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Overview

 Turbulent flows are chaotic, three-dimensional, and occur at a continuum of scales
 Direct Numerical Simulation (DNS) of these flows is very computational expensive
 Reynolds Averaged Navier Stokes (RANS) uses empirical models for the turbulence

 Significantly more computationally efficient than DNS
 Often has high uncertainty because of “missing physics” in the empirical models  
 If experimental or higher fidelity simulation results are not available for validation, 

there is no reliable method for evaluating RANS accuracy.  
 In the present project, machine learning methods are used to identify regions of high 

RANS model form uncertainty.  

Turbulence Simulations

 Turbulent flows are ubiquitous in nature and in applications of interest at Sandia
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 RANS is more 
computationally efficient 
than DNS or LES

 RANS is prone to model 
form uncertainty where its 
underlying assumptions are 
violated

 There is no reliable method 
for determining when RANS 
models will fail

Machine Learning
 Set of data-driven algorithms for regression, classification, clustering

 E.g.: linear regression, support vector machines, neural networks

Have been broadly applied in finance, software engineering, retail

 For this application: use binary classifiers to flag regions of high RANS uncertainty on 
a point-by-point basis
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 Building block flows
 Both RANS and high fidelity (DNS or well-resolved 

LES) data 
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Results

Blue:  Classifier predicts 
isotropy assumption violated
Green: Classifier predicts 
linearity assumption violated 
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Classifiers are 3 X more accurate than best previously available
Machine learning algorithms can process high-dimensional data, resulting in more accurate classifiers

Rule Extraction
How do we get insight into our “black box” machine learning model?
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Classifiers for RANS model uncertainty can transform the way RANS results are post-
processed and understood

 Clarify when RANS simulations are predictive

 Enable adaptive modeling corrections

 Inform experimental design

 Improve switching functions for hybrid RANS-LES simulations

Developing strategies for using machine learning algorithms on physical systems
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Inputs and Outputs
 Inputs: Local flow variables from RANS

 Non-dimensional, rotationally invariant
 Outputs: Binary prediction of whether underlying 

model assumption is violated
 Examined Boussinesq hypothesis assumptions: 

linearity, isotropy, and non-negativity
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