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Outline 

 Introduction  
 DLTS fundamentals – Silicon BJT 

 DLTS from clustered versus non-clustered  radiation damage 

 Recombination currents in GaAs Diodes – Clustered vs. non-clustered 
 

 Radiation defects in GaAs 
 The U- and L-bands 

 Electric field induced emission in GaAs 
 

 Measurements of capture cross section 
 Injection-DLTS in transistor structures – A new technique 

 Injection-DLTS in silicon BJT’s 

 Injection-DLTS in III-V large-area HBT’s 
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BACKGROUND: DLTS AND DEFECTS 
IN THE SILICON BJT 
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The maximum temperature of a DLTS scan is adjusted so that traps 

near Eg/2 emit (Si ~ 300K, GaAs ~ 400 K) 
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R. M. Fleming, et al., J. Appl. Phys. 104, 083702 (2008) 



Neutron – Ion Equivalence using 
end-of-range (EOR) Silicon Ions 
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Exact match of neutron & ion 

DLTS spectra in pnp base 

Linear relationship between 

inverse gain and DLTS amplitude 

Si ion energy chosen to place the ion end-

of-range (EOR) at the emitter-base junction 
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RADIATION INDUCED DEFECTS 
 IN GaAs 
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Neutron Damaged GaAs 
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• Neutron damage is known to cause expansion of the GaAs lattice 

• Decrease of GaAs bandgap 

• Bandgap decrease of 0.16 eV results in overlap of U- and L-bands 

& apparent continuous distribution of defect states across midgap 

• Similar to amorphous semiconductors 

• Cause? 

– Inhomogeneous broadening , e.g. strain broadened defect levels 

– Homogeneous broadening, e.g. electric-field dependent emission rate 
Fleming, et al., J. Appl. Phys. 107, 123710 (2010). 



INFLUENCE OF ELECTRIC FIELDS ON 
SRH CURRENT 
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HBT Gummels: SRH-only models 
predict neutral base recombination 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

-11

10
-9

10
-7

10
-5

10
-3 PnP Electron Damaged

C
u
rr

e
n
t 
(A

)

V
be

 

 Pre-Rad  Post-Rad

 Ic   Ic

 Ib   Ib

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
10

-11

10
-9

10
-7

10
-5

10
-3 Npn Electron Damaged

C
u
rr

e
n
t 
(A

)

V
be

 

   Pre-Rad   Post-Rad

 Ic     Ic

 Ib     Ib

 n=2 

 PnP 
 Base current slope is not changed by electron damage 

 Consistent with neutral base recombination  (as predicted by numerical models) 

 

 Npn 
 Base current slope is shallow (n ~ 2) after electron damage 

 Suggests recombination in emitter-base depletion region 



Use double-DLTS to measure 
emission rate versus E-field 
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DLTS measures at a fixed emission rate

Higher emission rate appears at at higher 1/T (lower T)
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Measure Emission Rate  vs. F & T 
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One Emission Rate, vary E-field
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Fits to Schenk Theory 
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MEASUREMENTS OF THE CAPTURE 
RATE 
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 Modeling of recombination current requires knowledge of  four rates 

• Electron emission – Electron capture 

• Hole emission – Hole capture 

 

 Emission rates are easily measured by DLTS 

 

 Capture rates are more difficult and data in the literature are sparse 



MEASUREMENTS OF THE CAPTURE 
RATE 
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Injection DLTS (inj-DLTS) 

 
 A new method to measure capture rates in transistor structures 

 

 Standard DLTS: Fill traps by pulsing the bias across the diode 

 Large density of carriers available to fill traps 

 Fast capture rates 

 

 Injection DLTS: Fill traps by pulsing adjacent diode 

 Control the number of carriers available to fill the traps 

 Slower capture rates 



Carrier Capture Using Standard DLTS 

 Capture cross section is calculated from the 
capture rate 
 𝑐𝑛 = 𝜎𝑛 𝑣 𝑛 

 

 Capture rate is determined by measuring 
Δ𝐶 as a function of filling pulse width 

 

 Using standard DLTS, capture rate is too fast 
 With standard DLTS, the only solution is to 

decrease doping (thereby decreasing the capture 
rate) 
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 DLTS in a bipolar transistor collector 

 Pulse emitter-base into forward bias (collec. at fixed rev. bias) 
 Use injected carriers to fill traps 

 Control capture rate by amplitude of forward-bias current pulse 

 Also allows measurement of capture versus electric field 

Solution: Injection DLTS 



Inj-DLTS: Si npn BJT Collector 
 Electron damage Si npn LMTF linac ~25 Mrad 

 Use current limiting diode to provide constant b/e current  

 Scale inj-DLTS C by 1/2.5 to match ΔC/C of standard DLTS 
 Consistent with emitter versus collector area – Filled traps are under emitter 
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Inj-DLTS: npn Collector 
 pnp  collector: V2(+) -9V 119K, e = 116/s 

 Fit capture rate 

 Calculate capture cross section using current density  𝐽 𝑞 =< 𝑣𝑠𝑎𝑡 > 𝑛 
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Capture Cross Sections: Si Traps 

R. Pässler, Solid-State Electronics, vol. 27, pp. 155-166, 1984. 
R. M. Fleming, et al., J. Appl. Phys. 118, 015703 (2015) 
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MEASUREMENTS OF CAPTURE RATE IN 
LARGE-AREA GaAs HBT’s 
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Metal 2 

(TiAu/plated Au) 
Collector Metal 

(TiPtAu) 
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(TiAu) 



300K Gummel before/after damage showing biases for five current-limiting diodes. 

Diode currents = 30, 100, 350, 650, 1000 𝜇𝐴. 

For injected current density, take Ie = Ic & use emitter area 1e-4 cm2 
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Capture into E4 & E5 
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Fits to capture rates (solid lines) in these 

plots are all the same for both E4 and E5.   

 

The capture rates are not influenced by 

the emission rate (temperature of the 

measurement) or the electric field. 
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E5 prefactor from MPE fits to field dep. emission 

(JAP paper) give 𝜎 = 7 − 11 × 10−15𝑐𝑚2 



E3 Capture Rates are Lower 
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Compare with Lang’s 1977 Data 
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C. H. Henry and D. V. Lang, "Nonradiative capture and 

recombination by multiphonon emission in GaAs and 

GaP," Physical Review B, vol. 15, p. 989, 1977 



Summary: 

 DLTS reveals fundamental properties of GaAs defects 
 Emission from clustered defects indicates broad density of defect states 

 Recombination currents in GaAs diodes scale with number of defects 

 Independent of degree of clustering (mass of implanted ion) 

 GaAs field-dependent emission can be fit  by theories of phonon 
assisted tunneling 

 Carrier capture in transistor structures can be 
quantified using injection-DLTS 
 Validated the technique using silicon BJT’s 

 Find large &  equal capture cross sections of GaAs E4 and E5 

 Smaller  values of 𝝈 for E3 
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