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= |ntroduction
= DLTS fundamentals — Silicon BJT
= DLTS from clustered versus non-clustered radiation damage
= Recombination currents in GaAs Diodes — Clustered vs. non-clustered

= Radiation defects in GaAs
= The U- and L-bands
= Electric field induced emission in GaAs

= Measurements of capture cross section
= |njection-DLTS in transistor structures — A new technique
= |njection-DLTS in silicon BJT’s
= |njection-DLTS in IlI-V large-area HBT’s




BACKGROUND: DLTS AND DEFECTS
IN THE SILICON BJT




DLTS: Deep Level Transient Spectroscopy )

Measures Concentrations & energy levels of point defects

Fill pulse: carrier capture
Capacitance transient: carrier emission
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BJT Collector: Point defects (electrons) & s,
Clustered defects (neutrons & ions)
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Neutron — lon Equivalence using @&z
end-of-range (EOR) Silicon lons

Exact match of neutron & ion Linear relationship between
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Normalized GR Currents: GaAs Diodes
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RADIATION INDUCED DEFECTS
IN GaAs




GaAs: DLTS after electrons & neutron
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Neutron Damaged GaAs ) i
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 Neutron damage is known to cause expansion of the GaAs lattice
« Decrease of GaAs bandgap

« Bandgap decrease of 0.16 eV results in overlap of U- and L-bands
& apparent continuous distribution of defect states across midgap

« Similar to amorphous semiconductors
« Cause?

— Inhomogeneous broadening , e.g. strain broadened defect levels

— Homogeneous broadening, e.g. electric-field dependent emission rate
Fleming, et al., J. Appl. Phys. 107, 123710 (2010).




INFLUENCE OF ELECTRIC FIELDS ON
SRH CURRENT
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HBT Gummels: SRH-only models )
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predict neutral base recombination
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v Base current slope is not changed by electron damage
v Consistent with neutral base recombination (as predicted by numerical models)

= Npn

v Base current slope is shallow (n ~ 2) after electron damage
v Suggests recombination in emitter-base depletion region




Use double-DLTS to measure
emission rate versus E-field
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Standard vs. Double DLTS ) s
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Measure Emission Rate vs. F& T

One Emission Rate, vary E-field
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One E-field, Vary Emisison Rate
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Fits to Schenk Theory Lk
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R. M. Fleming, et al., J. Appl. Phys. 116, 013710 (2014)
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MEASUREMENTS OF THE CAPTURE
RATE

** Modeling of recombination current requires knowledge of four rates
» Electron emission — Electron capture
* Hole emission — Hole capture

* Emission rates are easily measured by DLTS

s Capture rates are more difficult and data in the literature are sparse
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MEASUREMENTS OF THE CAPTURE
RATE

Injection DLTS (inj-DLTS)

“ A new method to measure capture rates in transistor structures

% Standard DLTS: Fill traps by pulsing the bias across the diode
% Large density of carriers available to fill traps
¢ Fast capture rates

* Injection DLTS: Fill traps by pulsing adjacent diode
* Control the number of carriers available to fill the traps
*» Slower capture rates
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Carrier Capture Using Standard DLTS

= Capture cross section is calculated from the
capture rate

= cp =0op(v)n N e 1.
= Capture rate is determined by measuring § L — 1s
AC as a function of filling pulse width - m 1

= Using standard DLTS, capture rate is too fast
= With standard DLTS, the only solution is to
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Solution: Injection DLTS 1) ..

E .

Emitter Base Collector

= DLTS in a bipolar transistor collector

= Pulse emitter-base into forward bias (collec. at fixed rev. bias)
= Use injected carriers to fill traps
= Control capture rate by amplitude of forward-bias current pulse

= Also allows measurement of capture versus electric field




Inj-DLTS: Si npn BJT Collector Lk

= Electron damage Si npn LMTF linac ~25 Mrad
= Use current limiting diode to provide constant b/e current
= Scale inj-DLTS C by 1/2.5 to match AC/C of standard DLTS

= Consistent with emitter versus collector area — Filled traps are under emitter
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X —m®— Inj-DLTS, 350 pA x 2.8 ms
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Inj-DLTS: npn Collector

= pnp collector: V,(+) -9V 119K, e = 116/s

= Fit capture rate

= Calculate capture cross section using current density ]/q =< Vgqt > N
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Cp = GpU/Q)
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Capture Cross Sections: Si Traps &=

Refs. 22, 24, 25
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MEASUREMENTS OF CAPTURE RATE IN
LARGE-AREA GaAs HBT’s
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300K Gummel before/after damage showing biases for five current-limiting diodes.
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Compare std- and inj-DLTS
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E5 peak under emitter (i-DLTS) has @

lower Arrhenius slope
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' Capture cross section from E5 prefacton
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E3 Capture Rates are Lower
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Compare with Lang’s 1977 Data = [@E=.
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GaP," Physical Review B, vol. 15, p. 989, 1977
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Summary:

= DLTS reveals fundamental properties of GaAs defects

= Emission from clustered defects indicates broad density of defect states

= Recombination currents in GaAs diodes scale with number of defects
" Independent of degree of clustering (mass of implanted ion)

= GaAs field-dependent emission can be fit by theories of phonon
assisted tunneling

= Carrier capture in transistor structures can be
quantified using injection-DLTS
= Validated the technique using silicon BJT’s

= Find large & equal capture cross sections of GaAs E4 and E5
= Smaller values of o for E3
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