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ABSTRACT

The best practices for advancing extreme-scale runtimes and
the applications they support will likely involve co-design.
Applications must change to expose as much concurrency
as possible to achieve performance on future architectures,
but runtimes must also adapt to address application require-
ments. We propose a simple classification scheme for de-
mystifying asynchronous many-task (AMT) runtimes and
apply the framework to set of runtimes and example ap-
plications. We examine possible paths forward for runtime
development, and suggest how the basic concepts here can
establish best practices for runtime/application co-design.

Categories and Subject Descriptors

D.3.2 [Programming Languages|: Language Classifica-
tions; D.1.0 [Numerical Analysis|: General
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1. INTRODUCTION

Scaling high performance computing (HPC) performance
on the path to exascale is pushing systems towards billion-
way concurrency. The architectural changes to achieve this
scaling will impact HPC software stacks, and consequently
change both programming models and runtime systems. Ap-
plications written for petascale architectures are unlikely to
automatically scale and fully exploit available parallelism
on future systems. This has lead to a proliferation of task-
parallel runtimes for distributed memory (Legion [2], HPX [17],
X10 [11], Chapel [9], PARSEC [5], OCR [22]) and shared
memory (OmpSs [6]) as well as renewed interest in long-
standing systems (Uintah [15], Charm++ [21], Cilk [4]).
These systems, often referred to as asynchronous many-task
(AMT) runtimes, aim to maximize performance on future
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architectures by facilitating the expression of as much con-
currency as possible, including data, task, and pipeline par-
allelism. Furthermore, asynchronous many-task (AMT) sys-
tems strive to manage as much of the concurrency as possible
at the runtime system level, sheltering application develop-
ers from the complexities of the future architectures.

From an application developer’s perspective, choosing an
AMT runtime to invest in can be daunting. There are many
options and the AMT community is far from a set of stan-
dards. Ultimately, AMT runtimes exist to support the ap-
plications. However, AMT concepts can inform application
development, pushing application developers to refactor to
new and beneficial programming or execution models. We
see this balance between adapting AMT runtimes to ap-
plication requirements and applications adapting to AMT
concepts as the central design problem.

Long term, we believe co-design is necessary to develop
AMT standards that are widely adopted. Such a co-design
approach sees application, programming models, and run-
time system teams collaborate to design solutions that meet
the combined application and system requirements. Indeed,
there is evidence that such an approach works well, as demon-
strated by those runtimes that have been designed closesly
with application developers from a particular scientific do-
main, e.g. [21, 15]. It should be noted that a runtime design
decision that is useful for one application area may be a
detriment for other application areas. The community lacks
a comprehensive understanding regarding the interplay of
runtime design decisions and performance tradeoffs across
scientific application areas and system architectures. How-
ever, before we can achieve such an understanding, we ar-
gue that the AMT community must address a fundamental
need, whose resolution precludes our ability to even agree
upon what the design decisions are: common vocabularies.

In this position paper, we propose an initial classifica-
tion scheme, using existing terminology where possible, to
discuss how various AMT programming models and run-
times manage and express concurrency. The management of
concurrency is a key aspect of a system’s execution model,
whereas the expression of concurrency is a key aspect of a
system’s programming model. Through specific examples, we
classify several existing runtimes, and explore the implica-
tions of concurrency expression and management for various
application areas. We believe that establishing a common
vocabulary within the AMT runtime community is a criti-
cal precursor in establishing best practices, as it will facili-
tate co-design interactions with application areas, providing
a mechanism for current AMT research efforts to compare



and contrast their results in a more principled manner.

2. MANAGING CONCURRENCY AND
HAZARDS

Basic concepts from instruction-level parallelism (ILP) nat-
urally lend themselves to discussing the management of con-
currency when coding massively parallel distributed mem-
ory systems. The distributed memory analog to ILP has
been previously discussed in Legion works [2]. In ILP, out-
of-order execution processors create concurrency in a serial
code through dependency analysis, determining read-after-
write (RAW) and write-after-read (WAR) conflicts (also known
as parallel hazards). Per textbook language, RAW conflicts
are true dependencies - a value cannot be read until it is
written. WAR conflicts are anti-dependencies. There is no
intrinsic constraint between the write and read other than
a race condition. The read must complete first or it will
receive the wrong value. Unlike RAW, WAR hazards can be
removed. This occurs in ILP through register renaming. If
a thread writes, it uses a new physical location. If a parallel
thread reads, there is no longer a race condition and both
threads can execute concurrently.

While these terms are already standard, we suggest their
use is lacking in HPC distributed memory parallelism. In the
HPC setting, concurrency can be largely understood based
on how the underlying runtime manages an application’s
WAR and RAW conflicts. We use the term concurrency
creation to describe how multiple threads of execution are
created. Hazards exist once parallel streams of execution are
consuming and producing data. We use the term concur-
rency management to describe the resolution of WAR and
RAW conflicts. Although the concepts of concurrency cre-
ation and management are simple and intuitive, we argue
their use provides a powerful framework for enabling run-
time/application co-design, in particular facilitating a prin-
cipled comparison of the effects of different AMT runtime
design decisions for a particular application area. We pro-
pose the following broad categories as a useful starting point
for describing concurrency creation and management:

Conservative execution: The runtime only spawns tasks
in parallel that are guaranteed not to conflict. The
application exposes RAW /WAR conflicts, allowing the
runtime to decide which tasks can safely run in par-
allel. Independent threads do not need to explicitly
synchronize. Execution begins with zero concurrency
and grows conservatively to the maximum allowed con-
currency.

Phased execution: The runtime spawns many tasks in
parallel. Where RAW or WAR conflicts may exist, a
phase barrier is executed to guarantee safe execution.
The term phase barrier has previously been used in Le-
gion [1] and X10 [24]. Barriers may be local operations
or global collectives. Execution begins with maximum
parallelism and concurrency decreases when necessary
to satisfy synchronization constraints.

Copy-on-write, data-flow execution: This is an inter-
mediate between conservative and phased execution,
with the additional constraint that the application guar-
antees no WAR conflicts. Tasks are written to follow a
write-once, read-many policy when necessary to avoid
anti-dependencies. The only synchronizations required

are RAW or data-flow constraints, ensuring that a

value exists before a task can run. Similar to conser-

vative execution, tasks spawn once all their data-flow

constraints are met, forking new concurrency. Once

running, tasks do not synchronize because there are

no WAR conflicts to avoid. This approach often has

higher memory requirements, and the necessary garbage
collection adds complications.

Speculative execution: This represents the most distinct
case and least broadly applicable. Potential parallel
hazards are ignored, assuming that conflicts will usu-
ally not occur. Conflicts are detected after the fact,
leading to rollback or recovery.

2.1 Categorizing Runtime Systems

Here we attempt to classify some existing systems for il-
lustration, but omit many examples given space constraints.
The classifications are broad, and each system has numerous
subtleties not fully addressed here.

MPI: Message passing (MPI) generally follows phased exe-
cution with copy-on-read to remove anti-dependencies.
Although threading (MPI+X) introduces new compli-
cations, the core MPI execution model is communi-
cating sequential processes (CSPs) with each parallel
worker having a private, disjoint address space. Sent
messages can either pass data between processes (satis-
fying RAW dependencies) or they can act as phase bar-
riers to synchronize execution. The MPI runtime pro-
vides no guarantee against WAR hazards, leaving the
application to manage concurrency (particularly with
non-blocking sends). A send, however, is a process-to-
process copy (copy-on-read). MPI does not distinguish
WAR and RAW conflicts, and a single send/recv often
simultaneously resolves both a RAW and WAR depen-
dence.

Legion: Legion’s predominant execution model leverages
conservative execution (although there are relaxed co-
herence and phase barriers for supporting many modes).
Logical regions are declared as inputs to tasks with
read or write permissions. Where reads and writes
would conflict on a logical region, Legion performs de-
pendency analysis to decide if two tasks can safely run
in parallel. Tasks can be nested in arbitrary tree struc-
tures, but child tasks can only access a subset of the
parent tasks’s logical regions and permissions. With
some subtleties, the Legion model is therefore fully
strict execution [16]. Some support for speculative ex-
ecution has been included, but is experimental [1].

Charm++: Charm++ is an actor execution model uti-
lizing actors called chares [21]. Chares invoke entry
methods (remotely or locally) on other chares. While
the mechanics of concurrency creation are distinct from
MPI (entry method calls can fork new parallelism),
concurrency management is still phased execution. Al-
though Charm++ provides the Structured Dagger [20]
tool to express phases and precedence constraints, con-
currency is still managed at the application level.

Concurrent Collections:  Concurrent collections (CnC)
[10] derives from the Linda tuple space coordination
language [8], which expresses parallelism via puts and
gets from a key-value store. Data blocks must receive
unique string labels, ensuring idempotent, data-flow



execution. While this adds the minor programming
burden of expressing unique keys for every data block,
concurrency is not managed at the application level.
The runtime ensures RAW (data-flow) dependences
are satisfied for each task and WAR dependences are
completely avoided through the write-once policy.

3. EXPRESSING CONCURRENCY

The creation and management of concurrency within the
runtime impacts the expression of concurrency via a sys-
tem’s programming model. Phased execution is highly flex-
ible, but forces the application to manage concurrency, cre-
ating a significant programming burden in the application.
The application, not the runtime, must express phase bar-
riers and ensure they correctly avoid RAW and WAR con-
flicts. If coarse-grained phase barriers are used, they might
also over-express synchronization.

Copy-on-write tasks simplify concurrency management,
but may induce performance overheads. Given an appropri-
ate programming model (e.g. CnC), execution is straight-
forward to express. Each data block, when written, must
be given a unique identifier. Many science and engineer-
ing applications are structured around iterations, creating a
natural naming scheme, however this is typically at the cost
of creating extra storage or data movement.

Conservative execution can push concurrency management
into the runtime system, and avoids the performance over-
heads associated with copy-on-write execution. Rather than
managing concurrency in the application, the runtime man-
ages parallel tasks. If the runtime system supports a data
model like OmpSs or Legion, the application only needs to
express a data-centric description of the algorithm and the
runtime can even derive RAW and WAR conflicts. Conser-
vative execution, though, creates different difficulties at the
application level. All inputs and outputs to a task must be
declared before the task begins executing. Once executing,
a task cannot write or read any data it has not a priori
requested permissions for. Thus data-dependent, dynamic
applications (e.g. Section 4.2) may be more naturally ex-
pressed via another concurrency management scheme since
tasks may not know all required inputs until after beginning
execution.

4. APPLICATIONS

We consider four science and engineering domains to il-
lustrate each of the execution categories.
e Direct numerical simulation (DNS) of complex com-
bustion phenomena (S3D)
e Particle-in-cell with charged particle migrations
e Fail-stop fault recovery
e Discrete event simulation

41 S3D

S3D [12] is an excellent candidate for MPI+X parallelism,
in which distributed and thread-level concurrency are man-
aged separately. A regular 3-dimensional mesh is parti-
tioned across parallel ranks, and each mesh point contains
many fields for the physical quantities associated with dif-
ferent chemical species. At each timestep, ranks compute
finite difference stencils, which requires ghost data to be
exchanged between ranks. The top-level SPMD partition-
ing of the problem does not map well to conservative exe-

cution. Data is not disjoint across parallel ranks, and the
overlapping ghost regions therefore cause conflicts between
all neighbors. In this use case, managing the SPMD paral-
lelism in the application (as opposed to runtime) is relatively
straightforward. The most natural concurrency mode in this
setting is phased execution with, in S3D’s various implemen-
tations, MPI_Send/Recv calls or region-to-region copies in
Legion acting as phase barriers.

Although the top-level SPMD parallelism is most nat-
urally handled within the application, once ghost data is
exchanged, abundant on-node parallelism can be exploited
without further MPI or distributed memory communication.
S3D is a regular application and all task inputs are known a
priori, The Legion S3D implementation exposes and man-
ages additional concurrency [3] by allowing different fields
on the same mesh point to be “sliced” and passed indepen-
dently to tasks. The complex S3D task graph in Figure 1
(for even a simple mechanism) highlights the benefits as the
complexity of the task-graph would make application-level
management very burdensome. Where necessary, the ap-
plication explicitly manages parallelism, but then passes off
concurrency management to the Legion runtime to handle
the task graph in Figure 1.

4.2 Particle-in-Cell

In particle-in-cell (PIC) codes [13], charged particles mi-
grate, interacting with electric and magnetic fields and even
potentially colliding to create more particles. Particle mi-
gration is split into macro- and micro- time steps. Fields are
updated every macro time step while particle migration is
usually tracked at finer scales (micro steps) to record charge
deposition for updating electric fields. Unlike S3D, a PIC
micro-iteration cannot know a priori how many particles
will migrate outward (sent to other mesh regions) or inward
(received from other mesh regions). A macro-iteration can
also have an arbitrary number of micro-steps, only finishing
once all mesh regions are done moving particles.

A natural and efficient expression of a PIC implemen-
tation sees parallel workers asynchronously push particles
around the system, responding to new incoming particles
as they are available. Only a single, global phase barrier
is required to ensure quiescence or termination detection of
migrating particles. It is less clear how to efficiently express
and efficiently implement a PIC code with runtimes requir-
ing a priori task input declaration. A task could express the
maximum number of particles to migrate along with a max-
imum number of send/recv partners. However, this creates
inefficiencies in the algorithm as over-expressing task inputs
creates false and unnecessary dependencies.

4.3 Fault Tolerance

Fault tolerance is an extreme case of task dependency that
cannot be known a priori. Checkpoints are essentially phase
barriers. During rollback recovery, a process reads data
from previous steps. Fault recovery is therefore technically
a WAR dependence. A parallel worker cannot overwrite its
old data because at some point in the future a failure might
occur, requiring the failed process to restart and re-read the
data. Data is therefore written to persistent storage (copy-
on-write), removing the anti-dependence.

While checkpointing copies state at regular phase barriers,
a more extreme resilience model would require all tasks to be
write-once. Tasks never overwrite data from previous iter-



Figure 1: Task graph generated by Legion for simple com-
bustion mechanism showing the abundant task-level paral-
lelism in S3D, image courtesy of Dr. Jacqueline Chen and
the Legion team.

ations, instead migrating them to cheap, persistent storage.
The scheme completely avoids WAR conflicts, maximizing
concurrency during recovery at the cost of extra storage.

4.4 Discrete Event Simulation

Parallel discrete event simulation (PDES) [14] represents
a dramatic shift from previous examples. Discrete actors
generate and receive events, advancing time after each event.
Discrete event simulations feature prominently in network
simulations [23], simulating packets as events on network
routers. Discrete events carries the implicit dependency of
global virtual time to all tasks. Each actor maintains its own
local clock, but events must globally preserve time ordering.
If discrete actors run in parallel, one actor’s local time may
lag behind. If actors exchange events with different local
times, events may schedule in the past, violating time order.

PDES is similar to PIC in that parallel actors cannot
know a priori what events they will receive. Conservative
PDES methods use safe lookahead values to create paral-
lelism, ensuring that no time violations occur. These meth-
ods require constant phase barriers (either point-to-point
messages or global reduces) to ensure parallel actors are syn-
chronized. These phase barriers, however, can potentially
represent false dependencies and limit concurrency. Opti-
mistic PDES protocols use speculative execution, assuming
that time violations will not occur. When time violations
do occur, a rollback method is invoked to correct the state.
This optimistic protocol features prominently in the ROSS
simulator [7], which uses the reverse computation ideas from
the Time Warp algorithm [19] to correct mis-speculation.

5. CALL FOR DEVELOPING BEST
PRACTICES BY REQUIREMENTS-
DRIVEN CO-DESIGN

In this position paper we illustrate how the use of sim-
ple and intuitive concepts such as concurrency creation and
management can facilitate a principled comparison of the
effects of different AMT runtime design decisions for dif-
ferent application areas. We believe that the development
of such common vocabularies is a necessary precursor to
the development of best practices and eventual standards.
In the short discussion presented here, we see how the use

of such terms facilitates the exploration of the design deci-
sion trade-off space. While conservative execution enables
appealing data-centric programming models and automatic
concurrency management, it may complicate the expression
of sparse or dynamic data exchange workflows [18]. In the
same way, phased execution can express highly dynamic ap-
plications, but it puts the burden of concurrency manage-
ment at the application level.

We suggest the critical design issue facing runtime devel-
opment is choosing between 1) a single execution style for
the runtime and forcing applications to adapt, 2) forcing
a runtime to accommodate several execution styles suited
to many applications, or 3) developing several runtimes op-
timized for different application workloads. Deciding which
option above is the most sustainable can only be achieved by
a concerted co-design effort between application, program-
ming model, and runtime developers centered on common
concepts and vocabulary for discussing requirements.
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