
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Infrastructure for In Situ System 
Monitoring and Application Data Analysis 

J. Brandt, K. Devine, A. Gentile

SAND2015-10001C



Motivation

 HPC system monitoring and application execution typically separate
 Applications have no insight into resource, particularly global, state

 Monitoring systems send to centralized server, low collection frequency

 Expose system state data for run-time analysis within the 
monitoring system and to the running application:
 Application gains exposure to privileged monitoring data 

 Lightweight monitoring system provides high frequency data

 Integration provides low latency

 Use cases:
 Power, CPU utilization etc.

 Response to discovered contention for shared resources and dynamic events

 Goal: Provide a system service for applications and system software 
to improve execution and system performance



Architecture Overview

Star = application. No global data access
LDMS – lightweight monitoring with arbitrary aggregation topologies 
• Circle = monitoring daemons 
• Continuous, full-resolution in situ data analysis via plugins as the data is resident in the 

aggregators
• Supports parallel analysis, use of run-time and historical data
• Low-latency on-node access to results



Monitoring Analysis Interface
• Data consumer registers the intent to gather a defined set of data from the analysis 

plugin. Continuous analysis reduces latency.
• Memory mapped region can reduce latency
• Co-location of resource data, analysis, and application response



Dynamic Analysis and Response
 Data Requirements:

 Relevant but not jittery data

 Reasonable expectation of future performance based on recent past

 Fast in-situ analysis: redistribution vs analysis cost

Use case: Analysis of network congestion and placement of MPI 
tasks on core to avoid detected congestion.
 Prior work: Can recover up to 49% of the execution time lost to congestion

 Goal: increase scale, decrease analysis time, reduce latency.

 New: Continuous analysis can proactively discover contention and trigger 
dynamic response



Network Congestion Analysis and 
Response

 Gemini network: 3D torus

 Traffic between source and dest is sent via a deterministic 
multihop route (X/Y/Z) (+/-)

 Congestion on intermediate and shared hops can affect 
performance. Info on those would not be accessible to an 
application.

• Congestion Measures:
• Max % BW used
• Max % time spend 

in stalls
along the route 



Analysis for Large Scale Systems

 Analyze data at run-time as it streams thru the aggregator

 Calculation reduction:
 Brute force: 27648*27648 routes for NCSA Blue Waters

 Register only for the routes of interest

 Perform all routes’ calculation in parallel

 Calculation of max along a route can be done across multiple 
aggregators, each with a subset of the data, and then combined

 Include only the most important components:

 Significantly less congestion in Z+/-

 Privileged data -- More relevant interpretation: 
 Network quiesce events cause the values to drop although congestion is 

still high

 Rerouting

 Stale counter values



Change Detection and Response 
Triggering

• X+ congestion (Max % time 
spend in credit stalls) duration 
from 1 day

• Data collected at 1 min 
intervals

• Probability of congestion duration on a given link
• Congestion infrequent (val >= 30% only ~0.6% of the entire day)
• Congestion endures (val >=50% has over 60% probability of being so 20 min later)

Discover congestion to 
advise other jobs to 
redistribute data

Characterizations can guide 
data 
collection/recomputation
frequency



Network Congestion Responses

 Goal: Minimize cost of communications and/or data movement. 

 Tools: Map geometric or graph-based representations onto each other to improve 
associations (e.g., reduce costs, minimize edge cuts)

 Congestion-aware Task Placement: Map tasks to nodes. Inputs:

 Task graph (derived from the application) - Vertices represent MPI tasks. Weighted 
edges represent # bytes communicated between tasks.

 Architecture graph  (uses system information) - Vertices represent allocated nodes. 
Weighted edges represent cost of communication between nodes. More heavily 
congested paths between processors have higher weights.

 Congestion-aware Data Partitioning: Balance workloads and maintain locality. 
Inputs:

 Application data graph (derived from the application) - Weighted vertices represent 
data and computational cost. Weighted edges represent strength of dependence.

 Network graph (uses system information) - Dynamically weighted based on congestion 
information

 Continuous Analysis can trigger response



Conclusion
 Infrastructure for analyzing run-time system monitoring data 

and providing it to applications and system services
 Improved task placement and work distribution

 In situ analysis
 Higher frequency data for analysis

 Need not be stored by the monitoring system

 Low latency on-node access to results

 Trigger events based on continuous analysis

 Global data for decision making

 Privileged data

 Analysis questions:
 Characterize the impact of contention measures on performance to 

refine the weighting

 Determine the effectiveness of response

 Aries adaptive routing


