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Outline

* Fracture Mechanics Evaluation using fatigue crack
growth testing to determine inspection interval or
design life

e Structural Stress Methods to determine design life

e Pneumatic Pressure Cycling of full-scale
components to determine design life
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ASME Boiler and Pressure Vessel Code
Section VIlI, Division 3, Article KD-10
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Fracture mechanics approach to hydrogen
pressure vessel and pipeline design,
using fatigue crack growth analysis /
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Trends for fatigue crack growth are consistent for
a broad range of pipeline steels
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Pressure effects on fatigue crack growth are
modest (except perhaps at low AK)
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Power-law fit to bounding behavior in hydrogen is
used to behavior to predict crack evolution
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Consider X70 pipeline

Dimension and materials
OD =762 mm Operating
t=12.7 mm dit;
VS - 480 MPa conditions
TS - 585 MP Pmax = 7 MPa
) A P_. =4MPa

Maximum nominal hoop stress = 204 MPa
« 35% of Tensile Strength
« 42% of Yield Strength
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Crack evolution in X70 pipeline is relatively slow
for low cycling

1 11 cycle per day =

3650 cycles per 10 years
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API pipeline steels
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Crack
initiation growth
?? KD-10

« Crack growth method
ignores crack initiation
- Initiation can be
majority of life
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Outline

e Fracture Mechanics Evaluation using fatigue crack
growth testing to determine inspection interval or
design life

e Structural Stress Methods to determine design life

e Pneumatic Pressure Cycling of full-scale
components to determine design life
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ASME Boiler and Pressure Vessel Code
Section VIlI, Division 3, Article KD-3

Structural stresses calculated and
compared to design S-N curves to
determine design life
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Fatigue loading for pressure applications

Proposed testing condition to simulate pressure loading
*R 2 0 (tension-tension)
* Notched specimens to account for stress concentration

stress
N R=S._ /S frequency

Smin
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Notched fatigue test methodology proposed in
CSA CHMC1 standard
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Tension-tension fatigue testing facilitates data
generation on hydrogen
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Lack of harmonization of test methods to
support structural stress analysis for hydrogen

800
) Idealized S-N curve (R=-1)
700}

600
500
400}

300}

Stress amplitude (MPa)

200}

100

Effect of notch

Number of cycles

0' PRI T T BT B T T
10° 10° 10* 10° 10°

Conventional fatigue
testing:

- R=-1

- Smooth specimen
Fatigue applied to hydrogen

- Tension-tension loading

- Notched specimen

Effect of mean stress:

: S
5 -5)1-%)

Effect of notch:

S
SNz/
f Kf

Methods eX|st to explore S|m|I|tude between methodologles




, Hydrogen and Fuel Cells Program

Outline

e Fracture Mechanics Evaluation using fatigue crack
growth testing to determine inspection interval or
design life

e Structural Stress Methods to determine design life

e Pneumatic Pressure Cycling of full-scale
components to determine design life
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Full-scale pressure cycling of pressure vessels

e Two pressure vessel designs from different
manufacturers

« Nominal hoop stress at P = 43.5 MPa
- T1 design: ~340 MPa
- T2 design: ~305 MPa

o Steel for both pressure vessels designs: 4130X
e Quench and tempered, 1 wt% Cr - 0.25 wt% Mo
e TS for transport applications: 700 to 900 MPa
- T1 design: ~750 MPa
- T2 design: ~850 MPa

Typical design rule: maximum wall stress <40% of TS
T1 design: 300 MPa
T2 design: 340 MPa

| il _ — e S —_— -




Consider 35 MPa gaseous hydrogen fuel system

e Nominal pressure of 35 MPa

o Allow 25% over-pressure during rapid filling
e Minimum system pressure of ~3 MPa

Pressure cycle for testing
e maximum P = 43.5 MPa
e 2-minute hold at maximum P
 rapid depressurization to 3 MPa
e 30-second hold at minimum P
e pressurization time ~ 2 min

4 to 5 minute cycle time
(~300 cycles per day)

ime

(
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machined
defect

\

Engineered defect
(10 per vessel)

inside surface

—/

thickness v\machineud defect V'nOtCh in prOﬁle
— - Nominal root radius
Elliptical engineered defect 0.05mm

Aspect ratio = 1/3 (depth/length) (actual ~0.12mm)

Depth of engineered defects
« Typically all 10 defects similar for a given vessel
e Smallest defects ~2% of wall thickness
e Largest defects ~10% of wall thickness

e« For one vessel, aspect ratios were 1/2 and 1/12




. ¥ & B Hydrogen and Fuel Cells Program

Commercial pressure vessels exceed lifetime
target of 11 250 cycles by >3 tlmes

60,000
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™ 1 ¢ Each pressure vessel
program milestone |  With engineered
(for as-manufactured pressure vessels) | defects contains 10
nominally equivalent
defects
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e Arrows indicate
pressure vessels that
did not fail
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e In failed vessels, all
defects initiate a crack
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All observed failures are leak-before-burst mode

At failure, pressure vessel “slowly” leaks
gas into secondary containment
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Through-wall crack extend from “critical”
engineered defect

wall thickness
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Growing (non-through-wall)
cracks have semicircular profile

=
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Fatigue crack growth of Cr-Mo PV steels in
gaseous hydrogen is similar to pipeline steels
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Comparison of fracture mechanics evaluation to
full-scale pneumatic experiments
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Curves are predictions
based on crack growth
only (of semicircular flaw)

Arrows indicate vessels
that did not fail

Fracture mechanics
predictions underestimate
experiments for all defect
sizes

Conservativeness of
fracture mechanics can be
restrictive for small
defects
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Comparison of structural stress method to full-
scale pneumatic experiments

» Observed full-scale behavior S00F T _
is consistent with design : =———ASME design curve | -
4501 @> smooth -
curves ! &> notched i

« Assessment of design 400f X failures

requirements enables
definition of appropriate
design space

- TS < 890 MPa limits
stress amplitude to
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Result:

conservative design space relative to
established structural stress method

ASME design curve: carbon and low

= 670 MP2oa
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Summary

e Fracture mechanics evaluation using fatigue
crack growth provides conservative design life
— does not account for crack initiation
— Relevant AK < 10 MPa m?/2

e Structural stress methods can be applied for
hydrogen with appropriate data
— Fatigue curves in hydrogen need to be determined
— Harmonization of methods needs to be verified

e Pneumatic pressure cycling methods have been
standardized
— Limited validation to support design by analysis
methods
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