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Preview L.

= Background
= Sandia (NM) applications in “hostile” environments

= CARS fundamentals (hnanosecond)

=)-meter pool fire study with nanosecond laser pulses

= Ultrafast (fs/ps) CARS development
= Why ultrafast?

= “Hybrid” rotational CARS

= Canonical flame measurements

» Applications of ultrafast CARS: sooting and particle-laden flames

=  Sooting turbulent jet flame
= Solid carbon-epoxy composite fuel
= Aluminized propellant

" Pressure measurements (bonus material)




Contributions from .....

Sandia
National
Laboratories

e Chris Kliewer and Alexis Bohlin
e 1-D Line CARS measurements at Sandia/CA
* Etalon design and selection for fs/ps CARS

e John Hewson and David Lignell (BYU)
* One dimensional turbulence modeling of
sooting jet flame

 Dan Guildenbecher
* Digital holography/propellants |




Laser-based diagnostics empower combustion research i) Mo

Laboratories
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* Non-perturbing 35

 Free of radiation and
Insertion errors

2-D or even 3-D
quantitative imaging |
i

Multiple parameters
(T/species/soot/velocity. . ) Kearney et al., Applied Optics 44 (2005)
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* High temporal resolution —
10 ns or better

 High spatial resolution — 104
— 10~ cm?

* Most effective in clean,
laboratory flames
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—- Gao et al., Optics Letters 38 (2013) -




Sandia/NM National Security Mission Space ().

* DOE strategic systems safety
 DoD/WFO applications

* Challenging environments

* Large-scale

* Heat, blast, particulate

blast/shock physics
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Sandia’s application space presents significant challenges |fh Natona

Laboratories

LPropeIIant Burn ’
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= “Dirty” environments h ZL'?ZE,‘Z’

= Fire research 7 S '/ rocarbon
» Energetic materials %

= Soot, aluminum
particulate

= Luminosity
= Scattering

= Absorption/optical
thickness

= Large-scale of
combustion systems
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Coherent anti-Stokes Raman Scattering (CARS) (&

PROBE VOLUME

Focusing
Lens

Pump
BeamsV\

“Stokes” Beam

Coherent, laser-like signal beam
—> spatially isolated
—> readily coupled to fibers

Blue-shifted signal beam
—> spectrally isolated

Orders of magnitude stronger
than incoherent scattering




CARS Physical Processes: Light/Matter Interaction )t

Laboratories

" A ‘polarization’ or induced
dipole is prepared by pump
and Stokes beams

= This polarization scatters the
second pump wave

» Constructive interference in

one phase-matched direction
onIy virtual levels

Coherent Anti-Stokes Raman

vib./rot.
transition
Energy (cm™)
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A broadband source permits single-shot detection & =

If all lasers are narrowband one energy level is
probed

Temperature and concentration
in one measurement.

Wp1

Signal Intensity

—

Frequency

If one (or more) laser is broadband then a range of
energy levels differences are probed




Sandia
Temperature sensitivity comes from the spectral shape ) feima

Boltzmann Fractions
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CARS Probing of 2-m Diameter Liquid Pool Fires (@ o

»_Fire Laboratory for Accreditation of Models A Exhaustio
and Experiments (FLAME) Facility ok 1™ Precipitator

* Designed to facilitate deployment of optica e S Eel e
Interior Walls

diagnostics for full meter-scale fire testing
 Laser laboratories with optical access on |
three sides -y Grated Floor
* Large scale positioning system to move il
optical and pool fire

* Fiber-coupled CARS (and soot LII)
diagnostics fielded

Air Ring

CARS SIGNAL ON TO FLAME
FIBER-OPTIC CELL 1«
FLAME CELL E ‘) b
18.3 mDIA X 12.2 m HIG @4 a» \ =
4 » ‘ .
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’ Water-cooled enclosure

Flame engulfed optics!
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r—LII Collection Optics

#1 CARS Beam
Crossing Lens

Measurement
Volume

CARS
Collectlon Opt,c
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Single-Shot Spectra Provide Simultaneous

Sandia
Temperature/Species Information in Sooting Fire i) Namat
- CARS spectra from sooting fire show 10 ‘ —omm |
N,,CO,, H,, and O, os. N o DIFF__ |
UL T=1014 K
* Full ensemble of species data not 0.6 " co, /N, =0.055| |
available as of yet : H, /N, = 0.00
_ _ , 04 ]
* Two representative spectra with theoretical - | %n
fits (Sandia CARSFT code) shown here 802 ;
B
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Kearney et al., Proc. Combust.
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Radial Temperature Profiles — Sooting Pool Fire ) faor
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Temperature PDF — Sooting Pool Firdl .
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Sandia
Joint/Temperature Soot Statistics for Emission ) fotnat

Radiative Transfer Equation

%: w. L (T) ) I CARS Beam Crossmg

\ Joint Temp. Soot
Statistics Desired

* CARS system combined with LIl soot
detection

* Average soot in 10~ cc CARS volume
correlated with enthalpy-pooled temperature
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o gy <fIT> o, .
Z o
[ 10 n e R=0cm E
é 8L Y R=10cm ]
% 6 m R=20cm
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TEMPERATURE (K) Frederickson and Kearney, Appl. Opt. 50 (2011)

Mean Soot Conditioned on Temperature _Keamey and Pierce, Combust. Flame 169 (2012)




Femtosecond CARS




Why Ultrafast? ) e

High-quality (transform-limited) broadband sources
At Av = const.

High repetition rates (kHz vs 10 Hz)
Transient vs. steady state measurements = no linewidths!
Bandwidth manipulation

404

402

0 50 100 150 200 250 300
DELAY (ps)
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Time-Domain Rotational Raman: 7. << 71

molecu

Oprobe WCAR

t=0 t=r1
preparation probing

“The story here is really in the time domain’
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Previous Ultrafast CARS Development ) .

e Purdue faculty (Lucht, Meyer) were among the first to apply
ultrafast lasers to gas-phase combustion

APPLIED PHYSICS LETTERS 89, 251112 (2006)

Femtosecond coherent anti-Stokes Raman scattering measurement
of gas temperatures from frequency-spread dephasing
of the Raman coherence

Robert P. Lucht®
School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907

Sukesh Roy
Innovarive Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Oklahoma 45440

Terrence R. Meyer
Department of Mechanical Engineering, Iowa State University, Ames, lowa 50011

James R. Gord
Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson AFB, Oklahoma 45433

Probe Beam - * 3
660 nm, 70 fsec

Chirped Probe Pulse
C N 2-3 psec
Dispersive

Rod
60 cm SF11 Delay Line

Stokes Beam - * o A for Probe
780 nm, 70 fsec

Pump Beam - * 4
660 nm, 70 fsec

L

Raman Coherence

Turbulent Flame
CARS Signal Beam - * 4 or Gas Cell

and EMCCD A

To Spectrometer
< t——
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“Hybrid” Rotational CARS Approach @

Single-shot gas-phase thermometry using pure-
rotational hybrid femtosecond/picosecond
coherent anti-Stokes Raman scattering

Joseph D. Miller,' Sukesh Roy,” Mikhail N. Slipchenko,’
James R. Gord,4 and Terrence R. Meyer,l’s’

'Department of Mechanical Engineering, lowa State University, Ames, lowa 50011, USA
~7Spectml Energies, LLC, Dayton, Ohio 45431, USA
*Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
4Pmpulsiun Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, USA
’Erlangen Graduate School in Advanced Optical Technologies (SAOT),
Friedrich-Alexander University Erlangen-Niirnberg, Germany
“trm@iastate.edu
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Rotational Raman

“Hybrid” fs pump/ps probe
Bandwidth “carving” using a
grating-based pulse shaper
Raman lines are spectrally
resolved
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t=r1
probing

“The story here is really in the time domain’




Steady State Raman Spectrum in N,
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National

Laboratories

Evenly Spaced Rotor Frequencies
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Time-domain Raman response in N, ) i,
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Probe Step ) B,

preparation
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Probe Step and Spectral Synthes

Pure Gases, T = 300 K
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Initial Measurements via “Bandwidth Carving” ®/Es.

= Use filter to remove probe tht’;llf(;ﬁg)m P?g{)uest[e)xgllaey
bandwidth Probe —>
= Broadens pulse to ps regime “i., —
Pump L]

L _I

\J Y
= \Very inefficient (0.8 to 2.4% or Q I . Spectum
less transmission) = Time
.g’ \ L (ps)
= Good accuracy 8 o
) .. Sl 800 FTe "srorNemots oo | '
| | Outsta ndlng preC|S|0n ,C_D.. 3 = 700 E ; SHOT-AVERAGED, 7-ps PROBE
(D ! n SINGLE-SHOT MEAN, 1.5 ps PROBE
- ~ r O SINGLE-SHOT MEAN, 7-ps PROBE
u Only appllcable up to T ~ 800 K % 600 TUBE FURNACE TEMPERATURE (|
8 500
, , , , , , =
1 E ooy s E| AN ] = 400
0.8 [Erhermocouple = 698 K 3 Erhermocouple = 798 K . (d) 3

T T T T
T=526.1K,O/N, =0.277 T=756.9K, O/N,=0.243

Ole2 Ratio

Probe Delay =2.78 ps [ Probe Delay = 2.83 ps
0.8 Thermocouple = 521 K |- Thermocouple = 798 K|
0.6 1S
04 @ 3
0.2 JF .
. E 023F ey
0.2 E 300 400 500 600 700 800

Tube Furnace Thermocouple (K)

S.P. Kearney et al., Optics Express 21 (2013

- Single-laser-shot spectra - : - ) _m
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Second-Harmonic Bandwidth Compression (SHBC) (@ =

* Commercial device (Light CL
: 3800 n —E—
Conversion) _y

180 cm™ - G"’“‘Iu |
* Converts fs radiation at 800 nmto 100 fs %CL \rj 400 nm

- -1
ps radiation at 400 nm 3-5cm
Stretchers 3-6 ps

* G@Grating pulse stretchers

* Phase-conjugate temporal chirps
imparted upon broadband fs pumps & . 0, (1+A1) = 0, —(dw/dt) At

* Sum-frequency generation in BBO
e Output linewidth 3.5-4.0cm™

A, ~ do/dt
-1
A@ng N(At)

e Conversion efficiency: 35-50%!

Frequency (cm

e Output pulse energy: 1-1.4 mJ!




fs/ps SHBC CARS Instrument .

wn
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Ti:S Amplifier
3 md, 1kHz, 90 fs
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Burner

Spectrograph
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Assessment in Canonical Flat Flames @&,

* Hencken Burner: Hydrogen/air flames * McKenna Burner: Ethylene/air flames
 Compare to adiabatic equilibrium  Compare to existing ns-CARS results
 “Simple” fuel e Hydrocarbon fuel with soot
* Wide range of temperatures/products  Benchmark flame for soot & LII
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Results from

H,/air Hencken flames
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Single-Shot at 1 kHz

—Experiment — —Theory ——Residual
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Three orders of magnitude signal enhancement w/ SHBC
Single-shot measurements up to T = 2400 K
Temperature/O, measurements within 5% of equilibrium
Precision is outstanding at 1-2% for sufficient SNR
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Kearney, Combust. Flame 162 (2015).



Low noise fs preparation pulses can result in higher )
single-laser-shot precision Laboratois

08— =

ns CARS J
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C,H,/air McKenna flame results )

Laboratories

Single-Shot at 1 kHz .
— Experiment ——Residual ——Theory

— * High-quality fits observed for ¢ < 1

* Systematic bias toward “underfit” of isolated lines for

Spectra acquired for fuel-lean to rich sooting flames

S —
Ed =0.75

82 ET = 1556 K

- . —_ 0,

0.4 E_02/N2—6.6/o

0.2 f fuel-rich flames
0 F
02 * Fitted temperature appears to be robust
1
0.8 * Reliable spectra obtained in sooting regions of the
0.6 [
0.4 F flame
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Applications




Turbulent ethylene jet flame burner [,
e Sandia CRF design (Shaddix)

* Pilot-stabilized canonical
turbulent jet flame is ideal for
model development

A O e 60600
060668
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* Ongoing measurements

» Temperature/O2 by fs/ps
rotational CARS at 1 kHz

e SootlLllat 10 Hz

* Soot/smoke yield can be varied by
vitiation, dilution, or fuel type

* Baseline case = pure C,H, fuel

* Provides fully turbulent
temperature/soot profiles

 Mean soot fv ~ 0.6 ppm, jet-fuel | |

10
n

pool fire is ~ 1 ppm Soot LIl data (Shaddix, 8300)
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Two-channels for enhanced dynamic range (@&

* CARS signal strength varies by ~3
orders of magnitude between room
and flame temperatures

Ti:S Amplifier
3mJ, 1kHz, 90 fs

* The highly fluctuating temperatures in

turbulent flames make dynamic range &  “Cold” Channel
o I - o
a challenge a2 c510mm oaam [FHMCC
Wedge Spectrograph - 1000
o = mm
* Two-channel detection system
MCCD)
° f= 1-m Spectrograph
implemented b
“Hot” Channel
10" . ‘ . ‘ ‘ ‘ . ‘ i “Hot” Channel “Cold” Channel
E i . _—Lnata . === == Theory e — al_ . .
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Single-Laser Shot Spectra




LIl soot measurements from turbulent jet flame ) Netona

Laboratories

» Single-shot LIl image data for z/D ~ 75-100
* 500 laser shots in 29 mm (9.1 D) field of view at each height
* Soot pdf data estimated within field of view at each height g

e Mean and rms soot values consistent with Shaddix data

* One-dimensional turbulence simulations tuned to match
mean soot f,

ODT, z/D =77, mean fv=0.11 ppm
ODT, z/D = 87, mean fv = 0.14 ppm
ODT, z/D =97, mean fv = 0.19 ppm

LIl, z/D =77, mean fv =0.11 ppm
LIl, z/D = 87, mean fv = 0.16 ppm
LIl, z/D = 97, mean fv = 0.21 ppm

0 10
d

Soot LIl data (Shaddix, 8300)




Temperature and O, Measurements
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—— CARS Hot Channel
—— CARS Cold Channel
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Results obtained in region of peak soot loading, mean f,~ 0.5 ppm

Valid, detectable signal on 95-99% of all laser shots

ODT simulations predict scalar response when soot source in calibrated to LIl



Carbon-Epoxy Solid Fuels ) .

* Carbon-epoxy composite materials are
being used in a wide variety of military
and civilian aircraft

* Accident scenario presents new risks in
addition to hydrocarbon burn problem

* Fundamental data are lacking

* Surface Oxygen transport?

 Temperature profiles

Carbon Flber/

“Crashed B2” Federal Aviation Administration Photo

« Composite fires are not well
characterized

» Auviation fuel fire heats composite

 Epoxy thermal decomposition

 Heat and mass is transported to
interior

» Char formation

» Oxidation reaction of carbon
fibers? Fuel Fire

Interior Structure




National

Sandia
Controlled Carbon-Epoxy Burn Experiment ) far

e 100-mm x 150-mm composite
samples

* 3-mm thickness

* Backside insulated

* Suspended over “cone heater”

e Uniform radiative heat flux over
100-mm dia area

* CARS Tand O, data recorded on
bottom side of sample
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Sandia
Observed sample decomposition/burning behavior @) ..

e Autoignition at heater temperature

60-120 second dura:cion ~600 °C or " = 31 kW/m?2

=G
- re—

Heavily sooting phase

e Combustion of epoxy binder material

e Heavily sooting—absorbs almost all
laser light near surface

)+ Transitional phase
- .
* Binder nearly consumed
: _ =% » Pockets of sooty flame meander
Flickering phase about surface

Steady state phase « Consumption of carbon fibers
— * Perhaps some char consumption
T * Both blue and yellow/orange

30 min duration - o
g flame emission




nition and sooting epoxy burn







. o Sandia
Temperature/O, Profiles: Point Measurements i) fatora

e Sampled for 10 seconds (10,000

—@— Temperature () —Il— O2IN2 Ratio laser shots) at each point.
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1-D CARS Line Imaging at Sandia/CA h) e
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Metallized Propellant Fires .

=  Metal-burn problems are important to the
safety and performance of a number of
DOE/DoD systems

= Missile-platform safety
= Igniters
» Energetic materials

= Metal burn represents an extraordinarily hostile

environment for laser diagnostics
= Very high temperatures — T > 3000 K!
= High luminosity
= Scattering
= Previous gas-temperature measurements with
ns CARS were unsuccessful

= Metal-particle-induced breakdown/plasma
formation

= Disastrously high levels of nonresonant
background

)

CARS Intensity (arb. units

1500 e —
No Aluminum
E — with Aluminum
1000 _
500

O......|....|....|....|....|...,
300 400 500 600 700 800 900 1000
Detector Pixel

ns-CARS spectra with and without Al particles




Sandia
Advantages of ultrafast CARS for metal-burn problems L

* Low total pulse energy
e ~1mJorless
* Reduces the likelihood of breakdown-type interference
* Factor of ~40-100 lower than with ns laser pulses
* Time-gate elimination of nonresonant background
* Nonresonant signal arises from response of electrons to fs forcing
* Fast decay (fs)
* Raman-resonant signal results from much slower, nuclear response of the

molecule § _
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Sandia
National
Laboratories

AP Propellant Strand Burner Experiments

Proof-of-concept using existing rotational CARS instrument
Acquired ~60,000 single-laser-shot spectra over strand-
burner duration
Hostile environment for diagnostics

e Very high temperatures — fluctuations over 3,000 K!
Dense field of large molten-metal particles 10-100 um
Significant number of spectra rejected, but over 20,000 were

retained for valid temperature measurements
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Distributions (Guildenbecher, 1512)




CARS Results from Propellant Burns i) Mo

Laboratories
™ Data — — Theory Residual
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Sandia

Summary and Conclusions ) e

CARS is a powerful technique for temperature/species measurements in hostile and
facility-scale environments

Nanosecond V-CARS has been performed with LIl in 2-m, sooting fire plumes
We have cultivated femtosecond/picosecond R-CARS
« SHBC implementation
» Collision-free results with superior precision
fs/ps R-CARS is being applied in challenging laboratory environments
« Sooting, turbulent jet flames
» Metallized propellants
« Carbon-epoxy composites
Whats next?
* Pressure measurements—monitor collisions on ps scales

» Vibrational fs/ps measurements for propellants
* Rocket motor plumes
« 2-D CARS imaging w/ soot LII




