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Abstract. Currently deployed Intelligence, Sensing, and Reconnaissance (ISR) systems fall
along the spectrum of autonomy in operations, ranging from fully autonomous systems that
collect and analyze data to those systems that require humans as integral to effective collection
operations. This paper outlines two traits of collection systems that require relatively less human
involvement in operations, introducing the measurement of an operation’s Understanding-to-
Data Ratio (UDR) to help determine the appropriateness of automating a system in a given
operating context. Human and automated capabilities in existing systems are contrasted, with the
strengths of each identified. Finally, a spectrum of system capability and human involvement is
proposed for considering tradeoffs involved with new acquisitions in the ISR domain, and the
key areas for design effort in automation are outlined, including a focus on the interface between
human operators and automated systems.

Introduction

Intelligence, Sensing, and Reconnaissance (ISR) systems have been used since the beginnings of
warfare, with humans traditionally performing all activities in the Tasking, Collection,
Processing, Exploitation, and Dissemination (TCPED) chain. Throughout the twentieth century,
the Collection and Processing stages began to involve a greater number of electronic systems,
including wired communication systems, optical systems, radio, radar, infrared and multi-
spectral systems, digital communication systems, and eventually satellite-based, sea-based, and
air-based capabilities of all kinds. Some of these collection systems were simply an interface
from a real-time human operator to an electronic medium (e.g., wiretaps), while other collection
systems required little human activity or intervention beyond monitoring state of health and
occasional updates to tasking (e.g., satellite-based film photography). With today’s more capable
collection systems collecting more data than ever before, with more demand for ISR systems
(www.gao.gov), and with an increasing demand for solutions requiring less manpower
(www.rand.org), a desire for more automated solutions is a natural response. This idea is often
couched in terms of traversing left on the spectrum shown in Figure 1 below.
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Figure 1. A simple spectrum implicitly used in discussions of system automation.

This paper approaches the need for “traversing left” by examining the following questions: Do
certain system attributes necessitate lower human involvement in electronic collection systems?
Are there common traits of those systems requiring less manpower in operations? In answering
these questions, the present work addresses two traits that have enabled automated systems to
succeed in certain modern environments: 1) Limited real-time feedback needed for effective
collection; and 2) A high understanding-to-data ratio (UDR) of operation — in some tightly-
defined contexts, large amounts of situational understanding can be derived from very specific
data collects. Each of these attributes will now be examined vis-a-vis its contribution to reducing
and/or eliminating human responsibilities in the operations of ISR systems.

Trait 1: Limited real-time feedback needed for effective collection.

A collection system’s ability to adapt to real-time events in operation is a primary driver of the
level of human involvement required for effective collection. The need for this ability can stem
from a collection system’s mobility as well as the desired level of dynamic tasking for a
collection system. Mobile systems such as ground and air vehicles may need to respond to real-
world events more quickly than a stationary radio antenna or a satellite with a fixed-pointing
payload. The less mobile a collection system is, though, the less necessary it is to have real-time
feedback in operations for effective collection. In addition, a UAV may be tasked with collecting
pictures or video of stationary and/or moving targets, with tasking subject to change at a
moment’s notice depending on external needs or in-scene developments (i.e., dynamic tasking).
A radio antenna, however, may only ever be tasked with receiving and recording certain
frequencies around the clock (i.e., fixed tasking). Less dynamic tasking necessitates less real-
time feedback in operations for effective collection.

The more mobile a system is, and/or the more its tasking is intended to adapt to developing
situations, the more essential human operators’ real-time feedback becomes. As Lowenthal
writes, ““...Technical collection is less than precise. The problem underscores the importance of
processing and exploitation” (Lowenthal 2014, p. 71). Real-time (albeit partial) processing and
exploitation by human operators ensures that dynamic collection systems operate collect the right
signals in the right way at the right time. This incorporation of real-time feedback into a
collection system precludes wholesale replacement of humans by automation, since real-time
feedback in open environments — especially from exploitation, a particularly creative problem-
solving activity — is a uniquely human skill. With respect to this adaptable ability, Sterman nicely
summarizes the differences between (human) mental models and (automated) computer models:
“A mental model is flexible; it can take into account a wider range of information than just
numerical data; it can be adapted to new situations and be modified as new information becomes



available...[Computer models] are unable to deal with relationships and factors that are difficult
to quantify, for which numerical data do not exist, or that lie outside the expertise of the
specialists who built the model” (Sterman 1991).

Thus the incorporation of real-time feedback into a collection system’s tasking and operations
requires efficient and effective real-time processing and exploitation of collected data, which in
turn requires humans to be “in the loop”, with a high level of situational awareness. Lowenthal
comments on the necessity of analysts’ judgments in identifying more valuable collections:
“...the analysts’ expertise should be an integral part of collection sorting” (Lowenthal 2014, p.
114). The necessity of humans for processing and exploitation activities brings into view the
second trait of interest to the present analysis, which is the understanding-to-data ratio (UDR) of
an operation.

Trait 2: High Understanding-to-Data Ratio (UDR)

A second trait of ISR systems requiring less human involvement is the high Understanding-to-
Data Ratio (UDR) of an operation with respect to the system’s collection ability and its operating
environment. The concept of UDR is analogous to the measure of Signal-to-Noise Ratio (SNR)
commonly used in engineered systems such as antennas and visual detectors. The amount of
understanding (i.e., the Signal), for the purposes of the present concept, is proportional to the
fidelity of high-level situational questions being answered by an ISR system in operation (vague
or imprecise ideas imply a lower understanding of a problem, while narrowly defined questions
and targets imply a high degree of understanding). The data (i.e., the Noise) is the low-level
(usually electronic) collections from that same ISR system. UDR is then the measure of how
much the data can be extrapolated to answer a high-level question related to situational
understanding. In “From Data to Wisdom”, Ackoff defines a hierarchy of human sensing and
thought which relates the concepts of data, information, knowledge, understanding, and wisdom
(Ackoff 1989). This hierarchy is shown in Figure 2 below.
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Figure 2. The heirarchy of human sensing and thought proposed by Ackoff (1989).



Each ascending level of the hierarchy distills the level below it, resulting in general, top-level
models (i.e., understanding and wisdom) which humans use to make sense of and predict events
in the world at large (note how the idea of distillation and integration parallels the CPE activities
of the TCPED chain). This process happens somewhat automatically, albeit supplemented by
deliberate questioning and reflecting. The amount of understanding one has about a given
problem or situation often simply comes through direct experience and observation (i.e., data
collection). Occasionally, distilled high-level models (i.e., understanding and wisdom) can
extrapolate from a seemingly small amount of data, which is indicative of a high Understanding-
to-Data Ratio. In other words, in a high-UDR operation, one’s level of understanding about a
given situation is relatively high, while the data required to make immediate judgments is
relatively low.

Unlike SNR’s quantitative measures of both Signal and Noise, UDR as a measure is somewhat
limited by one’s ability to define and measure the level of one’s understanding. Quantitative or
even qualitative measures of understanding are not plentiful, since the upper levels of Ackoff's
heirarchy reflect the (mostly unobservable) states, processes, and relationships of the human
psyche. Lonergan describes understanding as “not the mere apprehension of any [data], not the
mere memory of all, but a quite distinct activity of organizing intelligence that places the full set
of clues in a unique explanatory perspective” (1992). When we write about understanding or
insight, he says, “we write about a moving target, from a moving viewpoint” (1992). Hence the
inherent difficulty in definition and measurement. With respect to ISR systems, though, there
exist (or should exist) some qualitative ideas of what type of understanding a system is intended
to provide — whether specific occurrence of a singular event in a specific context, or broad
situational awareness in various contexts.

A key consideration of this point is that narrower goals of understanding (i.e., specific questions
about a limited number of objects or events) imply a higher UDR operation, since narrower goals
imply a clearer, more tightly scoped definition of the “problem” motivating the system design in
the first place. A clear grasp of a simpler problem allows one to glean answers from specific data
collects due to basic assumptions that allow extrapolation of the data’s implications. On the other
hand, a more general problem — for example, explanation of human behavior over time —
prevents simple assumptions from being used (or very reliable), meaning a lower understanding
of the basic problem, and thus a lower UDR operation. This seemingly small amount of
distinction between types of understanding can be useful enough in distinguishing relative levels
of UDR operations, as following examples demonstrate.

The divisor of the UDR measure, data, is relatively easily described numerically, having
multiple established quantitative measures. One such measure is “richness”, in which the number
of types of data observed are known, but the relative abundance of each is not known (Gotelli
and Colwell 2001). Another is “diversity”, in which the number of types of data observed and
their relative abundance are both known (Peet 1974, Jost 2006). And closely related to this latter
measure is “entropy”, one of the foundations of information theory (Shannon 1948). These



measurements can all be used to inform and compare the UDR measurements of different
systems, since systems are generally designed around a limited range of data collection types.

In high UDR operations, questions at the upper-levels of Ackoff’s hierarchy can be almost
completely informed by relatively specific data collects. Examples of these types of high UDR
systems include automated collection and analysis systems such as those dealing with radar
detection, internet traffic, and phone records. The collection systems in each of these areas
expect limited signal types, whether only radio frequencies, IP addresses, or phone numbers and
metadata. In addition, the analysis (i.e., processing and exploitation) is fairly straightforward,
since the data collected is directly related to the analysis desired: radar signatures, internet traffic,
and phone records can all be effectively described by only a handful of quantifiable parameters
(i.e., relatively low richness of data being collected, and in some cases relatively low entropy as
well). Equally important, each of these is collected in a narrowly-defined operating context,
along with very specific goals of identification (narrowly defined understanding), which serve as
a kind of pre-formed high-level model into which the low-level data can be extrapolated. In
summary, automated systems such as these generally operate in relatively barren datascapes —
ignoring or unable to collect different types of data — and with very well-defined (and pre-
defined) targets in the environment of signals collected. These are some of the basic
characteristics of high UDR operations, shown in Table 1 below.

Traits of High UDR Operations Traits of Low UDR Operations

-Limited set of questions and targets -Unbounded set of questions and targets
-Clearly defined questions and targets -Questions and targets ill-defined in advance
-Many assumptions about implications of data | -Assumptions are questioned

-Designed to conclude -Exploratory and explanatory

-Limited, specific data collects -Big data (i.e., streaming HD video)
-Limited, specific operating contexts -Variety of operating contexts

Table 1. High UDR and Low UDR operations contrasted.

Modern weapon systems also incorporate high UDR operations. In the Center for a New
American Security’s report “Introduction to Autonomy in Weapon Systems”, Scharre and
Horowitz review various weapons systems with respect to which functions require humans to be
“in the loop”, “on the loop”, and “out of the loop” (www.cnas.org). While the majority of
weapon technology deployed today requires humans to be “in the loop”, some systems do
operate in highly automated modes with humans simply “on the loop”. But according to Scharre
and Horowitz: “To date, these [latter modes] have been used for defensive situations where the
reaction time required for engagement is so short that it would be physically impossible for
humans to remain ‘in the loop’ and take positive action before each engagement and still defend
effectively...In all of these cases, automation is used to defend human-occupied bases or
vehicles from being overwhelmed by a rapid barrage of missiles or rockets” (www.cnas.org).




Thus, the only demonstrated military cases of humans “on the loop” today are very short-
duration, narrowly-defined situations with well-defined and predictable targets, in which there
are no other options (since a delay on the order of human reaction time may be an existential
matter)'. Based on a few radar pings, these systems can effectively launch missile interceptors
because the narrowly defined context of operation allows the lowest-level data of radar detection
to greatly inform certain higher-level models of the hierarchy — even up to essential
understanding of an existential threat. These radar-based systems with predictable targets in very
limited operating contexts are prime examples of collection and analysis systems in a high UDR
operation.

As an example of an ISR system in a low UDR operation, consider a full-motion video sensor
mounted on a UAV meant to conduct surveillance in geographical regions around the world. The
UAV collects a large amount of image data (perhaps 30 frames per second at a given resolution
of pixel values), and may have other types of sensors on board as well. The amount and variety
of low-level data being collected (i.e., pixel values and other electronic signals) immediately
lowers the UDR of this operation compared to previous examples. With regard to the
understanding desired, very diverse information and knowledge — namely, identification of
almost any type of physical object or spatio-temporal event over time — are intended to be
gleaned from the system in order to provide a high degree of situational awareness (i.e., broad,
virtually unbounded understanding of the world at large). Due to this diversity desired from
collections as well as the diversity of operating contexts, target information is not well-formed,
and often cannot even be known in advance. Absent are the simple rules for extrapolating data to
answer higher-level questions, unlike the case of missile interceptors or phone collection records.
(In addition, all kinds of confounding technical factors can be present when attempting to infer
knowledge and understanding from this system, including weather conditions that affect sensor
signals and pixel patterns, sensor movement due to turbulence and platform movement, changing
lines of sight, perspective geometries, partially or mostly obscured objects, and many other
factors.) This inability to define (or even bound) the knowledge and understanding desired leads
to an even lower UDR as compared to previous examples.

In this type of low UDR collections operation, humans are essential components of the system
due to their ability to operate effectively in such environments and due to the inability of
automated systems to cope with factors that ultimately remain unquantifiable and therefore un-
computable. Sterman’s description of mental models again explains why humans excel in this
type of low UDR collection operation (Sterman 1991), while Franchi and Guzeldere, writing
about state-of-the-art artificial intelligence (AI) methods, are helpful in explaining the
inadequacies of automation to effectively operate this type of system: “[Artificial intelligence]
is...heuristic search in a search space game-theoretically defined...explained in terms of

' With respect to these systems, Allenby and Sarewitz (2011) ask the very appropriate question, “Does the word
‘robot’ signify a type of artifact, a type of capability, or a certain level of computational competence?”” One could
ask the same question about the more general word ‘automation’.



satisficing a set of rigid constraints by searching heuristically the space that those constraints
define” (Franchi/Guzeldere, p. 55). If a problem cannot be completely defined in game-theoretic
terms”, if the constraints on a problem are vague, unknown, or unquantifiably uncertain, then the
heuristic search becomes something altogether different than the state-of-the-art artificial
intelligence methods. Humans, on the other hand, easily conduct their own natural, quite
effective forms of “heuristic search” to process big data in the form of “full motion, high-
definition video” (i.e., human vision) because their situational awareness allows them to
continually classify lower-level features observed as well as project the currently perceived
situation into the future, through synthesizing their basic knowledge about the world, human
behavior, and many other unquantifiable factors. In low UDR operations such as vision-based
surveillance, this ability means that humans’ higher-level mental models can help them
selectively ignore most of the data and focus on only that most relevant (i.e., critical cues) to
making sense of a visual scene and understanding the scene’s implications (Endsley 1997).

While humans have spent most of their existence dealing with causal relationships and factors
that remain unquantified (many of which are arguably unquantifiable), computers and automated
systems are simply unable to deal with these most basic features of the world at large. Recent
advances in artificial intelligence (AI) have largely been about automating machine actions in
high UDR environments (e.g., speech recognition on mobile devices, handwriting recognition in
banking systems, robotic systems on factory floors), with a view toward eventually automating
machine actions in low UDR environments (e.g., autonomous vehicles, household robotic
systems). But efforts to automate machine actions in low UDR environments cannot be
approached as a strictly technical problem that is detached from human analysis. Franchi and
Guzeldere write: “’Creating intelligence’ as an engineering project makes it difficult to
appreciate the complicated nature of human mental life, behavior, culture, and social practices —
a territory generally studied and much better understood by the humanities and social sciences”
(Franchi and Guzeldere, p. 18). These “complicated” aspects of life are precisely the information
and factors necessary to effective ISR operation and effective intelligence analysis, since ISR
systems have always been purposed with uncovering Auman actions and intents, in varying
cultures with varying social practices. Even in systems “simply” tasked with operating safely in
human-intensive environments, these “complicated” human matters prove to be a major
challenge (www.nytimes.com). In systems that are tasked with not simply operating, but
observing human actions and making sense of them in open-ended environments, the current
state of Al — and its state for the foreseeable future — cannot begin to address these problems
effectively’.

? Indeed, often in engineered systems it is the case that the perception of the problem motivating a system’s creation
and operation are not always well known in advance, nor do they remain constant throughout the life of the system
(Rhodes & Ross 2010, Ricci et al 2014). This is almost certainly the case with any ISR system today.

* Many computer scientists would obviously disagree, making grandiose claims of imminent leaps in artificial
intelligence within the next 10-20 years. Such claims today are, of course, substantially no different than those of
Simon, Newell, and others over the past 40-50 years with respect to digital computers, “thinking machines”, and
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Human involvement in low UDR collection environments has additional benefits beyond
increasing the local system’s performance. In addition to providing broad and synthesized
situational awareness in novel and ill-defined environments, humans add tremendous value by
collaborating with the wider community of other ISR systems in concurrent operation. It is often
the case that one sensor system perceives only part of a developing real-time situation, while
other systems can help fill in the gaps of understanding to form a more complete picture. On this
topic, Ganter comments, “Situational landscapes emit contradictory evidence in different ways at
different times, so the work requires interactive maneuvers of different sensors and thus
interactive negotiations of different tribes” (Ganter 2007). Such interactive maneuvers, and
especially interactive negotiations, require human operators due to the inherent vagueness and
unquantifiable uncertainties encountered in dynamically evolving situations, as well as due to the
communicative and political skills required. Though somewhat messy in practice, these
cooperative activities can enable ISR systems to both harness and provide more diverse
information from which to make sense of an unfolding situation than a single system operating in
isolation.

The Tradeoff: A Spectrum of Three Tightly-Correlated Dimensions

The observations above regarding the benefits of human involvement in operationally adaptive
and situationally aware ISR systems lead to the conclusion that these three dimensions of ISR
systems are inextricably linked. The ability of a system to incorporate and provide situational
understanding is tightly linked to its operational adaptability, as well as to its incorporation of
human operators as processing and cooperating agents. These three relationships are depicted in
the expanded spectrum shown below in Figure 3.

Fixed Tasking, Operationally
Targets & Location Adaptive
Fully > Human
Automated In-the-Loop
Limited Contexts Situationally
& Inputs Aware

Figure 3. The proposed spectrum of ISR system operations.

Each of the three dimensions on the spectrum can be considered separately for new system
acquisitions, but each of the dimensions is tightly correlated with the others. A reduction of
human-in-the-loop roles simultaneously reduces the potential adaptiveness and situational
awareness of an ISR system. This framework can be used to help make explicit the capability
tradeoffs involved with any newly proposed system, whether it is envisioned to be a fully
autonomous system, a human-operated system, or something in between. It can also be used to

“General Purpose Solvers” (Simon and Newell, 1958; Simon 1978). For a more complete treatment on the history of
failed predictions about Al see chapter 1 of (Franchi and Guzeldere 2005).



better consider the appropriateness of automation in the various operating environments
envisioned for a system.

At first glance, “traversing left” (i.e., increasing autonomy) on the spectrum might seem to be
reasonably accomplished by slowly incrementing autonomous behavior step-by-step into new
systems, while simultaneously decrementing human involvement required. To successfully do
this, however, the operating contexts and goals must also be incrementally bounded, by
deconstructing broad surveillance goals and/or operating environments into specific, narrowly-
scoped contexts and corresponding questions that can be answered by extrapolating from low-
level data collects. While this latter activity likely sounds straightforward, it most assuredly is
not. In fact, it displays many traits of so-called “wicked” problems, including “no definitive
formulation”, “solutions are not true-or-false, but good-or-bad”, “there is no immediate or
ultimate test of a solution”, and “innumerable set of potential solutions”, among others (Rittel
and Webber 1973). As previously noted, human understanding is difficult to write about, much
less formalize in an agreed-upon way (which is one reason that measuring the performance of
broad ISR systems is a nontrivial task). If increasing autonomy is desired, however, the goals of
operation must be well-understood and tightly bounded, keeping in mind that this may mean
separate systems for separate purposes.

Another challenge in “traversing left”, one that is perhaps counterintuitive, is that partial
automation can lead to several new types of dangers (Inagaki 2011, citing Woods 1989, Wickens
1994, Endsley and Kiris 1995, Sarter and Woods 1995, Parasuraman and Riley 1997, and Sarter
et al 1997). For systems intended to reduce human-in-the-loop activities during operation, more
design effort will need to be spent on human factors considerations, specifically with regard to
enabling human operators to stay aware of newly automated portions of the system. As Rechtin
and Maier (1991) state, “The greatest leverage in system architecting is at the interfaces. The
greatest dangers are also at the interfaces.” The obviousness of this statement with respect to the
interface between autonomous and human actions in a complex system is striking. On human
and automated processing and their interface, Ware (2008) comments, “It is useful to think of the
human and computer together as a single cognitive entity, with the computer functioning as a
kind of cognitive co-processor to the brain...Each part of the system is doing what it does best.
The computer can pre-process vast amounts of information. The human can do rapid pattern
analysis and flexible decision making.” Scoping these activities early on in the conceptual
design and requirements definition phases of a new system can provide unambiguous guidelines
for later interface design and lower-level implementation activities, ensuring that the systems’
eventual operations will be leveraging the strengths of these fundamentally different types of
processing.

Conclusion

As demand increases for new ISR solutions that require less manpower, the tradeoffs inherent in
such a design decision must be made explicit in order for stakeholders to understand how



capability will be affected. The need for manpower can be reduced — and in some cases even
eliminated — as has been demonstrated in limited historical and present-day examples. However,
with this reduction comes a direct reduction in operational adaptability as well as a reduction in
the situational awareness provided by the system. The goal for ISR systems cannot always be “to
automate the human out of the loop” — especially those systems with real-time tasking, diverse
informational sensors, and low UDR operations. And with systems that cannot be fully
automated, Scharre and Horowitz state, “The key place to focus attention is which tasks are
being automated and which does the human retain” (www.cnas.org). Only by focusing on this
most critical scoping issue — and on the accompanying interface between automated and human
components that keeps situational awareness for human operators — can new ISR systems truly
deliver value to stakeholders through effective operations and comprehensive situational
awareness.
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