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Abstract

 Fundamentals of Gamma and Neutron Detection
 Overview of the DOE Triage and JTOT 

Programs
 Gamma and Neutron Signatures in Select 

Measurements
 Detector Demonstration
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Basic Gamma Ray Interactions

 Photoelectric effect: all of the energy of the incoming 
gamma ray is absorbed by the detector – this produces a 
full energy photopeak in the spectrum

 Compton scattering: only some of the energy of the 
incoming gamma ray is absorbed while the rest of it 
scatters out (think “billiard ball” interactions). This 
interaction adds counts in the spectrum’s continuum

 Pair production: gamma rays above a threshold energy 
of 1022 keV can be converted to an electron-positron 
pair (a classic energy to mass conversion)
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Elements of Gamma Ray Spectra

Photopeaks

Continuum

Pair Production
(single and double
escape peaks)
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Desirable Qualities in 
Gamma Ray Detectors

 High efficiency
– Size, stopping power (i.e. density), etc.

 High resolution (if spectroscopic)
– Improved ability to discriminate between benign and 

threat sources
 Good Linearity (proportional energy-channel match)
 Good background discrimination

– High signal-to-noise
 Easy to operate/Few operational constraints
 Cheap
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Detection Efficiency

 Absolute efficiency

 Intrinsic efficiency

 Intrinsic efficiency values only consider the 
gammas that actually enter the detector

emittedphotonsofnumber
recordedeventsofnumber

Abs =ε

incidentphotonsofnumber
recordedeventsofnumber

I
=ε
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Detector Solid Angle Fraction
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Solid angle fraction out of 4π steradians for 
a detector with radius R at a distance r
from the source where θ = tan-1(R/r):

Detector

γ

γ
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Example Efficiency Curves
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Importance of Efficiency

Blue = NaI Crystal (1.5” dia. x 2.2” lg.)
Black = CZT Crystal (0.3” x 0.3” x 0.15”)

Both measurements of same Eu-152 source at 1 meter
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What is Resolution?

Y

Y/2 FWHM

σ
Y (H ) = Y exp −

H − H 0( )2
2σ 2











FWHM = 2.35σ

FWHM = Full Width 
at Half Maximum
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The Importance of Resolution

from HPGe

from Sodium Iodide (NaI)

Two spectra of the same Pu item
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Linearity and Energy Calibration

885 keV
1061 keV

Energy calibration means 
relating channel number to 
energy value (usually in keV)

We use known peaks in a 
spectrum to relate energy to 
channel via some polynomial.

e.g.:  E = p0 + p1*ch (linear)
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Scintillation Detector Media

 NaI and CsI are the most common and least 
expensive

 LaBr3 has gained in popularity during the last 
decade (better resolution than NaI)

 PVT plastic scintillators can be made very large 
and are commonly used in portal monitors

 Two emerging technologies include –
– Cs2LiYCl6 (CLYC) which also detects neutrons (Li)
– SrI2 prototypes have relatively good resolution 

compared to other scintillators
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Commercial Scintillation-Based 
Detectors
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Scintillation Detectors

Ionizing radiation excites atoms in the scintillator.  These 
atoms emit very faint light, which is amplified by a 
photomultiplier tube (PMT).

Light  from the scintillator is 
converted to electrons by the 
PMT and amplified a million 
times or more through a 
succession of electrodes called 
‘dynodes’.

The resulting electrical signal is then sent to 
the detector electronics for processing. 
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Comparisons of Scintillators

Brown = LaBr3
Black = NaI

Green = SrI2
Blue = CLYC
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Energy Changes with Temperature
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Scintillation Detector Score Card

 Efficiency can be extremely high
 Low Cost (especially NaI and PVT) 
 Low (poor) resolution 

– Few information carriers (light photons) result in poor statistics
– NaI resolution equals 7%, LaBr3 resolution equals 3.5%, CLYC 

resolution equals 4.5%, SrI2 resolution equals 3%, PVT 
resolution is generally greater than 25%

 Temperature sensitivity = Gain drift
– Gain fluctuations and non-linearities result in difficult energy 

calibrations
– Both the PMT and crystal have temperature sensitivities
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Commercial Semiconductor-Based 
Detectors
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+
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-
HV & Signal

High-Purity Germanium (HPGe)

γ
Gamma rays create 
“electron – hole” pairs in the 
detector crystal.

A coaxial HPGe detector has 
an electrical contact on the 
crystal axis and a second 
contact on the outer surface of 
the crystal.

When high-voltage is 
applied, electrons are 
collected at one contact and 
holes are collected at the 
other contact. 

HPGe detectors must be cooled to ~77 K (-321 F)
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HPGe Detector Score Card

 Excellent energy resolution (0.2%)
– Large number of charge carriers created

 Large crystal growth allows good efficiency
– 140-160% possible (relative to a 3” x 3” NaI)

 Excellent linearity
 Operational issues: must cool to LN2

temperatures to avoid thermal excitation of 
electrons (can use mechanical cooling)

 Cost: most expensive of gamma ray 
detector types
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CdZnTe (CZT) Description

 CZT is an alloy of cadmium telluride and zinc 
telluride

 CZT is a bandgap semiconductor that can be 
operated at room temperatures
– Bandgap ranges from 1.4 to 2.2 eV (HPGe is 0.74 eV)

 Coercing the electric signal out of the electron-
hole pairs is challenging
– Use of coplanar grids and pixelating the crystal are 

common methods
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CZT Score Card

 Very good resolution: usually<3%, but with new 
signal processing now 1% is achievable

 Very good linearity
 Band gap large enough for room-temperature

operation
 Reasonable costs (usually)
 Poor efficiency: Difficult to grow large crystals  

(~ 6 cm3 max)
 Poor hole mobility requires very sophisticated 

electrodes and read out
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Semiconductor Comparisons

Black = HPGe
Blue = NaI
Green = CZT
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Gamma Radiation Search and the
Inverse Square Law (1/r2)  

Area of a Sphere = 4πr2

Solid Angle ∝ 1/r2

distance = r
area  = A
e.g. 4 mR/hr

distance = 2r
area  = 4A
e.g. 1 mR/hr

Let’s say 1 square = the 
area covered by your 
detector. If you double the distance between 

the source and the detector, the 
detector will only cover 1/4th of the 
area of the radiation field it did 
previously.

If the detector only covers 
1/4th of the area then only 
1/4th of the gamma rays will 
strike it.

γ-ray field

Detection very strongly depends on source-to-detector 
distance!
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Detectors for the Search Mission

 Arrays of large NaI logs (2” x 4” x 16”) are 
commonly mounted on aircraft and helicopters

 They are similarly used in vehicles which often 
include large volume neutron detectors

 A number of backpack radiation detectors have 
been developed (generally speaking, bigger is 
better)

 Gamma cameras have been developed to 
localize the signals
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CZT Gamma Camera

U238 and Cs137 are successfully located and discriminated
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Mechanisms for Neutron Detection

 None are direct since they are neutral particles
– Most rely on detecting charged secondary particles 

 Two detection modalities
– Scatter neutron off light nucleus (H or He) transferring 

some energy to it, which then ionizes surrounding 
material 

– Neutron capture reactions release protons, alphas, 
recoil atoms, gammas, or fission fragments that can 
subsequently be detected 

Again, it is all about converting the neutron energy to charge or light 
(and then charge) and then collecting that charge, JUST LIKE GAMMA-RAYS!
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Neutron Interactions with Matter

TOTAL

Scattering Absorption

Elastic
(n,n)

Inelastic
(n,n’)

Electromagnetic
(n,γ)

Charged
(n,p)
(n,α)
(n,d)
Etc.

Neutral
(n,2n)
(n,3n)
(n,4n)
Etc.

Fission
(n,f)
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Q-Values for Neutron Interactions
Q-Value

3He(n,p):
3He + 1n  3H + 1p 0.764 MeV

10B(n,α):
10B + 1n  7Li + 4α
10B + 1n  7Li* + 4α

2.792 MeV
2.310 MeV

6Li(n,α):
6Li + 1n  3H + 4α 4.78 MeV
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Neutron Cross Section for 
Common Materials

Passive Nondestructive Assay of Nuclear 
Materials (1991)

 Cross section is strongly 
a function of neutron 
energy (1/v)
– Most commercial detectors 

are moderated

 Many materials have 
peaks or valleys in cross 
section superimposed 
on 1/v relation
– Example: 6Li
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Neutron-Sensitive Gas Detectors

 3He
– Typically operated < 10 atm (except RIIDs)
– ~75% efficient for thermal neutrons
– Currently, the most common neutron detector in portal monitors

 10BF3
– Typically operated < 1.5 atm (recombination occurs at high pressures)
– < 50% efficient to thermal neutrons

 10B-lined tubes (“Straws”)
– Neutron interaction occurs on walls, resulting in secondary charge within 

gas (< 10% efficient for thermal neutrons)
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3He Neutron Detector

Neutrons are moderated (thermalized) by polyethylene
surrounding 3He tube.

3He + n → 3H + p + 765 keV
These thermal neutrons are 
captured by 3He nuclei and 
produce tritium (3H) and 
protons (p), which in turn 
ionize the gas. The resulting 
electrons and ions are then 
collected at the central wire 
and tube wall.

The resulting electrical signal is then sent to the detector electronics for processing. 
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Moderation Effects on Detector 
Response

34

Moderator Thickness [cm]

Several detectors 
of varying volume
and efficiency
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Neutron-Sensitive Scintillators

 Plastic or liquid organics
– Used more for fast neutron detection
– Very sensitive to gamma rays
– Efficiency can be ~ 3He

 6Li-loaded glass
– Used in some older handheld detectors – relatively 

inefficient
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Next Generation Neutron Detectors

 CLYC (Cs2LiYCl6:Ce) gamma-neutron 
scintillation crystal

 6LiFZnS(Ag) scintillator screens with wavelength 
shifting fibers

 High-efficiency 10B-lined proportional tubes 
(“Straws”)

 All are being researched due to the 3He 
shortage (portal monitors have used up most of the 
stored amounts)
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Problems with Neutron Detection

 Useful spectroscopy can be difficult since neutrons rarely 
deposit their full energy in the detector
– For 3He detectors, neutrons must be thermalized for optimal 

detection therefore forfeiting all incident energy information 

 Handheld detectors will only give neutron count rates
 Can be sensitive to gamma rays as well, but only in very 

strong gamma ray fields
 Cosmic ray spallation in nearby massive and dense 

materials will cause false neutron counts (e.g. cargo of 
car batteries)
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Neutron Radiation Search 

 For gamma rays we saw the signal strength 
drops off according to the 1/r2 rule

 Not so for neutrons!
– Due to the fact that neutrons undergo many more 

scatter events before they are fully thermalized they 
propagate farther than gammas

– Drop off can vary from 1/r to 1/r1.6

– Since neutron background rates are far lower than 
gamma background rates they become much easier 
to detect – when present
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 On-call support (24/7) to frontline officers 

– Specialize in interpretation of spectra from portable 
radioisotope identifiers (RIIDs), but must be prepared 
for any radiation detector.

– Respond within 10 minutes, usually provide results in 
30-60 minutes. 

– Accurate identification of real threats, minimize the 
cost of a false or innocent alarm. 

 Team includes two federal officers and three scientists from 
Livermore, Los Alamos, or Sandia. At least two different laboratories 
are required for peer review.

 Typically process about 100 real-world events per year, plus about 
600 training events.

DOE Triage Program
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First Event

• Jan 2002: Toy soldiers smuggled into USA from Mexico were found to 
contain radioactive black powder. 

• Early results suggest highly-enriched uranium.

• Analysis proved the powder was depleted uranium (0.25±0.05%) U-235.

United States Department of Energy “Triage” Program was established.
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Hardware Supported
(these and many more)
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Soil Moisture Density Gauge

Slide 42

Common at construction sites
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Radioisotopic Thermoelectric 
Generators (RTG)

Slide 43

Used to produce
power in remote
locations
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Radioisotopic Thermoelectric Generators 
(RTG)

Slide 44

Bremsstrahlung Radiation Dominates
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Neutron Sources in Scrap Metal

Sri Lanka / India

Canada / USA

Honduras

Mexico Recovered 
Sources
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Data from Many Places…

May 26, 2010
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DOE JTOT Overview

 JTOT = Joint Technical Operations Team
 Several Phases of Deployment
 Exercises performed frequently with theme that 

“you should train the way you expect to play”
 Technical expertise in several skill sets
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Team Members at Sea
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Subset of Diagnostic Equipment
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Analysis Tools - Gamma

 LANL PeakEasy – exceptional gamma ray 
database and spectrum viewing tool
– Assists with the human interpretation factor

 SNL Gamma Detector Response Analysis 
Software (GADRAS)
– Automated nuclide identification tool
– Exceptional gamma ray spectrum modeling tool
– Supplements the device modeler’s evaluation
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Analysis Tools - GADRAS
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Analysis Tools - GADRAS

1D Modeling
capability can 
predict spectra
for possible solutions
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Analysis Tools – Neutron

 LANL initially developed “Neutron Replay” 
software and is in the process of upgrading that 
analysis tool to one named “Momentum”
– Momentum alludes to the fact that 

mathematical moments are used in the 
analysis of multiplication

 LLNL developed and uses “BigFit” for neutron 
multiplication analyses

 Current focus is on tool refinement for both labs
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General Signatures of SNM
 HEU: gammas at lower energies 

– 144, 163, 186, and 205 keV
– Neutrons: approximately 1 n/s/kg for HEU

 Plutonium: Gammas low to medium energy (375 and 414 keV)
– Neutrons from 240Pu (60,000 n/s/kg for WGPu)

 237Np: gammas at medium energies (<1 n/s/kg)
 233U: Weak gammas at medium energies

– Most intense gammas from 232U (at ppm concentrations)
– Less than 1 n/s/kg

 238U: Gammas from 740-1000 keV (13.7 n/s/kg)
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Selected Measurements
Example 1
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Example 1 continued

K-40

Tl-208
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Example 1 Shielding Effects

Yield = 11% Yield = 5%

185.7 keV



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Example 2 - Neutrons in Gamma
Ray Spectra

Region above 2614 – excess counts
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Evidence of Neutrons II

Inelastic Scatter in Ge 
“Ski Jumps”
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Neutron Capture



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Example 3
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Example 3 Continued
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Example 4 – Natural Uranium?
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Example 4 Zoom

Red = unshielded HEU
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Example 5

Atypical Interaction
@ 4.4 MeV
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Example 5 Seen at Low Energy
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Example 6

Black = Unknown Source
Red = Unshielded Thorium
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Example 6 in HPGe
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Example 7 

High deadtime
causes random 
summing
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Example 8
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Example 8 Continued
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Example 9 

Red = Example 9
Black = Example 8
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Example 9 Continued

Black = First Orientation

Red = Another Orientation
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Example 10

Black = Unknown
Red = Background
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