electricity Price

Vladggj f : CSP collector areas
. for electricity

- World 2005

Tokyo B cv2s 2008

W MENA 2005

Gobi Desert

Il TrANSCSP Mix EUMENA 2050
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3. Challenges to future large-scale deployment

= Operational integration




Operational Integration )

Laboratories

P / P installed; 3 days of June 1995

100 systems —
= Wind and solar generation are different... o °"”“;f§”—
= Variable — weather-driven, can’t be dispatched 0.4 | f \'\
= Uncertain — can’t forecast output precisely 2] ‘
= Distributed — millions of embedded PV systems! o o mow @ 7

Inverter-based — No inertia (skating at high speed)

Utility industry catching up... slowly

Working with a legacy system, practices,
standards, regulatory framework...

= Reliability, safety, cost-effectiveness

Are there “limits” to the amount of load that |
can be served from Wind/Solar?




Are there limits? h) e,

= There are no absolute technical limits to wind/solar deployment
= Adding flexibility and innovation can help

= Forecasting, demand response, large-scale storage, demand response, smart grid...

System A System B
Island system, or limited access Larger interconnected system, with
to flexible resources ready access to flexible resources

Cost of or Risk

System B with
evolving best practices

Penetration Level




Studies: Integration Cost are Modest
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" |ncreasing wind/solar levels correlates with higher operational cost

" |ncrease cost will be modest (<10% of retail electricity cost) at much
higher deployment—without the need for technical breakthroughs!

= There are other societal benefits to renewables...
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Serving load with lots of PV online ) .,

1,300

Hawaii (Oahu)

———JUNE 2010

S dotential Over-generation Conditions CAISO
11000 Base Load Scenario Net load 2010
30,000 900
—JUNE 2014 P T
28,000 a00 - ~
= ,/ B \\\
26,000 + o " CAISO ————
S5 Do R Net Load 2020
" soo ,’
22,000 o ‘—,,/ \__‘
20,000 +— = <
18,000
16,000
14.000 Minimum Dispatcheble Thermal & Hydro Resources
12.000 Small Hydro (RPS)
' Imports (JOU & Dynamic Schedules)

10,000 Geothermal

8,000 Nuclear

6,000 Gas (QFs)

4,000

2,000 Qualltying Facilities (QFs)

0 ’ v
FEF LTI T T LT EF 5

s Oth QFs = Ggs QFs === Nuclear ™= Ggothermal = Imports ™= § Hydro “ CCGT & Hvdro = LF Down *  Reaq. Down =sssshgt | oad

23




Serving load with lots of PV online ) i,
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Frequency impacts h) e,

= System frequency changes when there are temporary generation-
load imbalance events

Generation tripping events are common

= What keeps the system from going unstable after a generator trips?

Tolerance to frequency disturbances (keeps from cascading)
Inertia (arrests the rate of change)

Governor response (units have headroom to accelerate as needed)
AGC control (brings generation back to normal)

Load shedding (in case something goes horribly wrong)

= PV can make matters worse

Sub-par frequency tolerance (applies to distribution-connected PV)
No inertia (inverters). Also, PV displaces generators that have inertia
PV generators are typically operated at max power (no headroom to accelerate)

25



Frequency Impacts
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Frequency Impacts h) e,

= Potential fixes: L —— S E— B I e
= Frequency ride-through requirement | @ Light Spring High Mix
= Curtailment 60' @ Light Spring High Mix with governor

i controls on utility-scale PV plants
= Synthetic inertia

" Energy storage cao | | 1

June 14 2004 Case (as was), System Frequency
60.1

598

60

Disturbance: Trip 2 Palo Verde units (~2,750MW)

1,400 |
599 — 1 2.200 | _ _ - i i
~ ro00 97 ~80% of utility-scale PV
50.8 Ya 4,200 ' plants (i.e., new ones)had |
. ‘W 1 | 820 MW of Fast Frequency | | these controls, for a total of | ]

Frequency (Hz)

5981 Response...about an order |- 820 MW initial curtailment |1
[ of magnitude more effective '

than spin from thermal out of 10.2 GW production.

plants .
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Does it make sense in the long run? ) .

= Why are we doing this again?
= Climate and Pollution
= Lower cost (yes, that is right)

= 80,000 16

[ o

g 70,000 14

S 60,000 =

@ B 5% Solar | & 12

S 50,000 B 10% Solar| € 10

@ S

S 40,000 i 015% Solar| § g

i =

S 30,000 - 0.20% Solar| §

it B 25% Solar| +

o 20,000 - o 4

< o

LlE.l 0 - 0 T T T T
NOx (tons) SOx (Tons) CO02 (kTons) 5% Solar 10% Solar 15% Solar 20% Solar 25% Solar

= (OK. Need to find technical solutions!
= Smarter grid management
= Better technology (inverters)

= Storage??




Thank You

Abraham Ellis, PhD, PE

aellis@sandia.gov

http://energy.sandia.gov/pv
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PV cells, modules and systems

Cell

Aluminum Front
Frame Glass 239 cm?

Encapsulant Standard
(EVA) Czochralski

e (pseudo-square)
! : /\$ Solar Cells

String
Connector
Ribbons
Cell Stringing
Ribbons

Backsheet
Junction Box

Sandia
National _
Laboratories




Major components of a PV plant ) .

. -:"-.-c N

DeSoto PV'Plant (2009)." * | Al | s g
Fort Myers, FL. (courtesy of FPL) ! ha=te PV |nverters and Pad-

: ! ubsm

: ] Idnj trahsf.grmers

<= Substantial MV 'collé'ct_ord_sy’,st-ér'ﬁ' e
work, OH or'UG radial feeders

Capaciw = 25 MW nf,gﬁlar phﬂtuvnltalc,h
§+ approxir

Solar FIEI appmmmately 180 acres

Suiarﬂrray & approximately 90,000 panels




