
HPX Applications and Performance Adaptation
Alice Koniges1, Jayashree Ajay Candadai2, Hartmut Kaiser3, Kevin Huck4, Jeremy Kemp5, Thomas Heller6, Matthew
Anderson2, Andrew Lumsdaine2, Adrian Serio3, Michael Wolf7, Bryce Lelbach1, Ron Brightwell7, Thomas Sterling2

1Berkeley Lab, 2Indiana University, 3Louisiana State University, 4University of Oregon,
5University of Houston, 6Friedrich-Alexander University, 7Sandia National Laboratories

fds

The HPX runtime system is a critical component of the DOE XPRESS (eXascale PRogramming Environment and System Software) project and other projects world-wide. We are exploring a set of innovations in execution models, programming models and
methods, runtime and operating system software, dynamic and adaptive scheduling and resource management algorithms and mechanisms, and instrumentation and introspection techniques to achieve unprecedented efficiency, scalability, and
programmability in the context of billion-way parallelism. A number of applications have been implemented to drive system development and quantitative evaluation of the HPX system implementation details and operational efficiencies and scalabilities.

Applications and Characteristic Behavior Background Info

Performance Adaptation, Legacy Applications, and SummaryResults Showing Benefits of HPX

– LULESH: (Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics) For
details see Deep Dive to right.

– Mini-ghost: A miniapp for exploring boundary exchange strategies using stencil
computations in scientific parallel computing. Implemented by decomposing the spatial
domain, inducing a “halo exchange” of process-owned boundary data.

– N-Body Code: An event driven constraint based execution model using the Barnes-
Hut algorithm where the particles are grouped by a hierarchy of cube structures using a
recursive algorithm. It uses an adaptive octree data structure to compute center of mass
and force on each of the cubes with resultant O(N logN) computational complexity
making use of LibGeoDecomp an auto-parallelizing library.

– PIC: 3D particle-in-cell (PIC) codes, such as GTC developed for studying turbulent
transport in magnetic confinement fusion plasmas, which models interaction between
fields and particles by solving the 5D gyro-averaged kinetic equation coupled to the
Poisson equation, and PICSAR a miniapp with key functionalities of PIC accelerator codes
including Maxwell solver using an arbitrary order finite-difference scheme
(staggered/centered), a particle pusher using the Boris algorithm, and an energy
conserving field gathering routine is energy conserving with high order particle shape
factors.

– miniTri: A newly developed triangle enumeration-based data analytics miniapp.
miniTri mimics the computation requirements of an important set of data science
applications, not well represented by traditional graph search benchmarks such as
Graph500. An asynchronous HPX-based approach enables our linear algebra-based
implementation of miniTri to be significantly more memory efficient, allowing us to
process much larger graphs

– CMA: (Climate Mini-App) For details see Deep Dive to right.

– Kernels: Studying various computational kernels, such as matrix transpose, and fast
multipole algorithms, to explore features of HPX and compare to other approaches.

Higher is Better

Edison Babbage

HPX-3 blocked implementation
faster on NERSC production Edison

HPX-3 is dramatically better than
both MPI and OpenMP on Babbage

HPX runtime implementations are
integrated with APEX (Autonomic
Performance Environment for
Exascale), a feedback/control library
for performance measurement and
runtime adaptation. APEX
Introspection observes the application,
runtime, OS and hardware to maintain
the APEX state, while the Policy
Engine enforces policy rules to adapt,
constrain or otherwise modify
application behavior.

Figures: Concurrency views of LULESH (HPX-5), as observed and adapted by APEX. The left image is an
unmodified execution, while the right image is a runtime power-capped (220W per-node) execution, with equal
execution times. (8000 subdomains, 643 elements per subdomain on 8016 cores of Edison, 334 nodes, 24 cores per
node). Concurrency throttling by APEX resulted in 12.3% energy savings with no performance change.

ParalleX Execution Model

* Lightweight multi-threading
- Divides work into smaller tasks
- Increases concurrency

* Message-driven computation
- Move work to data
- Keeps work local, stops blocking

* Constraint-based synchronization
- Declarative criteria for work
- Event driven
- Eliminates global barriers

* Data-directed execution
- Merger of flow control and data structure

* Shared name space
- Global address space
- Simplifies random gathers

High Performance ParalleX
(HPX)

* The HPX runtime system reifies the ParalleX execution
model to support large-scale irregular applications:
- Localities
- Active Global Address Space (AGAS)
- ParalleX Processes
- Complexes (ParalleX Threads and Thread Management)
- Parcel Transport and Parcel Management
- Local Control Objects (LCOs)

* Sits between the application and OS
* Portable interface: C++11/14 (HPX-3 only), XPI
- Comprehensive suite of parallel C++ algorithms (HPX-3

only)
* Automatic distributed garbage collection in AGAS (HPX-3
only)
* Flexible set of execution and scheduling policies
* Performance counter framework (HPX-3 only)

STARVATION

LATENCY

OVERHEAD

WAITING FOR
CONTENTION

ENERGY

RELIABILITY

ParalleX
Execution

model
SLOWER

Application

Domain Lib(s)

HPX

OS / Network

Supercomputer

XPI

ParalleX EM

HPX Architecture

Memory models and Transport

Network

Global Address SpaceMemory Memory

Translation
Cache

AGAS

PGAS/
AGAS

Parcel/GAS Transport

HPX supports three memory
models: Symmetric Multi-
Processing (SMP, no global
memory), a Partitioned Global
Address Space (PGAS), an
Active Global Address Space
(AGAS).

HPX avoids the use of locks and/or barriers in parallel
computation through the use of LCOs, which are
lightweight synchronization objects used by threads as
a control mechanism. Reads and writes on LCOs are
globally atomic and require no other synchronization
mechanism.

* Optimized transports built on top of Photon (HPX-
5 Only) and other communication libraries
* Two-sided Isend/Irecv transport (ISIR)
Pre-posts irecvs to reduce probe overhead

* One-sided Put-With-Command/Completion (PWC)
Local/remote notifications for RDMA operations
RDMA communication optimizations using Photon:
turn large puts into gets, buffer coalescing

• Thomas Sterling, Daniel Kogler, Matthew
Anderson, and Maciej Brodowicz. SLOWER: A
performance model for Exascale computing.
Supercomputing Frontiers and Innovations, 1:42–
57, September 2014.

• Hartmut Kaiser, Thomas Heller, Bryce Adelstein-
Lelbach, Adrian Serio, Dietmar Fey, HPX – A Task
Based Programming Model in a Global Address
Space, PGAS 2014: The 8th International
Conference on Partitioned Global Address Space
Programming Models (2014).

ISIR

Global Address
Space

Parcel Transport

LCOsThreads

PWC

OS/NetworkP
e

rf
o

rm
a

n
ce

 C
o

u
n

te
rs

(H

P
X

-3
 o

n
ly

)

LCOs

APPLICATION
LAYER

Lulesh
LibPXGL

N-Body

ADCIRC LibGeoDecomp

GLOBAL ADDRESS SPACEPGAS AGAS
PARCELS PROCESSES

SCHEDULER

Worker
threads

ISIR PWC (HPX-5 only)

OPERATING SYSTEM

HARDWARE

Cores

NETWORK

NETWORK LAYER

FMM

LULESH (Deep Dive)
LULESH--The Sedov blast wave problem in three dimensions is
spherically-symmetric and the code solves the problem in a
parallelepiped region. In the figure, symmetric boundary
conditions are imposed on the colored faces such that the normal
components of the velocities are always zero; free boundary
conditions are imposed on the remaining boundaries.

The LULESH algorithm is implemented as a hexahedral mesh-
based code with two centerings. Element centering stores
thermodynamic variables such as energy and pressure. Nodal
centering stores kinematics values such as positions and
velocities. The simulation is run via time integration using a
Lagrange leapfrog algorithm. There are three main computational
phases within each time step: advance node quantities, advance
element quantities, and calculate time constraints. There are three
communication patterns, each regular, static, and uniform: face
adjacent, 26 neighbor, and 13 neighbor communications,
illustrated below:

[1] LULESH is available from: https://codesign.llnl.gov/lulesh.php

[2] Karlin I, Bhatele A, Keasler J, Chamberlain BL, Cohen J, DeVito Z, et
al. Exploring Traditional and Emerging Parallel Programming Models

using a Proxy Application. In: Proc. of the 27-th IEEE International
Parallel and Distributed Processing Symposium (IPDPS); 2013.

Top: HPX-5 weak-scaling LULESH performance on 256 core cluster.
Bottom: HPX-5 weak scaling LULESH performance on Edison up to
14000 cores. ISIR and PWC are HPX-5 network back-ends. Lower
values are better and we demonstrate developing 27k+ core scaling.

* Note: BlueGeneQ, NVIDIA and AMD GPUs, Windows, and Android support are currently only supported by HPX-3

HPX-5 is the High Performance ParalleX runtime library
from Indiana University. The HPX-5 interface and C99
library implementation is guided by the ParalleX execution
model (http://hpx.crest.iu.edu).
HPX-3 is the C++11/14 implementation of ParalleX
execution model from Louisiana State University (
http://stellar-group.org/libraries/hpx/).

Legacy Application support

Legacy OpenMP Application support is implemented using an
HPX implementation of the intel OpenMP runtime. As
illustrated below, this allows the same binaries to be executed
with a traditional OpenMP runtime, and with HPX.

Performance with this runtime is comparable with most
workloads, as demonstrated with a simple LU decomposition
benchmark shown below.

0

2

4

6

8

10

12

14

16

18

2 4 5 8 10 16 20 40

S
p
e
e
d
u
p

Number of Threads

LU Speedup, size = 8192

Intel OpenMP

OMPTX

HPX

0

20

40

60

80

512 341 256 228 171 128 114 85 64

ti
m

e
 (
se

co
n
d
s)

Block Size

LU Time on 40 Threads, size = 8192

Intel

HPX

OMPTX

While the existing OpenMP applications have performance
differences, the performance of an application written and
compiled with HPX has substantially different performance, as
the sensitivity to block size shown below demonstrates.

APEX : Performance Adaptation Summary

APEX Introspection

APEX Policy Engine

APEX State RCR
Toolkit

Application

HPX

Synchronous Asynchronous

Triggered Periodic

events

N-Body using LibGeoDecomp

NERSC’s Edison, a Cray XC30 using the Aries
interconnect and Intel Xeon processors with a
peak performance of more than 2 petaflops.

NERSC’s Babbage machine uses the Intel Xeon
Phi™ coprocessor (codenamed “Knights
Corner”), which combines many Intel CPU
cores onto a single chip. Knights Corner is
available in multiple configurations, delivering
up to 61 cores, 244 threads, and 1.2 teraFLOPS
of performance.

Exascale programming models and runtime
systems are at a critical juncture in development.

Systems based on light-weight tasks and data
dependence are an excellent method for extracting
parallelism and achieving performance.

HPX is emerging as an important new path with
support from US Department of Energy, the
National Science Foundation, the Bavarian
Research Foundation, and the European Horizon
2020 Programme.

Application performance of HPX codes on the
very recent architectures including the current and
prototypical next-generation Cray-Intel machines
is very good.

For some of the applications the performance using
HPX is significantly better than using standard
MPI + OpenMP implementations.

Performance adaptation using APEX provides
significant energy savings with no performance
change.

We have shown that legacy application using
OpenMP can run under the HPX runtime system
effectively.

Reduction of communication in GTCX (GTC with HPX added)
compared to original GTC (upper image) is shown.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000

Ti
m

e
p
er

it
er

a
o
n

(s
)

Cores

MPI HPX-PWC HPX-ISIR

0

0.05

0.1

0.15

0.2

(SMP) 8 27 64 125 216

m
e
p
e
r
cy

cl
e
(s
)

cores

MPI HPX-PWC

CMA (Deep Dive)

The climate mini app (CMA) models the performance
profile of an atmospheric "dynamic core" (dycore) for
non-hydrostatic flows. The codes use a conservative finite-
volume discretization on an adaptively-refined cubed-
sphere grid. An implicit-explicit (IMEX) time integrator
combines a vertical implicit operator (which is FLOP-
bound) with a horizontal explicit operator (which is
bandwidth-bound).

Figures: Left image shows an example of an adaptively
refined cubed-sphere grid used in climate codes. Right
image is vorticity dynamics for a climate test problem
with AMR.

The mini app is implemented using the Chombo adaptive
mesh refinement (AMR) framework, and has both an
MPI+OMP and HPX backend. The mini-app is being used
to explore performance on multi-core architectures (e.g.
Xeon Phi) and to explore the benefits of using HPX for
finite-volume AMR codes to combat dynamic load
imbalance.

Higher is Better

MiniGhost Weak Scaling

Matrix Transpose Kernel

Babbage

CMA Strong Scaling

GTCX Communication Reduction LULESH Weak Scaling

Edison

Funding by DOE Office of Science through grants: DE-SC0008714, DE-SC0008809, DE-AC04-94AL85000, DE-SC0008596, DE-SC0008638, and DE-AC02-05CH11231, by National Science Foundation
through grants: CNS-1117470, AST-1240655, CCF-1160602, IIS-1447831, and ACI-1339782, and by Friedrich-Alexander-University Erlangen-Nuremberg through grant: H2020-EU.1.2.2. 671603.

SAND2015-8999C

