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GDP fusion capsules

• GDP is one of the possible ICF ablator 
materials
– Imploded using a series of convergent shocks
– Initial shock at approximately 3 Mbar

• Just above complete dissociation
• 10% error bars too large for adequate EOS

• First-principles thermodynamics using 
Density Functional Theory (DFT)
– An excellent track record predicting hydrocarbon 

and other materials’ shock properties
– D2, C(Diamond), Polymethylpentene (TPX), 

Polyethylene, Ethane
– CO2, H2O, SiO2, MgO
– Neon, Argon, Krypton, Xenon, Tungsten, Copper, 

Platinum, Aluminum

• GDP has a complex structure – we 
expected a challenge, and got one

GDP fusion capsule for NIF
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Shock compression is a way to investigate thermo-
physical properties of matter at extreme pressures

• Conservation of mass, energy, and 
momentum lead to the Rankine-Hugoniot 
condition for the initial (1) and final state (2)
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• With high accuracy measure and/ or 
calculate thermo-physical properties

• First Principles Thermodynamics
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Examples of past DFT Hugoniot predictions

Seth Root et al Phys. Rev. B. 87, 
224102 (2013). 

First shock in liquid CO2First shock in Polymethane-
pentene (PMP/TPX)

Seth Root et al J. Applied Physics, 
accepted for publication (2015). 
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Use density functional theory (DFT) calculations 
to simulate glow discharge polymer.

• First-principles simulations DFT
– VASP – plane-wave code w PAW core-functions
– Use of DFT codes simulating warm dense matter

• M. P. Desjarlais Phys. Rev. B 68, 064204(2003)
– Great care in convergence

• A. E. Mattsson et. al. Modeling and Simulation 
in Material Science and Engineering 13, R1 
(2005)

– Mermin Finite Temperature DFT
– Ions moved as classical point charges

• Build a reference system
– 272 Hydrogen, 200 Carbon
– Equilibrate at constant temperature and volume.
– Equilibrated for 3000+fs at 0.1 to 0.5 fs
– AM05 exchange-correlation functional
– Standard deviation of energy and pressure <1%
– Block averaging to reduce correlation
– Initial atom positions courtesy of Sebastien

Hamel (LLNL)
– Additional reference states w varying H content

Quantum molecular 
dynamics (QMD) simulations 
give thermo-physical 
properties
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Photonic Doppler Velocimetry (PDV) measurements of 
impact & shock velocities

PDV mixes Doppler shifted 
target light with reference light
• Infrared light (1550 nm) 

transparent through GDP
• Velocity changes correspond to 

beat frequency shifts
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DFT/MD (QMD) simulations compared to 
experimental data from Z and Omega

• DFT agreement with Omega data (M. Barrios,LLNL) to 600 GPa

• Transit-time method on Z for thick samples (250 micron)

• Direct method on thin samples (180 micron): VISAR and PDV

• Improved manufacturing made the difference

M. Barrios’ data from  
Knudson and Desjarlais, 
PRB 88, 184107 (2013).

T. Ao’s GDP data from Z, 
present work.

Z data –present work
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Streaked Pyrometry is an essential tool to measure the Temperature 
of GDP and other DMP samples and verify/support EOS calculations.  

• The shock velocity in both the front and back quartz 
windows is measured by VISAR and PDV to be 21.5 km/s.

• Dividing the Front/Back quartz window emission yields the 
Transmission through the GDP & Aerogel layers and 
Fresnel interface reflections.

• The corresponding temperature is 41,000K.*
*P.M. Celliers et.al., PRL 104, 184503 (2010)

• The amplitude of the VISAR signal indicates that the GDP 
reflectivity and therefore the emissivity is similar to quartz .

• Correcting for the increased transmission as the shock wave 
propagates through the GDP yields the Spectral Radiance 
of the GDP which can be fit to a Planck Grey Body function 
yielding temperature: T = 26.5 ±3 kK in this case.

Glow Discharge Polymer (GDP) is used in the production of ICF capsules. 

Dave Bliss
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Z data –present work

Intriguing differences between DFT/QMD 
simulations and new Z data in P & T

• Experimental 
uncertainties
– The initial density 

(1.03 +/- 0.02 g/cm3) 
is the leading 
density uncertainty

– Pressure accuracy is 
about 1.5%

• New Z data differ 
by 6% in density or 
30% in pressure 
from LLNL/Omega 
and DFT

• Shock state at 3 g/cm3

– New Z: 400 GPa and 26kK +/-4k
– DFT:      270 GPa and 15kK

• DFT shows that a composition CH1.5 would yield 26 kK/ 400 GPa

• Is there uncertainty in chemical composition of GDP as shot?
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Looking for sources of the discrepancy with 
new Z data

• Initial state is a complex polymer with 
little known about the structure
– Significant residual strain
– UV light can crosslink the polymer
– UV cured epoxy is used in target assembly…

• New samples will be used for a UV 
sensitivity study
– 10 pairs of GDP samples
– Each pair of samples will be given a timed UV 

exposure
• One sample in a pair analyzed using Raman 

spectroscopy and mass spectroscopy
• The other shot on Z
• Objective is to quantify effect of UV exposure
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A mass spectroscopy analysis of remaining 
samples reveal variations in chemical content

Date Time Carbon Hydrogen

baked 5/22/15 9:48:05 AM 84.69% 10.06%

baked 5/22/15 10:29:38 AM 85.38% 10.14%

baked 5/22/15 11:10:02 AM 78.51% 9.11%

baked 5/22/15 11:21:40 AM 85.65% 10.03%

Average 85.24% 10.08%

unbaked 5/22/15 9:43:18 AM 64.56% 7.69%

unbaked 5/22/15 10:24:50 AM 69.67% 8.22%

unbaked 5/22/15 11:05:14 AM 68.78% 8.12%

unbaked 5/22/15 11:16:53 AM 67.32% 8.07%

unbaked 5/22/15 11:35:27 AM 67.94% 7.95%

unbaked 5/22/15 11:46:18 AM 61.73% 7.32%

unbaked 5/22/15 12:00:29 PM 65.60% 7.84%

Average 66.51% 7.89%

Translates to different composition range 
• CH1.41

• CH1.36
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Is the calculated initial state the source of the 
discrepancy?

• Final state is a dense fluid – no 
reason to doubt DFT/QMD –
method validated for a range of 
systems

• We explore initial states in 
DFT/QMD simulations to bound 
energy differences and structures
– Varied stoichiometry from CH1.39 to CH1.51 

(assembled by Keith Jones, Arizona State)
– Branched, unbranched, aromatics, no 

aromatics

• Calculated the Hugoniot at 300 GPa
– The difference in the Hugoniot based on 

C to H ratio is not enough to account for 
the difference between Z and 
Omega/VASP
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The chemical variations show systematic shifts in 
shock pressure – but does not recover the new Z data

• The measured differences in 
composition cannot explain 
the difference to the new Z 
data

• The structural differences in 
double bonds and cross-linking 
shifts some, but not enough

• Even these small differences in 
composition lead to successive 
deviations over multiple 
shocks

First shock

Second shock

Third shock
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GDP is a challenging material for experiments 
and theory/simulations

• Summary
– VASP and Omega (Barrios) data agree reasonably well up to 400 GPa
– New Z data does NOT agree with with VASP/Omega

• For shock pressure and shock temperature
– Likely variations in stoichiometry and initial structure do not account for the 

differences
– Using new Van der Waals exchange-correlation functional did not shift the 

Hugoniot enough to make a difference

• Future Work
– Review/re-analyze Z experiments for systematic errors
– Further explore if alternate initial states can be consistent with the 

experimental Hugoniot
– UV effects on GDP and GDP Hugoniot

• Acknowledgements
– Sebastien Hamel and Loren Benedict for GDP structure and insights
– Keith Jones for insights into GDP manufacture and stoichiometry
– Sandia National Laboratories computing
– Los Alamos National Laboratory computing



Photonic Doppler Velocimetry overview

• Frequency-shifted PDV

– What is PDV and how is it different from VISAR?

– How can be PDV be used to measure extreme 
velocities?

• Dealing with finite electrical bandwidth

• Examples

– Cylindrical implosion 

• Hollow and liquid-filled liners

– Plate impact experiments

Be liner implosion



Differences between VISAR and PDV

• VISAR mixes Doppler shifted 
light with a time-delayed 
version of itself

– Velocity changes correspond to 
fringe shifts

– Typically visible light (532 nm)

• PDV mixes Doppler shifted 
light with a reference source

– Conventional: single laser

– Frequency-shifted: multiple 
lasers 

– Velocity changes correspond to 
frequency shifts

– Infrared light (1550 nm)

Velocity step

Conventional PDV

Frequency shifted PDV



Why bother with PDV?

• Very simple to field

– Fiber-based, commercial components

• Extremely compact

• Relatively low power requirements

– ~100 mW target power

– ~1 mW reference power

– Mostly class I hazard

• Very robust to light variation

– >50 dB return variations are acceptable

• No hardware time scale (etalon)

– Time resolution defined in the analysis

– Can be optimized for different purposes (arrival time, etc.)

• Tolerates multiple velocities (where VISAR loses contrast)


