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Why In-Situ Heating? ) .

= The Tantalum surface and bulk material consists of contaminants such as H,
H,O, CO, CO,, N,, and O,

= Monolayers form even in vacuum - requiring in-situ heating to remove contaminants
with binding energies > 50 kJ/mol 34

= AK Gap closure rates may be dependent on low-Z back-streaming ions
= Thought to be dominated primarily by H and H,O 7

= Temperatures as low as 650 °C can be used to remove most of the H and H,O at
pressures of ~10-6 torr

= May improve pulse duration by drastically reducing the number of contaminants
which contribute to A-K gap closure causing impedance collapse.®

= Understanding and controlling the overall surface and bulk contamination

should: 3 —
= Reduce risk of premature impedance collay | / /
= Improve reproducibility z _:5 N \/ |
= Improve beam spot size z | / J - Delayed impedance
= Extend the radiographic pulse % /\' / :ﬁ!z‘;s:;;iﬂg?g from
= Increase the overall x-ray dose 4 i-‘é i / Graphic from [8]
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What Temperature to Clean Ta? @&

Atomic Percent Hydrogen

= |sotherms for Ta-H composition e m,.,:;ip,.,,t — * _
indicate that an increase in T while [ §  § 0§ & &%
in vacuum results in less H in/on g%l '
the bulk Ta. £ cof

* H readily desorbs for T>650°C ' & | /é//

= CO desorbs for T > 1600 °C 1

= 0, and N, desorbs for T >2000°C 1 ///

= Commercially available LR 08

Boronitride heating elements can
easily achieve 1200 °C

Ta-H Pressure Composition Isotherms

The H-Ta (Hydrogen-Tantalum) System,
A. San-Martin and F.D. Manchester
Journal of Phase Equilibria Vol. 12 No. 3 991

= Our final design can achieve
temperatures of ~850 - 1200 °C

= But what can be cleaned at these
Temps?
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TPD Results for Varying Thicknesses of 1” dia. Tal™ e

Partial Pressures for H,, H,0O, and CO vs. Time
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H, peak at T= 548 °C H, peak at T= 640 °C H, peak at T= 764 °C
H/Ta = 0.067 H/Ta = 0.147 H/Ta = 0.093
~.00119 mols of H ~.00696 mols of H ~.00683 mols of H

CO beginning to outgas at end of TPD ramp (~925 - 1100 °C)
=  First H, peak may be surface reactions!® corresponding to monolayers, or
desorption of 3-phase Ta-H
= Both of which have lower binding energies

= Nearly equivalent H,0 and CO curves indicates these are evolving from the surface

= CO starts to desorb fairly rapidly for T > 925 °C

= Desorption of CO may be responsible for the increase of H at t = 1000 s as the CO reacts
with the H,0 on the chamber walls releasing CO, and H,
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: sgtnigi:a
TPD Results for Aluminum L=

Thermal Desorption Curve of Pure Aluminum?™°

= Al Foils and Al coated Ta targets
used on RITS
= Foils are 99% pure Al

= Al Coated Targets should be of
higher purity but have not been
analyzed

= Based on [10], most
contaminants rapidly desorb by
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= Need to characterize our
materials

= Al Coated Ta and Al Foils should
be cleaner than bare Ta

[10] Y. Hirohata, et al, Hydrogen Desorption Behavior of Aluminum Materials Used for Extremely High Vacuum
Chamber, J. Vac. Sci. Technol. A, Vol. 11, No. 5, Sep/Oct 1993
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System Geometry

= Redesigned existing hardware to
achieve T up to 1200 °C @ BN
Heater

= 1200°C @ BN corresponds to ~850
°C on the surface of Ta converter
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Results: Streak Spectroscopy ).

H-alpha Line
Unheated = |n unheated shots,
Bare H-aloh
Tantalum strong H-alpha
lines are present
early on.
T = Both the heated
bare Ta and the Al
£ coated Ta show a
Heated huge reduction in
Aluminum
Coated H-alpha as well as
Tantalum other constituents.
T, = 600
OC ?

1l
-—

Images courtesy of S. Patel and M. Johnston
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Results: Back-streaming Protons

Measurements via Cu
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Results: Radiographic Performance @&:.

= 8.5mm Cathode with 8.3mm A-K Gap with Al Foil and Ta
Converter:

= Comparing Non-Heated Shots 1772, 1773, 1774, 1825 and Heated
Shots 2031, 2033, 2034

= Average non-heated duration = 20 ns; average heated duration =
32 ns

= Average heated dose is 55% higher than non-heated geometry
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Summary: )

= Fielded first ever in-situ heating geometry on RITS-6

Demonstrated ability to deplete inventories of H, and H,0 from Ta
converter and Al foils and coatings

= Reduced other molecular constituents as well
Spectroscopy measurements indicate drastic reduction of H, present in
the A-K gap
Back-streaming proton current reduced to undetectable levels

Demonstrated extended pulse durations and increased x-ray dose for
8.5/8.3 Foil Geometry

= Next Step:

Design a system capable of T> 2200 °C
Plasma Glow Discharge Cleaning + High Temp Cleaning
Explore smaller A-K configurations
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Questions? )
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