
1

Optimization of Tomographic Reconstruction Workflows
on Geographically Distributed Resources

Tekin Bicer,a* Doga Gursoy,b Rajkumar Kettimuthu,a,c Francesco De

Carlob and Ian T. Fostera,c,d

aMathematics and Computer Science Division, Argonne National Laboratory, USA.

E-mail: bicer@anl.gov, bAdvanced Photon Source, Argonne National Laboratory,

USA, cComputation Institute, University of Chicago and Argonne National

Laboratory, USA, and dDepartment of Computer Science, University of Chicago USA

Abstract

New technological advancements in light sources enable data acquisitions at unprece-

dented levels. This emergent trend affects not only the size of the generated data but

also the need for larger computational resources. Although beamline scientists and

users have access to local computational resources, these are typically limited and

can result in extended execution times. Applications such as iterative tomographic

reconstruction require high-performance compute clusters for timely analysis of data.

We focus here on time-sensitive analysis and processing of Advanced Photon Source

data on geographically distributed resources. We consider two main challenges: (1)

modeling of the performance of tomographic reconstruction workflows and (2) trans-

parent execution of these workflows on distributed resources. For the former, we

consider three main stages: (1) data transfer between storage and computational

PREPRINT: Journal of Synchrotron Radiation A Journal of the International Union of Crystallography

2

resources, (2) wait/queue time of reconstruction jobs at compute resources, and (3)

computation of reconstruction tasks. These performance models let us evaluate and

estimate the execution time of any given iterative tomographic reconstruction work-

flow that runs on geographically distributed resources. For the latter challenge, we

build a workflow management system, which can automate the execution of workflows

and minimize the user interaction with the underlying infrastructure. Our system uti-

lizes Globus to perform secure and efficient data transfer operations.

The proposed models and the workflow management system are evaluated by using

three high-performance computing and two storage resources, all of which are geo-

graphically distributed. We created workflows with different computational require-

ments using two compute-intensive tomographic reconstruction algorithms. Our exper-

imental evaluation shows that the proposed models and system can be used for select-

ing the optimum resources, which in turn can provide up to 3.13x speedup (on exper-

imented resources). Moreover, the error rates of the models range between 2.1–23.3%

(considering workflow execution times), where the accuracy of the model estimations

increases with higher computational demands in reconstruction tasks.

1. Introduction

Advances in detector technologies enable increasingly complex experiments and more

rapid data acquisition at synchrotron light sources [11]. Current full-field x-ray imaging

instruments, including microtomography and high-speed imaging, allow scientists to

collect a full 3D or 2D dataset at 1-micron resolution in a fraction of a second (as

short as 100 picoseconds). Moreover, the next-generation synchrotron light sources

will deliver several orders of magnitude higher temporal resolution at the nanometer

range, extending in situ and time-dependent studies of phenomena to completely new

regimes. Similarly, other instruments based on scanning probe techniques will directly

IUCr macros version 2.1.6: 2014/10/01

3

benefit from technological advancements, reducing data collection time by a factor of

100, which will result in at least two orders of magnitude more data generation [1].

Although data acquisition rates at x-ray light sources are increasing rapidly, the

analysis of this data often lags behind, mostly because of the high computational

demands of processing and a lack of local compute resources and optimized software

tools. These factors significantly hinder the ability to perform near-real time analysis

and visualization. Because experimental setups and data acquisition approaches at

light sources are typically configuration sensitive and scientists need to make timely

decisions in order to collect accurate data, short turnaround times for data analysis

are crucial. Therefore, efficient and scalable software tools that are tailored to the

requirements of synchrotron light sources will be a necessity, especially considering

the increased data acquisition rates that will be delivered by the new technological

advancements at light sources.

One widely used compute-intensive application at synchrotron light sources is iter-

ative tomographic image reconstruction [15,18,19]. This application enables scientists

to observe the internal structure of objects from 3D images and therefore helps in

understanding time-dependent phenomena. The processing times of iterative recon-

struction applications are sensitive to the input dataset size and configuration. Specif-

ically, the number of iterations, 2D projections, sinograms and voxels determine the

computational requirements of the reconstruction tasks. Reconstruction of a typical

high-resolution tomographic dataset can take days with a well-built workstation [5].

In this work, we focus on understanding the performance issues with iterative tomo-

graphic reconstruction workflows and improving their end-to-end execution times on

geographically distributed resources. Particularly, our contributions in this paper are

as follows.

• We develop performance models for different stages in tomographic reconstruc-

IUCr macros version 2.1.6: 2014/10/01

4

tion workflows.

• We present a workflow management system that can execute light source data

analysis tasks on distributed resources. Our system utilizes Globus for efficient

and secure management of workflows and data transfers.

• We evaluate and show our system’s accuracy and performance using three high-

performance computing (HPC) and two storage resources. During our evalua-

tions, we use two real-world datasets and two iterative reconstruction algorithms.

The remainder of this paper is organized as follows. In Section 2 we introduce

our performance models, which are used for estimating the execution times of the

workflows. In Section 3 we present our workflow management system, in which the

execution of tomographic reconstruction workflows is automated on geographically

distributed resources. In Section 4 we evaluate the performance models and workflow

management system and use real-world configurations on large-scale HPC resources

to assess the accuracy of our model estimations. In Section 5 we present related work,

and in Section 6 we summarize our conclusions.

2. Performance Model

We model the performance of a tomographic reconstruction workflow in three stages:

(1) input and output data transfer between storage and compute resources, data

transfer ; (2) submission of the reconstruction job to computational resource and its

wait/queue time; and (3) reconstruction/processing of projection data, computing. We

assume that the resources used for stages (1) and (3) may be geographically distant

from each other.

IUCr macros version 2.1.6: 2014/10/01

5

2.1. Online Estimation of Data Transfer Rate

The tomography dataset are typically stored in local storage resources after their

acquisition. Although these resources can provide some level of computational through-

put, they are generally limited. Therefore, the data needs to be transferred where suf-

ficient computational resources exist. This transfer process can introduce significant

overhead depending on the size of dataset and the status of network.

Since the network is a shared resource, the available bandwidth between resources

changes dynamically. Therefore, we model the data transfer rates in an online fashion.

Specifically, we measure the bandwidth from storage to compute resources right before

the execution of the workflow.

Our online bandwidth estimation method relies on the bandwidth delay product

(BDP) with transfer initialization cost. BDP provides (theoretically) the maximum

amount of data that can be in transit before it is acknowledged by the destination

resource. It is the product of the theoretical bandwidth between resources and the

round-trip time of the packets.

Figure 1 depicts our online bandwidth estimation method. Here, lines 1 and 2 calcu-

late the sample dataset sizes, DS1 and DS2, according to the BDP between resources

A and B. Then, the Generate function creates these files at resource A. In line 4, the

generated sample datasets are transferred from A to B; and according to the transfer

times t1 and t2, the transfer initialization overhead is calculated. We calculate the

current bandwidth (without transfer initialization overhead) in line 6. Using the esti-

mated bandwidth and initialization cost, we then derive the transfer time of the real

dataset with size RD. Note that DS1 and DS2 are typically much more smaller than

the original dataset size, hence their transfer costs are minimal.

IUCr macros version 2.1.6: 2014/10/01

6

2.2. Queue Time Prediction

HPC clusters and supercomputers typically use a queue-based batch scheduler to

improve resource utilization and provide fair share between users. These schedulers

organize user submitted tasks/jobs and assign them to the available resources. Depend-

ing on the submitted job’s resource requirements and the number of jobs in the queue,

a job can wait minutes, hours, or even days for resources. Therefore, the queue time

can significantly extend the end-to-end execution time of a workflow.

We estimate the queue time of a computational resource using a queue simulator.

Specifically, first we take a snapshot of the target cluster’s queue, Q. This snap-

shot includes information about previously submitted jobs. Once this information is

acquired, we generate a synthetic job, j, that represents the resource requirements of

our reconstruction task. This job then is enqueued into the Q. We simulate this new

Q with a queue simulator using one of the available scheduling algorithms and observe

j’s scheduling time.

Depending on the scheduling algorithm, simulated scheduling times can vary signifi-

cantly. To accommodate the worst-case scenario, we use conservative backfilling

as our default scheduling algorithm [25]. Since we consider the worst-case scenario, we

normalize the estimated queue times with a ws constant. This constant can be derived

empirically by scheduling a test job at a target cluster. Specifically, we simulated the

current jobs in the target cluster’s queue with a test job, which provides a simulation

time t0. At the same time, we submitted the same job to the target cluster’s queue,

which resulted in t1 scheduling time. The ratio between t0 and t1 represents ws. Note

that ws needs to be calculated only once; therefore, its computation is negligible.

Although we set conservative backfilling as our default scheduling algorithm, other

algorithms can also be used. For queue simulations, we used pyss [27], a discrete-event

simulator that includes 18 different scheduling algorithms.

IUCr macros version 2.1.6: 2014/10/01

7

2.3. Modeling the Performance of Iterative Reconstruction Algorithms

In general, a tomography dataset is a 3D array that consists of 2D projections

or images of an object. Each projection is a set of line integrals associated with total

attenuation of x-ray beams while they pass through the object. During reconstruction,

each sinogram is mapped to a slice in 3D image. The computational complexity of this

mapping function depends mostly on the input sinogram size (i.e., number of projec-

tions); size of the 3D image slice (or output slice); number of iterations; and properties

of reconstruction algorithm, such as communication and data access patterns.

Here, an output slice is typically composed of a grid of size col× col, in which each

cell represents a voxel. The reconstruction of a slice requires iterating over the x-ray

attenuation values in the sinogram, calculating backward and forward projections, and

updating the output voxels. The computational demand of the reconstruction depends

on the number of intersection points between x-ray and voxel grids. We can estimate

the number of intersection points that needs to be processed for a projection row as

follows.

inters(θi) = col2 ∗ (|sin(θi)|+ |cos(θi)|) (1)

Here, θi denotes the rotation of the projection, and col2 is the number of voxels in the

output slice.

Although inters(θi) can quantify the computational demands of a given projection

row (with θi rotation), hardware-specific information needs to be incorporated for

more precise estimations—especially if the goal is to estimate execution time. We

capture hardware-specific information by introducing a cost function, cost(θi), and a

constant parameter, td.

We use cost(θi) to incorporate overheads due to the data access pattern during

reconstruction. For instance, if the rotation of the projection is 0, that is, θ = 0,

then the reconstruction algorithm operates on a continuous array of elements (voxels

IUCr macros version 2.1.6: 2014/10/01

8

that are in the same row). This type of processing results in high cache utilization

and therefore minimum overhead. If the projection rotation is 90 degrees (or θi =

90), however, then reconstruction performs strided accesses to the voxels, which in

turn introduce low cache utilization and high overhead. We use Eq. 2 to capture the

overhead due to the data access pattern for a given rotation.

cost(θi) = 1 + (2 ∗ |sin(θi)|) (2)

Equations 1 and 2 can be used for computing the data access overhead and computa-

tional load of reconstructing a sinogram; however, the execution time estimation also

depends on the number of instructions that can be executed per second by the run-

ning CPU. Therefore, we use the td constant to capture the required time (in seconds)

for processing a single intersection point and its corresponding unit time hardware

overhead in a compute node.

Assuming that a tomography dataset is composed of ns sinograms and that each

sinogram (S) consists of projection rows with θi, namely, S = {θ1, θ2, . . . , θ|S|}, then

we can estimate the reconstruction time of an input tomography dataset using Eq. 3.

ns ∗
|S|∑
i=1

inters(θi) ∗ cost(θi) ∗ td (3)

Note that we can derive all variables and functions in Eqs. 1 and 2 from the input and

output datasets. In other words, these parameters and functions can be determined

before computation. However, the value of td requires reconstruction of a sample sino-

gram (training data). Fortunately, this process needs to be performed only once for

the target hardware (compute node) and typically takes negligible time.

Since our performance model focuses on the computational demand and processing

time of a single intersection point, we can estimate the reconstruction times even with

large-scale compute resources where a sinogram is being reconstructed by more than

one processing unit, such as multicore architectures.

IUCr macros version 2.1.6: 2014/10/01

9

3. Workflow Optimization and System Design

Execution of geographically distributed workflows requires automation tools to ease

synchronization and interaction with resources. In this section, we present the com-

ponents of our system and discuss its execution.

3.1. System Components

Our system consists of four main components: (1) data transfer, (2) metascheduler,

(3) performance models, and (4) workflow execution engine. The interactions between

these components are shown in Fig. 2 and explained in the following subsections.

3.1.1. Data Transfer: The data transfer component is responsible for initiating data

transfer requests during workflow execution. It also monitors the status of transfer

and triggers actions according to state of the transmission. For instance, if the data

transfer is successful, this component informs the workflow execution engine for the

next stage. Otherwise, it dispatches error messages for failure handling.

The metadata information about data transfers and resources is defined in the

resource configuration and metadata file. This information includes the type and (end-

point) address of the resource, default input/output directories for the workflow man-

agement system, and the theoretically available bandwidth. Here, a resource is a Globus

end-point, and the type of resource is either storage or compute. If the resource type

is compute, it can provide both computational and storage resources, whereas storage

resources can be used only for storing data. Input/output directories are the default

folders that are being used by the workflow management system. Typically, the input

directory defines where input data is stored (for both storage and compute resources),

and the output directory is where output data is stored after the completion of data

analysis at the compute resource. The available bandwidth is used for estimating data

IUCr macros version 2.1.6: 2014/10/01

10

transfer rates (using 2.1).

This component also provides an interface for interacting with Globus. The interface

can be used for setting the configuration parameters of Globus, including the number

of parallel streams, concurrency, and time-out parameters.

3.1.2. Metascheduler for Multisite Environments: Our system utilizes geographically

distributed resources to minimize the end-to-end execution time. This process requires

interacting with various resources and depends on taking into consideration operations

such as resource allocations, preparation, and scheduling of jobs at target system.

The metascheduler component creates an abstraction between the resource man-

agers of the compute clusters and the workflow execution engine. Therefore, jobs can

be defined in the workflow execution engine (job description) and materialized to real

job requests (scripts) in the metascheduler. During execution, these scripts are trans-

ferred to the target compute cluster and submitted to its job queue. A job description

consists of job’s resource requirements, such as the number of requested processors

and allocation time. This information is used for generating a suitable job script for

the target computer’s resource manager, for example, slurm or torque.

Similar to the data transfer component, information required for job submission is

specified in the resource configuration and metadata file. The information includes the

type of resource manager and the project name in which the allocation request is going

to be charged. Information about the number of nodes, processors, and scheduling

algorithm of the target resource is also stored in the resource configuration file so that

the performance and queue time estimation can be computed.

3.1.3. Performance Models and Estimations: Our workflow management system uses

the models and simulation techniques in Section 2 to quantify the performance of the

IUCr macros version 2.1.6: 2014/10/01

11

resources. Further, it helps in estimating the execution times of different stages. This

information can be used for selecting the most efficient resources and minimizing the

end-to-end execution time of workflows.

As mentioned earlier, we consider three main stages during the execution of a work-

flow: data transfer, computation, and queue/wait times. The performance models com-

ponent evaluates these stages according to given set of resources and user-provided

models. Specifically, for the data transfer stage, this component first prepares scripts

that generate sample datasets on the target resource. It next initiates the transfer of

these sample datasets between resources (using Globus). It then collects the required

performance information and parameters and calculates the estimated data transfer

time by using a performance model. The computation stage requires using input data

size information (i.e., projection data), td value of target compute clusters, number

of nodes/processes, and application-specific information such as the number of itera-

tions. This information is then used for setting the parameters in the computational

model, and execution times for different compute resources are estimated. For the

queue/wait time stage, the system first collects the current states of the queues in the

target compute clusters. This state information includes all jobs that are currently

running or waiting in the clusters’ queues. The performance models component sim-

ulates each of these queues with the user-specified reconstruction job and estimates

the queue times.

Note that the performance models component extensively uses Globus and the

resource configuration file for estimations. It also provides an interface in which dif-

ferent light source application models can easily be integrated.

Our system can be used for execution and modeling of large workflows that execute

on many geographically distributed resources.

IUCr macros version 2.1.6: 2014/10/01

12

3.1.4. Workflow Execution Engine: The workflow execution engine is the intermedi-

ate layer that orchestrates the other components. Users of the workflow management

system interact with this layer to initiate workflow executions and performance esti-

mations.

3.2. Execution of Workflow Management System

Figure 3 shows the execution flow of our system, which consists of two main pro-

cesses (daemons) that manage the execution of workflows: master daemon (MD), and

worker daemon (WD). The user interacts with the MD process and initiates the workflow

execution. MD is responsible for running the previously defined components, namely,

the data transfer, metascheduler, performance models, and workflow execution engine.

Our workflow management system can interact with any end point that is enabled

in Globus. In Fig. 3, we show four different end points: two are compute end points,

one is a cloud end point, and one is a storage endpoint. Since storage resources can

be managed easily with Globus, WD is executed on compute resources only.

Figure 3 illustrates a sample workflow scenario. Initially, the user interacts with MD

and (1) initiates the workflow execution. MD then establishes a connection with Globus

and (2) starts transferring data (which needs to be processed) from the storage to the

compute end-point. While data is being transferred, MD (3) creates command scripts

and initiates another transfer request from MD to the compute resource. After the

transmission, WD starts executing the retrieved scripts. The scripts consist of different

bash commands, such as job submission, sample data generation (for data transfer

estimations), or queue status commands (for queue time estimation). In our workflow

example, the transferred script has job submission commands; hence WD enqueues

the job to the cluster’s queue. This job is then executed by the cluster’s resource

manager. Recall that the metascheduler component creates job submission commands

IUCr macros version 2.1.6: 2014/10/01

13

depending on the target cluster’s environment. Therefore the scripts can transparently

be generated by MD. Once WD finishes executing all the commands in the script, it

informs MD with a status file. MD then initiates another data transfer that (4) sends

the processed data from the compute to the data end-point.

4. Experimental Results

In this section, we present the experimental evaluation of our performance models and

workflow management system. In particular, we compare and analyze the estimated

and real end-to-end execution times of tomographic reconstruction workflows that run

on geographically distributed resources.

4.1. Experimental Setup

In our experiments, we used three compute clusters—Mira, Stampede, and Gordon—

for data processing. Table 1 summarizes the technical details of the compute clusters.

We also used two storage resources—Chameleon1 and Petrel2—for data storage.

Petrel is located at Argonne National Laboratory and can provide up to 1.7 PB of

storage space. Chameleon is a cloud resource located at the Texas Advanced Comput-

ing Center (TACC) and has 1.5 PB storage space.

We evaluated our computation models using two iterative tomographic reconstruc-

tion algorithms: simultaneous iterative reconstruction technique (SIRT) and accelerated

penalized maximum likelihood (APMLR). APMLR is computationally more demand-

ing than SIRT because it incorporates information of neighboring voxels during recon-

struction. For data transfer operations and estimations, we used GlobusOnline. During

the data transfer estimations, we set the sample data size replication to 16 and the

communication overhead multiplier to 2. For job queue simulations, we used a con-

1 https://chameleoncloud.org
2 http://petrel.alcf.anl.gov

IUCr macros version 2.1.6: 2014/10/01

14

servative backfilling algorithm and set its weight in the performance models to 0.04.

We used two real-world datasets, Seed and Hornby, collected from Advanced Photon

Source (APS) beamlines. The Seed dataset was acquired from a seed of Arabidopsis

thaliana, a flowering plant [19]; it consists of 720 projections, 512 sinograms, and

501 columns (i.e., 720x2048x501 single-precision floating-point numbers). Hornby is

an x-ray microtomography data from a shale sample [22]; it includes 360 projections,

2,048 sinograms, and 1,024 columns. During our experiments, we varied the number of

projections and sinograms of the datasets in order to introduce varying computational

demands for reconstruction.

We assumed that a workflow consists of four stages: (1) transferring the projections

dataset (input) from storage to the compute resource; (2) submitting the reconstruc-

tion job to the queue and wait; (3) reconstructing the tomographic dataset; and (4)

transferring the 3D image (output) from the compute resource to storage. During our

experiments, we categorized these stages as data transfer, queue, and computation.

4.2. Evaluation of Performance Models on Geographically Distributed Resources

First, we evaluated the estimated and real execution times of the Seed and Hornby

datasets using the SIRT reconstruction algorithm. During our evaluation, we var-

ied the experimental configurations and created workflows with different performance

characteristics.

Figure 4 shows the experimental results for the Hornby dataset. For all experi-

ments, Real refers to the actual end-to-end execution times of the workflows, whereas

Estimated refers to the estimated execution times after running the performance

models. Different dataset sizes were used in order to introduce varying computa-

tional demands; therefore, the accuracy of the performance model estimations can

be observed. Specifically, we generated several versions of the Hornby dataset and set

IUCr macros version 2.1.6: 2014/10/01

15

their dimensions to Px128x2048, in which P refers to the number of projections in

the tomographic dataset. We also used different configurations for the storage and

compute resources, so that varying data transfer and computational costs were intro-

duced. In particular, each workflow, W, was configured as S0 −C − S1, where C refers

to compute resource, and S0 and S1 are source and destination storage resources,

respectively. Since C = {Gordon,Mira, Stampede} in each experiment, we present C

with ∗ in Figs. (a)-(d). For instance, in Fig. 4(d), the Hornby dataset’s dimensions

are 180x128x2048 (P=180), and the dataset is initially stored on Chameleon. For each

workflow in (d), first the dataset is transferred from Chameleon to one of the com-

putational resources (C). Then, its reconstruction job is submitted to the compute

cluster’s queue. After the reconstruction, the output dataset (3D image) is transferred

to Petrel. For this set of experiments, we used 128, 32, and 32 compute nodes for Mira,

Stampede, and Gordon, respectively.

Considering the estimated and real execution times in Fig. 4, we see that the error

rates range from 1% to 18.2%, with an average of 9.8%. The highest error rate is

observed in the P=180 and C=Stampede configuration. As mentioned before, we con-

sider (and model) three phases in a workflow: data transfer, queue, and computation.

Among these, our computational model provides the most accurate estimation, mainly

because of the explicit allocation of compute nodes. On the other hand, the data

transfer and job queue are shared between users, thus introducing noise and perfor-

mance fluctuations depending on the utilization of the network and compute resources.

Because smaller datasets require less computation, errors in data transfer and queue

time estimations become more visible in the overall estimation. Specifically, for the

P=180 and C=Stampede configuration, the real and estimated computation times are

137 and 136 seconds, respectively. However, the total real time for the queue and data

transfer is 197 seconds, whereas the total estimated time is 258 seconds.

IUCr macros version 2.1.6: 2014/10/01

16

Among the compute resources, Stampede provides the highest computational through-

put per node. When we analyze the execution times in Fig. 4, however, we see that in

many cases configurations with Stampede perform poorly. The main reasons are the

longer job queues and data transfer times at Stampede. Note that our performance

models can provide estimations that can help in selecting the most efficient workflow

configurations. If we compare the real execution times in each figure, the speedups

in selecting the best configuration vs. the worst range between 1.41 and 1.95, which

indicate that our models can have a significant effect on the end-to-end execution

time.

In Fig. 5, we repeat the previous experiments with the Seed dataset. The dimen-

sions of the Seed dataset are Px512x501. Since this dataset is smaller than Hornby’s,

its computational demands are lower. Therefore, we observe larger error rates. Specif-

ically, considering the real and estimated times, we see that the average error rate is

9.5%, where the rates range between 1% and 23.3%. The largest error rate is observed

with the P=90 and C=Stampede configuration, in which the error rate of the compu-

tation time is 6.2%, and that of the queue and data transfer is 28.1%. Most of the

remaining configurations’ error rates are lower than 14.5%.

Similar to the Hornby experiments, if we compare the estimated and real execution

times, we see that our models can help select the best configuration that can provide

the shortest end-to-end execution time. Considering the configurations with the best

and worst execution times, the speedups of selecting the right configuration range

between 1.89 and 3.13.

Next, in Fig. 6, we focus on the workflow execution times of the Hornby dataset,

considering different phases and varying the number of compute nodes. The dimensions

of the dataset are configured to 180x2048x2048; that is, all the sinograms of Hornby

are reconstructed. The computations are performed on Stampede, and both the source

IUCr macros version 2.1.6: 2014/10/01

17

and target storage resources are set to Chameleon.

Figure 6(a) shows the total execution times. The error rates of the estimated exe-

cution times range from 3% to 14.4%. Similar to the previous set of experiments, the

estimated times successfully reflect the real execution times. If we focus on the com-

putation times, we observe almost linear scalability; however, the data transfer and

queue times do not follow the same trend, which can also be seen in (b). For instance,

while the queue time of the 32-node configuration takes 25.3% of the execution time,

the queue times of the N=128 and N=256 configurations are negligible.

If we analyze the data transfer times, we observe similar results for all the workflows.

Because the output dataset size is the same for all configurations, the data transfer

takes similar times. Specifically, the data transfer times range from 374 to 404 seconds

for the real configurations and 431 to 560 seconds for the estimated configurations.

Because Stampede and Chameleon are located at the same site (TACC), the data

transfer is more isolated, and the network can provide better performance.

5. Related Work

In recent years, data analysis problems and workflows at synchrotron light sources

have gained immense popularity, primarily because of the technological advances in

scientific instruments and unprecedented data generation rates at beamlines.

Several activities focus on data management and analysis of light sources [3,21,26].

CAMERA is an interdisciplinary project at LBNL [14]. The main goal of the CAM-

ERA project is to investigate problems of DOE user facilities, including synchrotron

light sources, and develop fundamental new mathematical solutions. Similarly, the

Computational Science Initiative at Brookhaven National Laboratory provides work-

flow systems to define data-processing tasks for NSLS-II facility users [9].

Tomography is a widely used imaging technique at synchrotron light sources [7,15,

IUCr macros version 2.1.6: 2014/10/01

18

18, 19, 24, 28]. Iterative tomographic reconstruction typically provides higher-quality

images than the filtered-back projection method does, because of the better reduction

in noise and in missing wedge artifacts. However, iterative approaches typically require

more computational throughput [2, 4, 29, 31]. Accelerators, such as GPUs, have been

used to improve performance of iterative algorithms [6, 8, 23, 32]; but memory limita-

tions of these accelerators can introduce significant overhead due to the data movement

from host to device memory. Gursoy et al.’s TomoPy [20] framework provides a com-

plete set of tools for the portable analysis of tomography datasets, which can run

on workstations. Our workflow management system uses highly parallel versions of

TomoPy reconstruction algorithms [5] to decrease the execution time of reconstruc-

tion tasks from days to minutes on high-performance resources. Both tools use data

exchange model [10] for organization and portability of tomography data.

Scientific workflows have been extensively researched by different scientific commu-

nities [16,17,30,33]. Deelman et al.’s Pegasus workflow management system [12] maps

abstract workflow descriptions to geographically distributed execution environments.

In this work, we analyze and integrate performance models for light source data anal-

ysis workflows. Deslippe et al. developed the SPOT framework [13] that specifically

focuses on end-to-end analysis of light source data. They evaluate the execution of

their system at ALS beamlines and the NERSC supercomputer. In contrast, our work

uses Globus for data management and workflow execution, and therefore it can utilize

every end point that is accessible by the user.

6. Conclusion

We analyzed and modeled the performance of light source data analysis applications.

Our models estimate the computation, data transfer, and task/job wait performance

and times. Our models are tailored to iterative tomographic image reconstruction,

IUCr macros version 2.1.6: 2014/10/01

19

in which large computational throughput is desired for timely execution. We imple-

mented these models in a workflow management system that executes reconstruction

tasks on geographically distributed resources. We evaluated our models and system

using two tomographic datasets (from APS beamlines) and two compute-intensive

tomographic reconstruction algorithms. Moreover, we used three HPC and two stor-

age resources, all of which are distributed. Our experimental results show that our

system can estimate reconstruction workflows within 2.1% to 23.3% error rates. The

models provide better accuracy if the task’s computation dominates the overall exe-

cution time.

Acknowledgements: This material is based upon work supported by the U.S.

Department of Energy, Office of Science, under contract number DE-AC02-06CH11357.

References

[1] Early Science at the Upgraded Advanced Photon Source. Technical report, Argonne
National Laboratory, Advanced Photon Source, 2015.

[2] J. Agulleiro and J.-J. Fernandez. Fast tomographic reconstruction on multicore comput-
ers. Bioinformatics, 27(4):582–583, 2011.

[3] M. Basham, J. Filik, M. T. Wharmby, P. C. Y. Chang, B. El Kassaby, M. Gerring,
J. Aishima, K. Levik, B. C. A. Pulford, I. Sikharulidze, D. Sneddon, M. Webber, S. S.
Dhesi, F. Maccherozzi, O. Svensson, S. Brockhauser, G. Nray, and A. W. Ashton. Data
Analysis WorkbeNch (DAWN). Journal of Synchrotron Radiation, 22(3):853–858, 2015.

[4] M. Beister, D. Kolditz, and W. A. Kalender. Iterative reconstruction methods in x-ray
CT. Physica Medica, 28(2):94–108, 2012.

[5] T. Bicer, D. Gursoy, R. Kettimuthu, F. De Carlo, G. Agrawal, and I. T. Foster. Rapid
tomographic image reconstruction via large-scale parallelization. In Euro-Par 2015: Par-
allel Processing, pages 289–302. Springer Berlin Heidelberg, 2015.

[6] F. Brun, S. Pacile, A. Accardo, G. Kourousias, D. Dreossi, L. Mancini, G. Tromba, and
R. Pugliese. Enhanced and flexible software tools for x-ray computed tomography at the
Italian Synchrotron Radiation Facility Elettra. Fundam. Inform., 141:233–243, 2015.

[7] R.-C. Chen, D. Dreossi, L. Mancini, R. Menk, L. Rigon, T.-Q. Xiao, and R. Longo.
PITRE: software for phase-sensitive X-ray image processing and tomography reconstruc-
tion. Journal of Synchrotron Radiation, 19(5):836–845, Sep 2012.

IUCr macros version 2.1.6: 2014/10/01

20

[8] S. Chilingaryan, A. Kopmann, A. Mirone, and T. dos Santos Rolo. A GPU-based architec-
ture for real-time data assessment at synchrotron experiments. In Real Time Conference
(RT), 2010 17th IEEE-NPSS, pages 1–8, May 2010.

[9] Computational Science Initiative, Brookhaven National Laboratory.
https://www.bnl.gov/compsci/c3d/programs/NSLS.php. [Online accessed November-
2015].

[10] F. De Carlo, D. Grsoy, F. Marone, M. Rivers, D. Y. Parkinson, F. Khan, N. Schwarz,
D. J. Vine, S. Vogt, S.-C. Gleber, S. Narayanan, M. Newville, T. Lanzirotti, Y. Sun, Y. P.
Hong, and C. Jacobsen. Scientific data exchange: a schema for HDF5-based storage of
raw and analyzed data. Journal of Synchrotron Radiation, 21(6):1224–1230, 2014.

[11] M. D. de Jonge, C. G. Ryan, and C. J. Jacobsen. X-ray nanoprobes and diffraction-limited
storage rings: opportunities and challenges of fluorescence tomography of biological spec-
imens. Journal of Synchrotron Radiation, 21(5):1031–1047, Sep 2014.

[12] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani,
W. Chen, R. F. da Silva, M. Livny, and K. Wenger. Pegasus, a workflow management
system for science automation. Future Generation Computer Systems, 46:17 – 35, 2015.

[13] J. Deslippe, A. Essiari, S. J. Patton, T. Samak, C. E. Tull, A. Hexemer, D. Kumar,
D. Parkinson, and P. Stewart. Workflow management for real-time analysis of lightsource
experiments. In Proceedings of the 9th Workshop on Workflows in Support of Large-Scale
Science, WORKS ’14, pages 31–40, Piscataway, NJ, USA, 2014. IEEE Press.

[14] J. Donatelli, M. Haranczyk, A. Hexemer, H. Krishnan, X. Li, L. Lin, F. Maia, S. March-
esini, D. Parkinson, T. Perciano, D. Shapiro, D. Ushizima, C. Yang, and J. Sethian. Cam-
era: The center for advanced mathematics for energy research applications. Synchrotron
Radiation News, 28(2):4–9, 2015.

[15] D. J. Duke, A. B. Swantek, N. M. Sovis, F. Z. Tilocco, C. F. Powell, A. L. Kastengren,
D. Gürsoy, and T. Biçer. Time-resolved x-ray tomography of gasoline direct injection
sprays. SAE International Journal of Engines, 9(2015-01-1873), 2015.

[16] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-g: a computation
management agent for multi-institutional grids. In High Performance Distributed Com-
puting, 2001. Proceedings. 10th IEEE International Symposium on, pages 55–63, 2001.

[17] J. Goecks, A. Nekrutenko, J. Taylor, et al. Galaxy: a comprehensive approach for support-
ing accessible, reproducible, and transparent computational research in the life sciences.
2010.

[18] D. Gürsoy, T. Biçer, J. D. Almer, R. Kettimuthu, S. R. Stock, and F. De Carlo. Maxi-
mum a posteriori estimation of crystallographic phases in x-ray diffraction tomography.
Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 373(2043):20140392, 2015.

[19] D. Gürsoy, T. Biçer, A. Lanzirotti, M. G. Newville, and F. De Carlo. Hyperspectral image
reconstruction for x-ray fluorescence tomography. Optics Express, 23(7):9014–9023, 2015.

[20] D. Gursoy, F. De Carlo, X. Xiao, and C. Jacobsen. TomoPy: a framework for the analy-
sis of synchrotrontomographic data. Journal of Synchrotron Radiation, 21(5):1188–1193,
2014.

[21] Y. P. Hong, S. Chen, and C. Jacobsen. A new workflow for x-ray fluorescence tomography:
MAPStoTomoPy. volume 9592, pages 95920W–95920W–8, 2015.

IUCr macros version 2.1.6: 2014/10/01

21

[22] W. Kanitpanyacharoen, D. Y. Parkinson, F. De Carlo, F. Marone, M. Stampanoni,
R. Mokso, A. MacDowell, and H.-R. Wenk. A comparative study of x-ray tomographic
microscopy on shales at different synchrotron facilities: ALS, APS and SLS. Journal of
synchrotron radiation, 20(1):172–180, 2013.

[23] A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer. The pyhst2 hybrid dis-
tributed code for high speed tomographic reconstruction with iterative reconstruction and
a priori knowledge capabilities. Nuclear Instruments and Methods in Physics Research
Section B: Beam Interactions with Materials and Atoms, 324:41 – 48, 2014. 1st Interna-
tional Conference on Tomography of Materials and Structures.

[24] K. Mohan, S. Venkatakrishnan, J. Gibbs, E. Gulsoy, X. Xiao, M. De Graef, P. Voorhees,
and C. Bouman. TIMBIR: A method for time-space reconstruction from interlaced views.
Computational Imaging, IEEE Transactions on, PP(99):1–1, 2015.

[25] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads, and user run-
time estimates in scheduling the ibm sp2 with backfilling. IEEE Transactions on Parallel
and Distributed Systems, 12(6):529–543, Jun 2001.

[26] S. Patton, T. Samak, C. Tull, and C. Mackenzie. Spade: Decentralized orchestration of
data movement and warehousing for physics experiments. In Integrated Network Manage-
ment (IM), 2015 IFIP/IEEE International Symposium on, pages 1014–1019, May 2015.

[27] PYSS: Python Scheduling Simulator. https://code.google.com/p/pyss. [Online accessed
November-2015].

[28] J. Qi and R. M. Leahy. Iterative reconstruction techniques in emission computed tomog-
raphy. Physics in Medicine and Biology, 51(15):R541, 2006.

[29] E. Y. Sidky, C.-M. Kao, and X. Pan. Accurate image reconstruction from few-views
and limited-angle data in divergent-beam CT. Journal of X-ray Science and Technology,
14(2):119–139, 2006.

[30] I. Taylor, M. Shields, I. Wang, and A. Harrison. The Triana workflow environment: Archi-
tecture and applications. In I. Taylor, E. Deelman, D. Gannon, and M. Shields, editors,
Workflows for e-Science, pages 320–339. Springer, New York, Secaucus, NJ, USA.

[31] J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger, and G. Wellein. Pushing the limits
for medical image reconstruction on recent standard multicore processors. International
Journal of High Performance Computing Applications, 2012.

[32] M. Vogelgesang, S. Chilingaryan, T. d. Santos, and A. Kopmann. Ufo: A scalable gpu-
based image processing framework for on-line monitoring. In High Performance Comput-
ing and Communication 2012 IEEE 9th International Conference on Embedded Software
and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on, pages 824–
829, June 2012.

[33] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-
Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al. The Taverna workflow suite: designing and
executing workflows of web services on the desktop, web or in the cloud. Nucleic acids
research, page gkt328, 2013.

IUCr macros version 2.1.6: 2014/10/01

22

Require: RTTA→B: Round trip time from resource A to B
BWA→B: Outgoing bandwidth from resource A to B c: Sample

dataset replication constant
m: Initialization overhead replication constant (m > 1)
RD: Size of the real dataset that is to be transferred

function EstimateDataTransferTime(RD,RTTA→B, BWA→B, c,m)
1: DS1 := RTTA→B ∗BWA→B ∗ c;
2: DS2 := DS1 ∗m;
3: Generate(DS1, DS2, A);
4: t1 := Transfer(DS1, A,B); t2 := Transfer(DS2, A,B);
5: Overhead := (m ∗ t1 − t2)/(m− 1);
6: ESTBW := DS2/(t2 −Overhead);
7: return RD/ESTBW +Overhead;

Figure 1: Algorithm for online bandwidth estimation

Workflow'Execu-on'Engine'

Data'Transfer' Metascheduler' Performance'
Models'

Tomographic'
Reconstruc-on'Resource'Configura-on'and'Metadata'

Figure 2: Components of workflow execution engine.

Cluster Peak Perf. # Nodes # Cores Memory
Mira3 10 PFLOPS 49,125 786,432 768 TiB

Stampede4 9.6 PFLOPS 6,400 522,080 270 TiB
Gordon5 341 TFLOPS 1,024 16,384 64 TiB

3 Located at ANL: http://www.alcf.anl.gov/mira
4 Located at TACC: https://www.tacc.utexas.edu/stampede
5 Located at SDSC: http://www.sdsc.edu/services/hpc

IUCr macros version 2.1.6: 2014/10/01

23

S0

Ji+1 Ji Ji-1
... ...

Q0

WD0

Comp.
Endpoint 0

S1

Ji+1 Ji Ji-1
... ...

Q1

WD1

Comp.
Endpoint 1

Storage
Endpoint 0

Cloud
Endpoint 0

WD2

cli.globusonline.org

cmd.sh
mpirun..

squeue..

MD
1

2

3

4

Performed Data Transfers in steps 2-4:
2: Projection dataset (input) transfer
3: Script file (e.g. bash) transfer
4: Reconstructed image (output) transfer

Figure 3: Execution of workflow management system.

IUCr macros version 2.1.6: 2014/10/01

24

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Mira Gordon Stampede

Real
Estimated

(a) P=1440; W: Petrel−*−Petrel

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

Mira Gordon Stampede

(b) P=720; W: Chameleon−*−Chameleon

 0

 100

 200

 300

 400

 500

 600

Mira Gordon Stampede

(c) P=360; W: Petrel−*−Chameleon

 0

 50

 100

 150

 200

 250

 300

 350

 400

Mira Gordon Stampede

(d) P=180; W: Chameleon−*−Petrel

Figure 4: Real and estimated execution times (in seconds) of Hornby image recon-
struction workflow using geographically distributed compute and storage resources.

IUCr macros version 2.1.6: 2014/10/01

25

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Mira Gordon Stampede

Real
Estimated

(a) P=720; W: Petrel−*−Petrel

 0

 100

 200

 300

 400

 500

 600

Mira Gordon Stampede

(b) P=360; W: Chameleon−*−Chameleon

 0

 50

 100

 150

 200

 250

 300

 350

 400

Mira Gordon Stampede

(c) P=180; W: Petrel−*−Chameleon

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Mira Gordon Stampede

(d) P=90; W: Chameleon−*−Petrel

Figure 5: Real and estimated execution times (in seconds) of Seed image reconstruction
workflow using geographically distributed compute and storage resources.

IUCr macros version 2.1.6: 2014/10/01

26

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

R
ea

l

Est
.

R
ea

l

Est
.

R
ea

l

Est
.

R
ea

l

Est
.

Computation
Queue

Data Transfer

N=256N=128N=64N=32

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

3
2

6
4

1
2
8

2
5
6

3
2

6
4

1
2
8

2
5
6

EstimatedReal

(b)

Figure 6: (a) compares real and estimated execution times (in seconds) consider-
ing different phases for Hornby dataset with varying number of compute nodes
at Stampede. The reconstruction algorithm is APMLR. The dimensions of the
dataset are 180x2048x2048. Workflow of the reconstruction is configured as W:
Chameleon−Stampede−Chameleon. (b) shows the distribution (%) of phases w.r.t.
total execution time grouped in real and estimated configurations.

IUCr macros version 2.1.6: 2014/10/01

27

The submitted manuscript has been created by UChicago Argonne, LLC, Operator

of Argonne National Laboratory (”Argonne”). Argonne, a U.S. Department of Energy

Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.

The U.S. Government retains for itself, and others acting on its behalf, a paid-up

nonexclusive, irrevocable worldwide license in said article to reproduce, prepare deriva-

tive works, distribute copies to the public, and perform publicly and display publicly,

by or on behalf of the Government.

IUCr macros version 2.1.6: 2014/10/01

