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Abstract—Demand Response (DR) events are initiated by util-
ities during peak demand periods to curtail consumption. They
ensure system reliability and minimize the utility’s expenditure.
Selection of the right customers and strategies is critical for
a DR event. An effective DR scheduling algorithm minimizes
the curtailment error which is the absolute difference between
the achieved curtailment value and the target. State-of-the-art
heuristics exist for customer selection, however their curtailment
errors are unbounded and can be as high as 70%. In this work,
we develop an Integer Linear Programming (ILP) formulation
for optimally selecting customers and curtailment strategies that
minimize the curtailment error during DR events in SmartGrids.
We perform experiments on real world data obtained from
the University of Southern California’s SmartGrid and show
that our algorithm achieves near exact curtailment values with
errors in the range of 10−7 to 10−5, which are within the
range of numerical errors. We compare our results against the
state-of-the-art heuristic being deployed in practice in the USC
SmartGrid. We show that for the same set of available customer-
strategy pairs our algorithm performs 103 to 107 times better in
terms of the curtailment errors incurred.

Keywords: Demand Response, SmartGrid, Integer Linear
Programming
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I. INTRODUCTION

With the advent of advanced metering technologies such
as smart meters, the traditional power grids have transformed
into complex interconnection systems. Smart meters allow fine
grained control and monitoring of customer consumption by
utilities [1], [2]. By employing various data processing tools
such as time series prediction [3], complex event process-
ing [4] etc., the information collected from smart meters can
be used to improve grid efficiency and reliability.

Utilities have to ensure reliable power supply while mini-
mizing their expenditure. For system reliability, it is absolutely
critical that power demand from customers is met. If demand
exceeds the generation capacity of the utility, extra power
needs to be bought from the spot market at higher rates, which
increases the expenditure of the utility.

This work has been funded by the U. S. Department of Energy under Award
Number DE-OE0000192, the Los Angeles Department of Water and Power
(LADWP) and the U.S. National Science Foundation under grant number ACI
1339756.

Typically, peak power consumption of several customers in
the grid overlap during certain periods of the day, for example,
afternoon on a hot summer day. Such periods are referred to as
peak demand periods. During peak demand periods, the power
demand might exceed the generation capacity. To avoid buying
extra power from the market, utilities require techniques that
shift the consumption away from the peak periods.

Demand Response is a widely used technique by the utilities
to reduce power consumption during peak periods. It is defined
by the Federal Energy Regulatory Commission as, “Changes
in electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of
electricity over time, or to incentive payments designed to
induce lower electricity use at times of high wholesale market
prices or when system reliability is jeopardized” [5]. Utilities
roll out Demand-Response programs and enroll customers
into it. The participation can be voluntary, the customers can
be incentivised to curtail their consumption during the peak
periods or it can be involuntary, the electricity rates of the
peak periods can be increased to discourage customers from
consuming a lot of power. In either case, by reducing the power
consumption during peak periods, the expenditure of the utility
is minimized while ensuring system reliability.

Now imagine that an apartment owner is contacted by the
utility company asking her to curtail the power consumption
from 1 to 5 pm everyday by 20 kWh. Given that her daily
power consumption would not exceed that amount, it is
infeasible for her to comply. Therefore for managing DR
events, utilities assign each customer with a set of strategies
corresponding to a range of curtailment values within their
abilities. These strategies could include actions such as turning
off the AC or switching off some of the lights. Meeting the
overall curtailment target requires the utilities to carefully
select customers and their corresponding strategies using this
information.

State-of-the-art heuristics exist to address the problem of
customer selection for Demand Response. However, the errors
of such heuristics are unbounded and can be as high as 70%
as mentioned in [6]. In this work, we define an Integer Linear
Programming (ILP) formulation for the problem of optimal
customer selection for Demand Response. The customer se-



lection is optimal as it minimizes the curtailment error which
is the difference between targeted curtailment and the achieved
curtailment. We run experiments on real world data obtained
by the University of Southern California SmartGrid and show
that the curtailment errors are in the range of 10−7 to 10−5.
Compared with the state-of-the-art heuristic being deployed
in practice, for the same set of customer strategy pairs, we
perform 103 to 107 times better in terms of the curtailment
errors incurred.

The rest of the paper is organized as follows: Section II
details the work done in the research community related
to Demand Response in SmartGrids. Section III defines the
problem and also provides motivation for the same. Section IV
demonstrates our experimental results on USC SmartGrid and
Section V concludes our work with some details about the
future plans.

II. RELATED WORK

A survey of Demand Response including its definition;
benefits and costs; and its measurement is provided in [7].
Other works such as [8] and [9] study the challenges involved
in Demand Response, and develop estimation methodologies
to calculate the energy savings.

Several works have focused on optimizing Demand Re-
sponse scheduling from a customer perspective. Authors
in [10] focus on scheduling consumption for individual res-
idential buildings. In [11], authors focus on scheduling con-
sumption for a multi-residential cooperative. In [12], authors
use Artificial Intelligence to model customer response to
dynamic pricing for Demand Response events. Experts system
theory is employed in [13] for determining suitable customer
response. However, these works focus on Demand Response
from a customer perspective and hence are unsuitable for
performing grid level global optimization.

Traditionally, customers were targeted based on the ag-
gregate data obtained by their billing data or customer sur-
veys [14], [15]. However, with the availability of smart meters,
a more accurate means to measure customer consumption has
become available [16], [17].

Authors in [18] consider a game theoretical approach con-
strained by real time pricing. In [19], authors apply particle
swarm optimization based technique for customer scheduling.
Customer comfort level is considered in works such as [20].

Several dynamic programming and heuristic based algo-
rithms have also been developed for the problem of optimal
customer selection. Authors in [21] use dynamic programming
algorithm for minimizing peak load over a period. In [22],
authors formulate the problem as an Integer Quadratic Pro-
gramming and develop a heuristic for the same. A stochastic
knapsack based approach is proposed by authors in [23]. A
change making scheduler based algorithm is proposed in [24].

The problem with heuristic based approaches is that their
errors are unbounded. For instance, in [23], the error is
unbounded for smaller number of customers. The minimum
number of customers required to achieve the targeted curtail-
ment value with more than 95% probability is a quadratic

function of the targeted curtailment value. Using Integer Linear
Programming based algorithm allows us to provide solutions
with bounded errors.

III. CUSTOMER SELECTION FOR DEMAND RESPONSE

A. Motivation

A SmartGrid is typically operated by a utility. The utility
is responsible for providing power, controlling and monitoring
the SmartGrid. The utility provider has a fixed power genera-
tion capacity. Typically, this capacity is sufficient to fulfill the
power requirements of the customers. However, when there is
a surge in the demand from the customers, the utility needs to
ensure that the demand is met by either adding generators or
purchasing extra power from the spot market, both of which
increase expenditure. Failure to do so compromises the system
reliability and leads to blackouts.

Power consumption profile of a customer varies throughout
the day with periods of high demand interspersed with periods
of low power consumption. Certain periods of the day observe
an overlap between the high demands of several customers. We
denote such periods with the power requirement of the grid
substantially higher than the rest of the day as peak demand
period. The demand in a peak period can exceed the power
generation capacity.

To minimize or avoid the expenditure of purchasing extra
power during peak demand periods, utilities adopt the tech-
nique of Demand Response. Customers are either incentivised
to reduce their consumption during a Demand Response Event
(DR-Event) or they are penalized by increasing the cost of
power during these periods. This reduces the peak power
consumption which is now expected to be met by the available
generation capacity.

Using smart meters, utilities have the power consumption
data of each customer. The granularity of the data can be
as small as 15 minutes. The power consumption profile of
a customer does not change rapidly from day to day, so
it is straightforward to predict future pattern. By employing
prediction techniques, utilities determine the peak demand
periods. They also determine the targeted curtailment required
for a DR-Event which should be scheduled during this period.
Discussion on the prediction techniques is beyond the scope
of this paper. Readers can refer to [3] for further knowledge
on this topic.

Utilities roll out a program to implement Demand Reponse
and enroll customers into it. A customer is provided with a list
of strategies to be followed each of which leads to a certain
amount of curtailment in power consumption. Strategies can
include procedures such as increasing the temperature of the
AC systems by 2 degrees or turning off every other light in
the hallways, etc. which reduce power consumption. During
a DR-Event, the utility signals each customer to follow a
particular strategy. A customer may be penalized if it fails
to comply. For instance, the University of Southern California
SmartGrid consists of 50,000 sensors across the 170 buildings
to monitor electricity usage. Each building can adopt any one



of seven available strategies during DR events which occur on
Weekdays 1-5 pm [25].

Careful selection of customers is required to ensure that the
targeted curtailment value is met. A good customer selection
algorithm determines the subset of customers along with the
strategies they should follow during the DR-Event such that
the achieved curtailment value is as close as possible to the
target. The reasons are as follows:

1) Limiting the amount by which the achieved curtailment
value overshoots the target ensures that the grid is not
underutilized. This avoids any loss of revenues to the
utility due to underutilization of grid by aggressive
curtailment.

2) Limiting the amount by which the achieved curtailment
value undershoots the target ensures that the utility
can avoid purchasing power from external sources by
bounding the peak demand of the customers.

B. Problem Definition

We formally define the problem of optimal customer se-
lection for Demand Response using the parameters defined in
Table I. We are given a list of M customers and N strategies.
Each customer can adopt exactly one strategy in the DR event.
The decision variable xij is 1 if customer i adopts strategy j.
We are also given the curtailment in power consumption cij
obtained by customer i adopting strategy j. A default strategy
with a curtailment value of 0 is also included in the curtailment
matrix C. A customer adopting a default strategy essentially
means that it is not participating in the DR event.

A targeted curtailment value γ for the DR event is provided.
The objective it to achieve a curtailment value as close to γ as
possible. The ILP formulation for this problem is as follows:

Minimize : |
M∑
i=1

N∑
j=1

cij ∗ xij − γ | (1)

Subject to :

N∑
j=1

xij = 1, i ∈ {1, . . . ,M} (2)

xij ∈ {0, 1}, ∀i, j (3)

Equation 1 minimizes the absolute curtailment error. Equa-
tion 2 ensures that a customer cannot adopt more than one
strategy in the DR event. Detailed experimental results for
customer selection using the above ILP is shown in Section IV.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The USC SmartGrid has over 50,000 sensors to monitor
electricity usage and equipment status in real time [25].
Demand Response Events occur on weekdays between 1 and
5 pm. We use the data collected by the software developed
to support data-driven demand response optimization in USC
smartgrid [26]. The software provides us the curtailment
values for each strategy that can be adopted by any building
(customer) in USC for the queried time interval. For our

TABLE I: Problem Parameters

Parameter Name Description
M Number of customers
N Number of strategies for each customer
C M × N matrix. Element cij ∈ R is curtail-

ment value of a customer i strategy j pair for
the DR event.

X Decision variable for the DR event. Element
xij ∈ {0, 1} is the decision variable for
customer i adopting strategy j.

γ Desired Curtailment value across the entire DR
event.

experiments we use the data from 27 buildings each of which
can adopt one of seven strategies. The data is collected for the
time intervals 1-3 pm and 3-5 pm for each day from Monday
to Friday. We run our experiments for Targeted Curtailment
values ranging from 100 kWh to 1400 kWh.

We use the Optimization Programming Language [27] to
define the Integer Linear Programming formulation developed
in this paper. IBM ILOG CPLEX optimization software [28]
is used to solve the ILP and produce the set of customers and
the strategies they should adopt.

We compare our results with the state-of-the-art heuris-
tic [24]. Authors in [24] develop a change making problem
based algorithm for customer selection. The change making
problem determines how to make a given amount of money
using the least amount of coins. The coins in the algorithm
are the available customer-strategy pairs and their values the
predicted curtailment values. The amount to be made is the
targeted curtailment value. Customers are grouped into bins
differentiated by their values. A greedy algorithm is used to
pick customers from the bins with highest values. We choose
this heuristic for comparison as it is used in practice by the
USC SmartGrid to schedule customers and their strategies for
the DR events.

B. Results and Analysis
The power consumption profile of a building is similar for

the same day of a week across different weeks. So by running
our experiments on data collected from DR events over a week,
we are able to demonstrate our algorithm on a wide range of
power consumption profiles. Moreover, a typical DR-event in
the USC SmartGrid starts with the selection procedure at 1
pm and then another selection occurs typically around 3 pm.
Therefore, we consider them as two separate DR events for
our experiments.

Figure 1a and 1b show the errors incurred by our ILP
based customer selection algorithm and the State-of-the-art
heuristic [24] for every DR event from Monday to Friday for
various curtailment target values. As shown in Figure 1a, the
highest error incurred by our ILP based algorithm is around
0.0002 kWh during the DR-events on Tuesday 1-3 pm for
a targeted curtailment of 600 kWh and Friday 3-5 pm for
a targeted curtailment of 800 kWh. For the State-of-the-art
heuristic, the highest error incurred is around 8 kWh during
the DR event on Tuesday 3-5 pm for the targeted curtailment
of 400 kWh as shown in Figure 1b.



One may note that the errors between the state-of-the-
art heuristic and our approach differ by multiple orders of
magnitude. so we take the ratio of the error for comparison.
A higher value of ratio implies better performance by our
approach. In Figures 2a-6b we compare the errors incurred
by the two algorithms for various targeted curtailment value
for each DR event

The customer selection problem can be visualized as a pack-
ing problem. We are trying to pack the targeted curtailment
with values obtained from the customer-strategy pairs. The
ILP produces the best possible packing. Any error is due to
the nature of the data. Similarly, the heuristic based approach
tries to provide best packing in each of the bins. Error incurred
in packing each bin accumulates throughout the algorithm
and may lead to very large errors. Since we are using real
world data, as seen in the Figures 2a-6b the peaks in the
ratio of errors for various DR events varies with the targeted
curtailment values with no discernible pattern. The highest
ratio observed is around 3× 107 which occurs during the DR
event on Thursday 1-3 pm.

Although solving an ILP is computationally intensive, opti-
mal customer selection for each target was obtained in less
than 5 seconds on a standard workstation. This time can
be significantly reduced by using sophisticated computational
platforms. Note that in a typical DR Event, the utility deter-
mines the curtailment target well in advance. Thus even a 5
second delay in computing the optimal customer-strategy pairs
and signaling the customers is tolerable.

V. CONCLUSION

Optimal customer selection is critical for maintaining sys-
tem reliability and minimizing utility expenditure in a Smart-
Grid. The heuristic based algorithms developed so far to
address this problem may lead to unbounded errors in some
cases which is unacceptable. By developing an Integer Linear
Programming (ILP) based algorithm, we guarantee that the
error is minimized. In practice, the error is close to zero which
we have substantiated quantitatively by running experiments
on real data from USC SmartGrid.

Our future work will focus on developing techniques to
scale the ILP based algorithm for larger grid sizes. Several
other objectives such as customer comfort level, strategy
switching overhead will also be incorporated.
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(a) ILP based Algorithm (b) State-of-the-Art Algorithm

Fig. 1: Error incurred by ILP based Algorithm and State-of-the-art Algorithm for various targeted Curtailment Values for
Different DR Event

(a) Monday 1-3 pm
(b) Monday 3-5 pm

Fig. 2: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR events on Monday

(a) Tuesday 1-3 pm
(b) Tuesday 3-5 pm

Fig. 3: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR events on Tuesday



(a) Wednesday 1-3 pm (b) Wednesday 3-5 pm

Fig. 4: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR events on Wednesday

(a) Thursday 1-3 pm
(b) Thursday 3-5 pm

Fig. 5: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR events on Thursday

(a) Friday 1-3 pm (b) Friday 3-5 pm

Fig. 6: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR events on Friday


