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Using Machine Learning for Error Detection in

Turbulent Flow Simulations

Julia Ling, Harry S. Truman Fellow
Thermal/Fluids Science and Engineering (8253)
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> - e Angled jet in crossflow Flow around cube

> Turbulent flows are chaotic, three-dimensional, and occur at a continuum of scales Building block floyvs - -
> Direct Numerical Simulation (DNS) of these flows is very computational expensive » Both RANS and high fidelity (DNS or well-resolved —  _a— .‘
» Reynolds Averaged Navier Stokes (RANS) uses empirical models for the turbulence LES) data i "..f*‘ Jetin crossflow

= Significantly more computationally efficient than DNS -

= Often has high uncertainty because of “missing physics” in the empirical models I N p UtS dain d O Utp UtS Flow over wavy wall

= |f experimental or higher fidelity simulation results are not available for validation, ,

. . . » Inputs: Local flow variables from RANS
there is no reliable method for evaluating RANS accuracy. . : . : : ~_
. . . : : . : = Non-dimensional, rotationally invariant
» In the present project, machine learning methods are used to identify regions of high _ . , Flow around square
. » Outputs: Binary prediction of whether underlying
RANS mOdE| fOrm Uncerta|nty- . . . Converging-Diverging Channel
model assumption is violated _
. . = Examined Boussinesq hypothesis assumptions:
s—— M
TU rb U Ie nce Sl mu |at IONS linearity, isotropy, and non-negativity
Results
Contours of velocity magnitude
1120 Blue: Classifier predicts
' (1)8(5) isotropy assumption violated
0'75 Green: Classifier predicts

0.60 linearity assumption violated
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» Turbulent flows are ubiquitous in nature and in applications of interest at Sandia

DNS » RANS is more

e Months computationally efficient
than DNS or LES
» RANS is prone to model

» Classifiers are 3 X more accurate than best previously available

* Channel flow »Machine learning algorithms can process high-dimensional data, resulting in more accurate classifiers

LES form uncertainty where its :
 Weeks underlying assu:lnptions are RU Ie EXtra CtIO N
 Section of combustor violated » How do we get insight into our “black box” machine learning model?
RANS > ;Fhe;e is no réliabli method |
* Hours/Days rg;dsrse\:\,r:; r]l:.:fg when RANS Database Random Manufactured Representer Physical Simple
* Gas turbine engine of Flow ——> Forest => " " ™ Tree T2 insights | odel
Simulations Classifier Correction
Machine Learning
> Set of data-driven algorithms for regression, classification, clustering (5] <=0.0127
> E.g.: linear regression, support vector machines, neural networks . | l \
> Have been broadly applied in finance, software engineering, retail * X[4] <= 0.7545 ‘ T
» For this application: use binary classifiers to flag regions of high RANS uncertainty on | / \
a point-by-point basis X[5] <= 0.9825 X[5] <= 0.0004 x[11]<=-00004 | | x[0]<=-02896
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A » Classifiers for RANS model uncertainty can transform the way RANS results are post-
processed and understood
Training | = Clarify when RANS simulations are predictive 1
data Train | | = Enable adaptive modeling corrections
Database of Flows: Machine I_.e-arnlng = Inform experimental design
High lFlde“tV and RANS Validation Cross- Validate Classifier = Improve switching functions for hybrid RANS-LES simulations
Results
data » Developing strategies for using machine learning algorithms on physical systems
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