Abstract

We present preliminary results from experiments where a liquid deuterium filled cylindrical liner 1s imploded
onto a perturbed beryllium rod. The liner implosion creates a shock in the deuterium that strikes the interface
twice: once as 1t implodes, and once again after the shock reflects off of the axis. T
grow due to the Richtmeyer-Meshkovl!! instability and the Rayleigh-Taylor instabilityl?] while also generating
significant vorticity as the shocks cross the interface. In the initial experiments growth of the perturbation 1s
observed after 15t shock, however, after reshock significant three-dimensional structure is observed at scale
lengths much smaller than the initial perturbation. At this time, very little evidence of the seeded mode remains.
Pressures exceeding 100 Mbar are predicted at stagnation with an Atwood number at the unstable interface of
about 1/3. Analysis of the images will be presented. Additionally, future plans will be discussed. Emphasis in
the near future will be on improving image contrast and data collection.
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Motivation

In any 1nertial fusion concept, deceleration instability growth 1s a likely source of pusher/fuel mix late in time
that can spoil stagnationl®l. However, data during this phase of implosions is scarce and difficult to obtain
because: (1) velocities are large (~100-400 km/s), (11) scale sizes are small (~25-50 um) and (111) optical depths
are large. Additionally, imposing perturbations at t=0 on the fuel/pusher interface results in unknown initial
conditions at the onset of deceleration. To overcome these challenges we have begun developing a platform that
studies perturbation growth on an on-axis rod in cylindrical geometry during the stagnation phase of a
magnetically driven implosion. The Z-machine at Sandia National Laboratories!* is used to implode a liquid
deuterium filled, beryllium liner onto a perturbed on-axis Be rod. The rod retains its initial perturbation until the
shock strikes 1t. Soon afterwards, the shock reflects off the axis and strikes the rod/deuterium interface again.
Using penetrating radiography to probe the perturbation evolution makes this platform a powerful tool for
studying the physics of instability growth and mixing at high convergence and low Atwood number.

Experimental Description

n1s causes the perturbation to
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with 1D simulation

in iIncoming shock

* MRT feed-through on the inner surface of the liner 1s apparent

* These asymmetries could deposit significant vorticity at the rod
interface and drive small-scale structures

= Removing both of these sources of asymmetry is a focus of future

experiments (in design now)
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* Location of shock in the rod 1s visible and in reasonable agreement

= Radius of shock 1s not symmetric, indicating azimuthal asymmetry
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/ Direct observation of secondary instability growth

* First diagnosis of
short wavelength
secondary hydro-
instabilities in a
convergent liner
experiment

= Unexpected
development of
correlated pockets at
scale lengths
between seeded
instability and
secondary
instabilities
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At t=3117 ns, the rod has
been compressed and the
perturbation amplitude 1s
~2X larger

Some correlated structures at
higher wavenumbers begin
to emerge

At t= 3132 ns, the 1nitial
perturbation 1s completely
erased. May be due to a
phase 1nversion

Strongly 3D, uncorrelated
structures are observed at
higher wavenumbers
Transition from Be to
deuterium 1s blurred,
presumably due to loss of
azimuthal correlation and
mixing at the interface
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Conclusions and Future Work

Measuring a “Mix Width”
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The deuterium 1s transparent
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The width of the transition from the Be rod to the region that 1s attenuated only by
the liner 1s denoted as the “mix” width (~10-90% width)

Abel 1inversions are noisy, it 1s best to attempt this analysis with the raw data

More sophisticated analysis will attempt to “remove” the liner attenuation using fit

to analytic profile

We have observed development of secondary instabilities at high wave numbers in a high
convergence, re-shock experiment

Seeded perturbation disappears after reshock
Preliminary analysis of “mix width” suggests a relatively uniform width despite axial variations
In the future, we plan to lower the liner aspect ratio to improve stability and reduce asymmetries

\ and 1nvestigate growth of structures from surface roughness
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