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In situ TEM
microscopy

Has recently
undergone
significant growth
providing
capabilities to
investigate the
structural evolution
that occurs due to
various extreme
environments and
combinations
thereof
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Sandia’s Extreme Environment History

m 50+ years history probing radiation-solid interactions
- Fundamental ion-solid understanding
- Electronic system response to intense pulsed n/y environments
- Tritium containing materials
- Fission/fusion reactor materials
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New Capabilities for In Situ Extreme Environments

= TEM with dual, co-linear ion beams
- Dual tilt, Heating, Tomography
- Gas and Liquid Cells
- Hysitron mechanical test stage
- Precession Diffraction

= Meso-Scale Mechanical Test with lon Irradiation
- High Temperature (800C)
- ASTM-standard sample geometry
- 4.5MeV protons penetrate through 50um Cu samples

Sandia National Laboratories



— K In situ lon Irradiation TEM Facility
N '3
Capabilities: | E'E‘;:;’n‘:“
= 200 kV La86 TEM Light and Heavy T Light Beam
= lon beams used: lon Beam
= Range of Sputtered lons from Tandem
= 10 keV D,*

= 10 keV He*
= (Simultaneous D,+He)

= All beams hit same location
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IBIL from a quartz stage inside the TEM

Sandia’s Concurrent In situ lon
Irradiation TEM Facility

6 MV Tandem - 10 kV Colutron - 200 kV TEM

Collaborator: D.L. Buller

Direct real time observation
of ion irradiation,

ion implantation, or both
with nanometer resolution

lon species & energy introduced into the TEM
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Single lon Effects in 20 nm Au nanoparticle:
46keV Au ions (range ~7nm)

Collaborator: D.C. Bufford




Single lon Strikes —

2.8MeV Au#* into/through Au fllm

Collaborators: C. Chisholm & A. Minor

7.9 x 10°% ions/cm?/s 6.7 x 107 ions/cm?/s

Improved vibrational and ion beam stability permits us to work at 120kx
or higher permitting imaging of single cascade events




In situ Implantation

Collaborators: C. Chisholm & A. Minor

4.0x10"6 jons/cm? . M | 1.0x10"7 ions/cm?

Au implanted with 10keV He*

He bubble formation on grain
boundary and in the bulk




In situ Successive Implantation then Irradiation

(2.8MeV Au#*, 10keV He*)

Collaborators: C. Chisholm & A. Minor

Successive Au** then Hel*
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In situ Concurrent Implantation &
Irradiation

Collaborators: C. Chisholm & A. Minor
He* implantation and concurrent Au#* irradiation:

Transient bubble formation and dissolution




In Situ Tensile Testing

0 Cycllc loading:

test

- 50 % unloading

400

Crack initiated in previous monotonic

- 9 cycles to ~87.5% of that load

- Slow crack propagation
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Precession Diffraction: Quantifying
Microstructural Change
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= Combining orientation mapping «
with deformation

m EBSD-like capability in the TEM

- Powerful analytical tools available
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= Meso-scale mechanical test
- Straining + Heating stage
- lons from the 6MV Tandem
- Heating to 800C

m 30 GPa stress, 58% strain
- Geometry based on ASTM-ES8 _ . <l
- 50 — 100 um sample thickness gy

- Limited to 4.5MeV protons by radiation
levels (neutron production by SS)
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-— ;;ggpper Stress Relaxation with/without Irradiation

= Commercial OHFC Copper, 50um thick
- Similar 0.25mm/min elongation rate to 22.5 N load
- Approximately 75% of typical ultimate tensile load
- 4.5 MeV protons have projected range of 65um
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Summary

= Sandia has developed unique in-situ experimental capability

m I3TEM - In situ experimental workhorse
- Dual, colinear ion beams (keV to MeV)
- Broad array of stages to tailor environment
- Detailed microstructure characterization
- Mechanical characterization

= Meso-scale mechanical properties
- Straining + heating stage
- MeV ion beam for defect generation or implantation

Sandia National Laboratories



