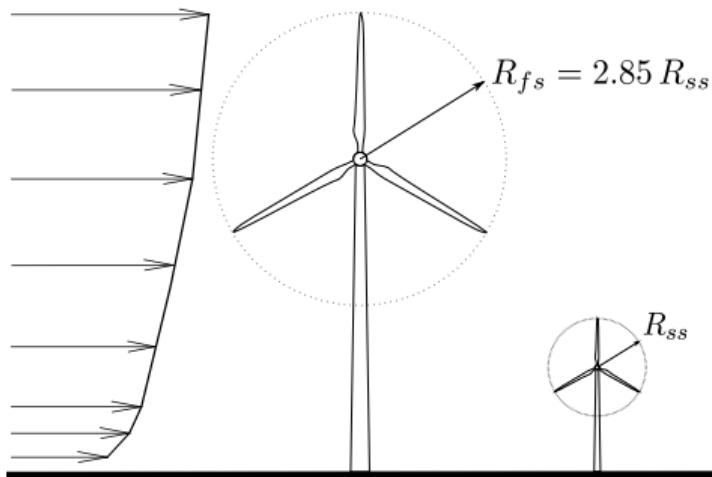


SAND2015-8986PE

Aerodynamic Design Drivers of NRT Blade

Christopher L. Kelley

Sandia National Laboratories


October 14, 2015

Aerodynamic Objective

Create a scaled wake of a GE37c wind turbine with new blades installed at SWiFT

What shape does the blade need to produce scaled wake?

Objective

Scaled Wakes

Similarity

Wake Generation

Summary

A Typical Wake

[Objective](#)

[Scaled Wakes](#)

[Similarity](#)

[Wake Generation](#)

[Summary](#)

What Is a Scaled Wake?

Objective

Scaled Wakes

Similarity

Wake Generation

Summary

- A scaled wake should have equal instantaneous velocity vectors, u_i/U_∞ , at the same spatial positions, x/R , y/R , z/R at any time, $t U_\infty/R$.
- If the scaled velocities are equal in time and space, wake characteristics also are equal. Tip vortex pairing and entrainment of momentum occur at same scaled positions downstream x/R . Meandering of wakes occur at same Strouhal number. And dissipation of large coherent structures to turbulence happen at the same rate.

Generating a Scaled Wake with Similarity?

Objective

Scaled Wakes

Similarity

Wake Generation

Summary

- Kinematic, dynamic, and geometric similarity ensure experiment on sub-scale model is identical to testing full-scale wind turbine.

Kinematic Similarity

Objective

Scaled Wakes

Similarity

Wake Generation

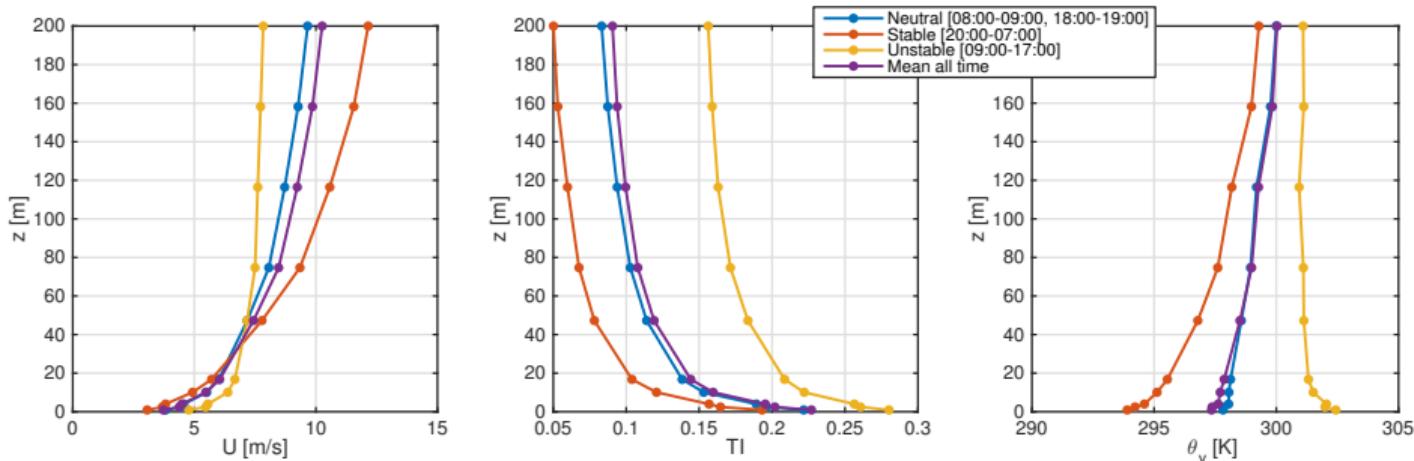
Summary

- Scaled wake should have kinematic similarity so that wake helix angles are identical and a blade station at a normalized radius fraction r/R sees the same relative inflow velocity, W/U_∞ . So $\lambda_{fs} = \lambda_{ss} \therefore \Omega_{ss} = 2.3\Omega_{fs}$.
- The time averaged shear and turbulence intensity across the swept rotor area should be equal

Requirement 1

$$\lambda_{ss} = \lambda_{fs} = 9 \text{ in Region II}$$

Mean Atmospheric Boundary Layer at SWiFT


Objective

Scaled Wakes

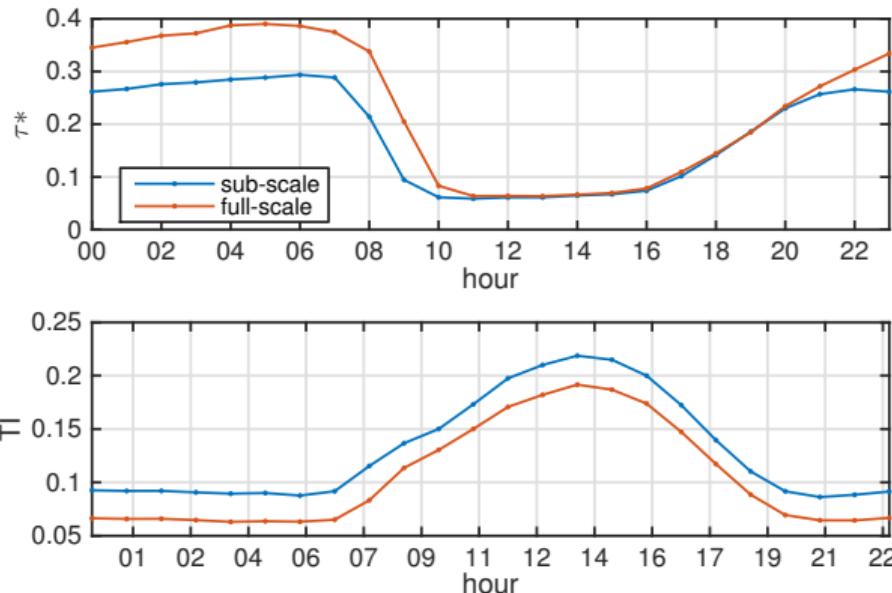
Similarity

Wake Generation

Summary

D [m]	P [MW]	z_{hub} [m]	$U_{\infty hub}$ [m/s]	τ^*	TI
27	0.250	32.1	6.81	0.185	0.130
77	1.5	80	8.59	0.233	0.105

Objective


Scaled Wakes

Similarity

Wake Generation

Summary

Average Day at SWiFT

Shear matches 11:00–20:00 local time
TI 2.5% consistently high all day

Dynamic Similarity

Objective

Scaled Wakes

Similarity

Wake Generation

Summary

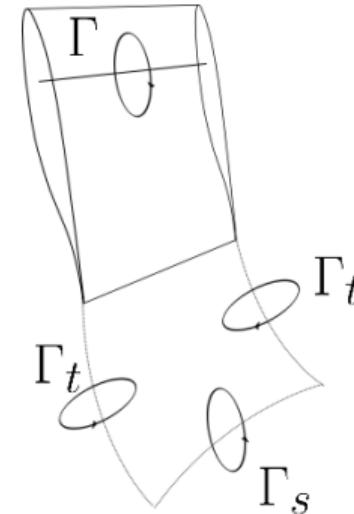
- Ratio of forces equal, e.g. $\frac{L_{ss}}{L_{fs}} = \frac{D_{ss}}{D_{fs}}$
- Viscous and inertial forces cause energy cascade and dissipation at equal rates
- Dynamic similarity is not possible:

$$\left(\frac{U_\infty \frac{r}{R} \lambda c}{\nu} \right)_{fs} \stackrel{?}{=} \left(\frac{U_\infty \frac{r}{R} \lambda c}{\nu} \right)_{ss} \therefore 3.6 \neq 1. \quad (1)$$

$$(L/D)_{ss} \neq (L/D)_{fs} \quad (2)$$

Objective

Scaled Wakes


Similarity

Wake Generation

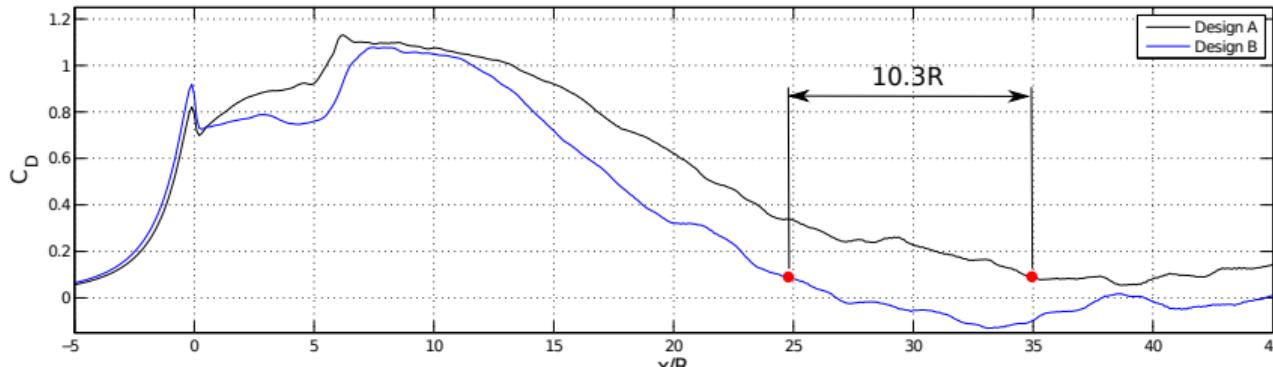
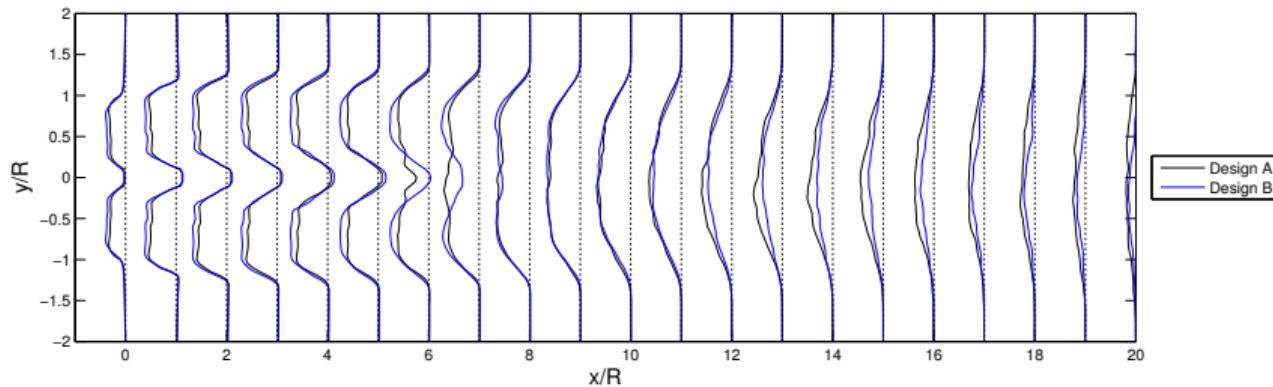
Summary

From lifting line theory and
Kelvin's circulation theorem.

How is Wake Created?

Shed circulation is determined by local
spatial and temporal derivatives of bound
circulation.

How Circulation Affects Wake



Objective

Scaled Wakes

Similarity

Wake Generation

Summary

Partial Dynamic Similarity

Objective

Scaled Wakes

Similarity

Wake Generation

Summary

Therefore give up geometric similarity, but loosely keep dynamic similarity to ensure wake is generated by identical circulation

$$\Gamma' \left(\frac{r}{R} \right) = \frac{\Gamma \left(\frac{r}{R} \right)}{R U_{\infty}} = \frac{C_l}{2} \frac{W}{U_{\infty}} \frac{c}{R} \quad (3)$$

Requirement 2

$$\Gamma'_{ss} = \Gamma'_{fs} \text{ in Region 2}$$

Unsteady Dynamic Similarity

Objective

Scaled Wakes

Similarity

Wake Generation

Summary

Blade elasticity, turbulent inflow, shear, and yaw creating time-varying changes in circulation

$$\frac{d\Gamma'_{ss}}{dt^*} = \frac{d\Gamma'_{fs}}{dt^*} \quad (4)$$

Requirement 4

$$C_{l_\alpha} \frac{c}{R} \frac{W}{U_\infty} \frac{d\alpha}{dt^*} + C_l \frac{c}{R} \frac{d(\frac{W}{U_\infty})}{dt^*} = K \quad (5)$$

in Region 2

Unsteady Dynamic Similarity

Objective

Scaled Wakes

Similarity

Wake Generation

Summary

Example: only blade elasticity $h = h_0 e^{-i\omega_h t}$
for small angles of attack $\alpha = \frac{\dot{h}}{\lambda r/R}$

Requirement 4

$$C_{l_\alpha} \frac{c}{R} \frac{h_0}{R} \left(\frac{\omega_h}{\Omega} \right)^2 \lambda^2 = K. \quad (6)$$

Aerodynamic Scaling Strategy

Objective

Scaled Wakes

Similarity

Wake Generation

Summary

- Relax geometric and Re scaling constraints
- Match circulation to create the same wake
- No Similarity - Re , $\frac{c}{R}$, β , C_l , airfoil shape, $\frac{d\Gamma'}{dt^*}$
- Kinematic similarity - λ in Region 2, Shear conditions match from 11:00–20:00
- Dynamic Similarity - Γ'
- TI 2.5% consistently high all day
- Need inverse design tool to find sub-scale geometry
- Choose appropriate airfoils at lower Re