
M O DI F I ED P A TTE RN S EQ UEN C E - B A S ED
FO REC A S T I N G FO R EL EC TRI C VE HI C L E

C HA RG I N G S TA T I O N S

Contributors:

Mostafa Majidpour, Charlie Qiu, Peter Chu,and Rajit Gadh

Smart Grid Energy Research Center

University of California, Los Angeles, USA

Hemanshu R. Pota

School of Engineering & Information Technology

The University of NSW, Canberra ACT 2610 Australia

Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number

DE-OE0000192 and funding from the Los Angeles Department of Water and Power.

Disclaimer

 This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, the Los Angeles

Department of Water and Power, nor any of their employees, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

usefulness of any information, apparatus, product, or process disclosed, or represents that its

use would not infringe privately owned rights. Reference herein to any specific commercial

product, process, or service by trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or favoring by the United

States Government or any agency thereof. The views and opinions of authors expressed herein

do not necessarily state or reflect those of the United States Government or any agency thereof.

 .

Modified Pattern Sequence-based Forecasting for
Electric Vehicle Charging Stations

Mostafa Majidpour, Charlie Qiu, Peter Chu, Rajit Gadh
Smart Grid Energy Research Center

UCLA
Los Angeles, California USA

mostafa@ee.ucla.edu

Hemanshu R. Pota
School of Engineering & Information

Technology
The University of NSW

Canberra ACT 2610 Australia

Abstract—Three algorithms for the forecasting of energy

consumption at individual EV charging outlets have been

applied to real world data from the UCLA campus. Out of these

three algorithms, namely k-Nearest Neighbor (kNN), ARIMA,

and Pattern Sequence Forecasting (PSF), kNN with k=1, was the

best and PSF was the worst performing algorithm with respect

to the SMAPE measure. The advantage of PSF is its increased

robustness to noise by substituting the real valued time series

with an integer valued one, and the advantage of NN is having

the least SMAPE for our data. We propose a Modified PSF

algorithm (MPSF) which is a combination of PSF and NN; it

could be interpreted as NN on integer valued data or as PSF

with considering only the most recent neighbor to produce the

output. Some other shortcomings of PSF are also addressed in

the MPSF. Results show that MPSF has improved the forecast

performance.

I. INTRODUCTION

Reducing the charging time of Electric Vehicles (EVs)
(and Plug-in Hybrid Electric Vehicles (PHEVs)) is a big
challenge. The minimum battery size for EVs has to be around
9 kWh according to the EV33 rule [3]. In practice, most EVs
have larger batteries, e.g., 16.5 kWh for Chevrolet Volt,
24kWh for Nissan Leaf, or up to 85kWh for Tesla. Although
there are fast DC chargers that can deliver up to 50kW (100A
at 500VDC), the majority of charging stations are Level 1
household chargers, delivering 3.3 kW (16A at 230VAC),
which makes the charging last around 8 hours for a Nissan
Leaf. EV owners also can (and sometimes are obligated to)
charge their vehicle in places other than home, such as public
charging stations or charging stations at their work place. As
of May 2014, there are 22,671 non-residential charging outlets
in the US [1]. Although there has been a lot of research on
charging station infrastructure [4]-[7], only 592 of the above
mentioned stations are CHAdeMo fast DC chargers [2]. In this
situation, an estimation of how long an EV owner should wait
in order to charge the EV can be a very beneficial piece of
information, especially if the expected waiting time can be
accessed through the Internet or on a smartphone before
leaving for the charging station. On the other hand, having
access to this data will be useful for the EV charging station
owners too, since it will help them to adjust their inventory in

advance. Both of these requirements can be addressed by the
energy consumption forecast at EV charging stations.

 For the above mentioned reasons, forecasting EV loads is
of recent interest to researchers. In [19], authors have
proposed a method to forecast the EV charging load in China
based on the Monte Carlo simulation. Reference [20]
discusses three daily-load forecasting methods, namely BP
and RBF Neural Networks, and GM(1,1) from the Gray model
families on one charging station. Another method has been
proposed in [21] based on Support Vector Regression for
forecasting EV charging loads at the city level. Four
forecasting methods including Decision Tables, Decision
Trees, MPL Neural Networks, and Support Vector Machines
(SVM) have been compared in [22] on the US aggregated
residential data.

The work presented here is different from previously
mentioned studies in that we have used just one type of
recorded data, Charging Records, which only contains the start
and end of the charging transaction and the total amount of
energy received in the charging transaction (a scalar value; not
time dependent). Geographical or driving habit related data
was not used in our prediction. Our predictions are at the
charging outlet level (not charging station, parking lot or city
level) which makes it a more difficult problem as it does not
have the aggregated behavior of charging stations, parking
lots, or cities.

In our previous work [8], we have proposed a framework
for fast prediction of the EV load at the charging outlet level
for cellphone application. We found that the k-Nearest
Neighbor (kNN) algorithm had a better performance. As a
continuation of the previous work, in this paper we have
compared kNN with two other algorithms: ARIMA as an
example of the classical statistical method and Pattern
Sequence-based Forecasting (PSF) as a recently proposed
successful algorithm in energy price forecasting.

The rest of this paper is organized as follows: Section II
formulates the problem, Section III briefly explains the kNN,
ARIMA, and PSF methods. Section IV reports and analyzes
the result of applying these algorithms on the University of
California, Los Angeles (UCLA) parking structures’ EV

This work has been sponsored in part by grant from the LADWP/DOE fund
20699 & 20686, Smart Grid Regional Demonstration Project.

smerc
Typewritten Text

k-Nearest Neighbor Algorithm

Inputs: �����, �����, ����∗�,

Output: ����∗�
1. for �	 ∈ ��
2. ������� � ‖����∗� � ����‖
3. for �	 ∈ �1, … ,
�
4. ������ � index	of	�!" smallest������
5.				����∗� � (

) ∑ ���������+∈�(,…,)�

charging data. Section V proposes a new algorithm, Modified
PSF (MPSF), and presents its application to our data, and
Section VI concludes the paper with presenting the direction
for the future work.

II. PROBLEM FORMULATION

The objective is to predict the energy demand in the next
24 hours at each charging outlet. The total energy available for
all charging stations in a parking structure is constrained by
the size of the distribution transformer. Formally, we assume
there is some function relating future available energy and the
past consumed energy:

,-��� � ./,�� � ��, 0���1					� ∈ �1,2, … �																								�1�,
where ,��� is the actual energy consumption at time t, ,-��� is
the prediction of the energy consumption at time t, 0��� is the
set of all variables (such as noise) other than past energy
consumption records, ,�� � ��, that . might depend on.

As the usual practice in forecasting, we are interested to
find an estimation of ,��� according to some distance criteria.
For the distance (error) measurement, we have chosen
Symmetric Mean Absolute Percentage Error (SMAPE). For
the day i, the SMAPE is defined as:

3456,��� � 	 (
7 ∑ |9�!�:9-�!�|

9�!�;9-�!� < 100,!∈>?@�+� 																			 �2�,
where Ais the horizon of prediction in a given day. In this
paper H is 24.

The last portion of the data (last 10% in this paper) is set
aside as the test set to evaluate the performance of the
algorithm. Thus, our goal is to find an algorithm that
minimizes the error between actual value and its prediction on
the test set.

We use the notation ,-���	as the vector of prediction for the
next 24 hours ending at t (Fig 1. a). Also, �� � �1,2, … , B!��
and �� � �B!� C 1, … , B� are the set of indexes for training
and test sets respectively.

Figure 1. a) energy consumption vector (E) for 24 hours , b) input-output
pairs and division of data into training and test sets, c) labeling inputs as x

and outputs as y.

III. APPLIED ALGORITHMS

The three prediction algorithms used in this paper have
been described here briefly. A detailed description can be
found in [3].

A. K-Nearest Neighbor

This algorithm is a well-known algorithm in the machine
learning community [12] which previously has shown
promising results on our data [8] and is used as a means of
comparison in this paper.

Based on k-Nearest Neighbor (kNN) algorithm, each
sample (training, test or validation) is composed of input and
output pairs. In our application, the output is the energy
consumption for the next 24 hours,	���� � ,���, and the input
is the concatenation of the consumption records for up to D
prior days,	���� � 	 �,�� � 24�, ,�� � 48�, … , ,�� � 24F��
(Fig. 1. c). This concatenation repeats for all days: if there are
N days in the data set, there will be N-D+1 of these input-
output pairs (Fig 1.b). The total number of data points is	G �24B. Now, in order to find an estimate for ����∗� where ��∗ ∈�� is an instance of test set indexes, first the distance between ����∗� and all other ����� that belong to the training set is
computed. Distance could be any norm of their difference; we
have used the Euclidian distance here. After determining the k
closest	����� to	����∗�, the average of their corresponding ����� is generated as	����∗�. In this algorithm, the parameter k
needs to be determined. Fig. 2 illustrates the algorithm.

Figure 2. k-Nearest Neighbor Algorithm.

B. Auto Regressive Integrated Moving Average (ARIMA)

This model for time series behavior which is also called
Box-Jenkins models [9] (because of Box and Jenkins’
fundamental work in this area) models the behavior of the
future variables as a linear combination of the past values and
noise terms. The Auto Regressive (AR) portion models the
contribution of the past values of the variable, while the
Moving Average (MA) portion models the contribution of
noise terms. The Integrated (I) portion models the number of
differences needed in order to transform the time series to a
stationary time series [13]. The ARIMA model is often
specified by ARIMA(p,d,q); p, d and q are the order of the
AR, I, and MA terms respectively. Mathematically
ARIMA(p,d,q) for variable	H��� can be written as:

I1 � J K+
L

+M(
N+O �1 � N�PH��� � I1 � J Q+

R

+M(
N+O 	0��� (3),

where N is the lag operator such that NH��� � H�� � 1�, 0���
is a representative of the noise (or shock or error) contribution,

a)

b)

c)

and K, Q are the coefficients of the model that need to be
determined. For our problem, the formula can be rewritten as
following

,-��� � �1 � N�:P I1 � J Q+
R

+M(
N+O 	0���

C IJ K+
L

+M(
N+O ,���

(4).

Notice that instead of forecasting for the next 24 hours all
at once, each hour is forecast based on the previously forecast
hour(s) and the past actual values. This process iterates 24
times to complete the prediction of the next 24 hours.

Estimation of Ks and Qs is usually less challenging and is
done by some sort of fitting method like Maximum Likelihood
(ML) estimation once the order of model (i.e., determining p,
d, and q) is determined. Selecting the proper order for the
model is usually much more difficult, and there is no unique
method for it. One approach is to use the correlation analysis
of the time series and error terms through Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF).
There are suggested tips for determining p and q based on
ACF and PACF plots but it does not always give the best
model [13]. After selecting the model and estimating the
parameters, the fitness of the model to data is examined with
criteria such as Akaike Information Criterion (AIC), or
Bayesian Information Criterion (BIC). It is worth mentioning
that better AIC or BIC does not mean that model has the least
SMAPE. Therefore, we have used cross validation to select
the best model.

In this study, we used the ‘auto.arima’ function of the
‘forecast’ toolbox in the R programming language to select the
model and estimate the parameters [14]. The cross validation
was used to determine the (p,d,q) triple that reduces the
SMAPE the most. The K and Q parameters were estimated on
the training data for the optimum selected model to forecast on
the test dataset.

C. Pattern Sequence-based Forecasting (PSF)

This method was first introduced in [15] and an improved
version was published later [16]. The idea is based on
assigning each 24 hour set, i.e., a day, to a cluster and then the
forecast is based on the cluster labels rather than actual values
in each day. By clustering, the dimension of each day reduces
to one (label of the day) instead of 24 (values for 24 hours). It
also adds the robustness by substituting real values (e.g.,
power consumption) with integer numbers (cluster labels).

The first step in applying this algorithm is to find the
clustering method and the optimum number of clusters. In this
study, we use the k-means clustering algorithm similar to the
one in [15]. In order to determine the optimum number of
clusters, k-means clustering is performed on the training
dataset for a range of k and the one with the higher validity
index is selected. The value of k varies from 2 to the number
of unique days in the dataset. The validity index is a clustering
statistic that helps to find the optimum number of clusters. The
silhouette index,	3S, is the validity index used in [15]. If the

total number of data points is	B!�, for each data point	,���
(i.e., a day in the training dataset)	which belongs to cluster T
with GU members, silhouette value is defined as following:

��V��� � W��� � X���max	�W���, X����
(5),

where

W��� � 1GU � 1 J ���, ��
YZ+,Y∈[

X��� � 1B!� � GU J ���, ��
Y∉[

(6),

and ���, �� denotes the dissimilarity or distance between ,���
and 	,���. Value of ��V��� can range between -1 and +1 where
a negative value (W��� < X���) indicates a poor clustering for
data point 	,��� (the average distance of the 	,��� from other
data points in the same cluster is more than the average
distance of the 	,��� from all other data points belonging to
other clusters) and similarly, a positive value indicates a
suitable clustering for the	,���. The silhouette index is then
calculated as the average of ��V��� on all the data points.
Evidently, the number of clusters that maximizes the
silhouette index is selected as optimum.

In order to improve the finding of the true optimum number of
clusters, it has been proposed in [16] to use three different
validity indices for clustering, namely silhouette, Dunn, and
Davies-Bouldin. The optimum number of clusters is then
picked based on a voting mechanism which is very similar to
majority voting. However, in our simulations, these three
indices rarely agreed even on the top five number of clusters,
so we decided to only use silhouette index as in [15].

After clustering, a 24 hour vector of each day is being
substituted by a cluster number; so the real valued time series
of �,�24�, ,�48�, … , ,�G � 24�, ,�G�� is replaced with an
integer valued time series of �^�1�, ^�2�, … , ^�_:`a

`a �, ^ b _
`ac�

where ^ b +
`ac indicates the cluster label for data point ,���.

Now, in order to find an estimate for		,d���∗�, where ��∗ ∈ �� is
an instance of test set indexes, a template of cluster labels for
the previous days �^���∗ � F�, … , ^���∗ � 2�, ^���∗ � 1�� is
created where similar to kNN, F is the depth of comparison
(which is called window length in [16]). Then, the time series
of all the preceding days of	��∗, i.e. �^�1�, ^�2�, … , ^���∗ �2�, ^���∗ � 1�� is matched against the above mentioned
template. 	,-���∗� is then equal to the average of the cluster
centers of the days following immediately after the matched
template indices. If there is no match for the template with the
length of	F, the template length is shortened to F � 1 and
algorithm iterates until there is some match in the time series.
Similar to kNN, parameter F is determined through cross
validation.

The steps of PSF are detailed in Fig. 3.

Pattern Sequence-based Forecasting (PSF) Algorithm

Inputs: e,����f � �,�24�, ,�48�, … , ,�G � 24�, ,�G��	, F	
Output: 	,-���∗�
1. for
	 ∈ �2,3, … , hiG�jik	e,����fh�
2. Perform k-means clustering with
	 → T) with cluster

centers TT(, TT`, … , TT)
3. Calculate 3S�
�
4.
∗ � arg	� min)	 3S�
�)
5. Replace �,�����	with �^�!o`a�� according to T)∗
6. while ��� � 	∅
7. �kqr���∗� 	� 	 �^���∗ � F�, … , ^���∗ � 2�, ^���∗ � 1��
8. ��� � .�G���kqr+∈!o

��� �� �kqr���∗�)
9. F � F � 1
10.				,-���∗� � (

�+st�+Pu� ∑ TTU�+Pu�+��+∈+Pu

Figure 3. PSF Algorithm according to [15].

IV. SIMULATION AND ANALYSIS

A. Data and Preprocessing

The algorithms described above are applied to charging
stations located on the UCLA campus. The data used in this
paper were recorded from December 7, 2011 to October 16,
2013; however, not all outlets were in use all days. Among
charging outlets at UCLA, 15 outlets have charging data for
more than 60 effective days (days that some nonzero charging
has been reported); these outlets have been used in our
implementation. The number of effective days for each outlet
is reported in Table III.

Data for each outlet is in the format that is called Charging
Records. Each charging record contains the beginning and end
of the charging time as well as the acquired energy. The
Charging Records are converted to time series by uniformly
dividing the acquired energy to the charging interval; e.g., if
charging interval is 3 hours and the acquired energy is 3kWh,
it is assumed that the EV received 1kWh of energy in each
hour.

There was no normalization or feature extracting from the
data. The only implemented pre-processing was to force
energy records that were mistakenly recorded as more than the
physical maximum of the charging device (,v?u) and less
than zero to the interval of	�0, ,v?u�.
B. Parameter Selection

The following combinatorial parameters need to be
determined for our algorithms via cross validation: Depth (F)
for kNN and PSF, number of neighbors (
) for kNN, and
(p,d,q) for ARIMA.

There are some challenges with cross validation when
applying machine learning methods to time series forecasting
problems [17]. On one hand, in the machine learning
community, methods such as k-fold cross validation are
popular. In k-fold cross validation, for evaluating a certain set
of candidate parameters, the training data is randomly divided
into k blocks. Then the algorithm trains on k-1 blocks while
the error is calculated on the remaining part, i.e., the validation
set. This process iterates for total of k times, where each time

one of the blocks will be the validation set and the other k-1
blocks will make up the training set. The average error of the
algorithm on these k iterations will determine the final error
for the current selection of parameters. The whole process is
repeated for different combinations of parameters and the
combination that yields the least final error is selected as
algorithm parameters. For k-fold cross validation, 5 or 10 is a
typical choice for k [10].

On the other hand, in time series forecasting literature, in
order to recognize the temporal order of the data, methods
similar to last block validation are more popular. In this
method, only the last block of the training data is considered
as validation data and the performance of different parameters
are reported on it. It is similar to k-fold cross validation,
except that the data is not selected randomly and only the last
folder is being treated as validation set.

Advantage of k-fold cross-validation is to use all the
training data for validation whereas advantage of the last block
validation is respecting the temporal order. However, it has
been shown that last block validation has a poor estimation of
the error on the test set [17]. In order to take advantage of
these two methods, we are using a modified form of blocked
cross validation method. Blocked cross validation [17] is
similar to k-fold cross validation, except that the order of the
samples in each block has been preserved. Now, since the first
block does not have any preceding values, the modification
(similar to [18]) is to select cross validation blocks after a
minimum training data (which is used for training the first
block). Fig. 4 illustrates the modified blocked cross validation
with five validation blocks. First, the algorithm is trained on
{T1, T2} blocks and validated on V1 block, then it is trained
on {T1,T2,V1} blocks and validated on V2 block, and so on.
This cross validation method uses the maximum possible data
(in comparison with last block validation) while respecting the
temporal order of time series data.

Figure 4. Modified blocked cross vailadtion. Training data is divided to
minimum training data {T1,T2} and validation data {V1,…V5}. Model is
first trained on minimum training data {T1,T2} and evaluated on V1, then it

is trained on {T1,T2,V1} and evaluated on V2, up until training on
{T1,T2,V1,…,V4} and evaluating on V5.

In cross validation, the depth parameter (F) is varied
between 1 to 60 (equal to looking only at yesterday or up to
past two months) and the number of neighbors (k) varied
between 1 to 10 for kNN. Also, in the auto.arima function,
maximum of p and q was set to 5 and 8 respectively.
Parameter d was picked by the auto.arima function based on
the KPSS test [14].

C. Results and analysis

Training set in our simulation was the first 90% of the data
which makes the test set the last 10% of the data. Minimum
triaging data was 30% of the training data (30% of 90%=27%
of the whole data) and validation data consist 70% of the
training data. The results were not that sensitive to less or

more minimum training data. We used five blocks in cross
validation.

Table I and II show different parameters selected through
cross validation, for each site and each algorithm.

Table IV shows the average and standard deviation of
SMAPE on test days for each algorithm and each outlet.

TABLE I. SELECTED PARAMETERS FOR EACH ALGORITHM BASED ON
CROSS VALIDATION RESULTS

No Outlet kNN

(Depth)
ARIMA

(p,d,q)
PSF

(Depth)
MPSF

(Depth)
1 PS3L401LIA3 50 5,1,5 20 1
2 PS8L201LIA1 40 1,1,8 53 1
3 PS8L201LIA3 60 0,1,8 60 1
4 PS8L201LIA4 25 3,1,8 49 1
5 PS8L202LIIA1 10 2,1,6 59 1
6 PS8L202LIIA2 7 5,1,7 7 1
7 PS8L202LIIA3 15 5,0,8 59 1
8 PS9L401LIA1 8 4,1,6 5 1
9 PS9L401LIA2 60 5,1,5 12 1
10 PS9L401LIA3 20 1,1,2 60 1
11 PS9L401LIA5 6 4,1,5 33 1
12 PS9L401LIA6 60 5,1,6 11 2
13 PS9L601LIA1 45 4,1,8 14 1
14 PS9L601LIA3 40 4,1,5 17 1
15 PS9L601LIA4 50 5,1,8 25 1

As it was reported in our earlier work [8], and can be seen
in Table II, the optimum k (number of neighbors) is chosen to
be equal to 1 for the kNN algorithm in all outlets. This shows
that, regardless of the optimum number of previous days to
forecast, when dealing with algorithms based on nearest
neighbors, it is always better to look at the most similar event
in the past and copy its future energy consumption values as
the prediction.

TABLE II. SELECTED NUMBER OF
NEIGHBOURS FOR KNN AND CLUSTERS FOR PSF

BASED ON CROSS VALIDATION RESULTS

No kNN

(Neighbors)
PSF

(Clusters)
MPSF

(Clusters)
 No Effective

Days

 1 1 29 28 1 95
2 1 20 33 2 84
3 1 38 47 3 97
4 1 29 24 4 171
5 1 98 89 5 163
6 1 101 101 6 168
7 1 2 90 7 151
8 1 44 65 8 178
9 1 71 88 9 126
10 1 2 130 10 307
11 1 86 86 11 189
12 1 104 127 12 269
13 1 80 74 13 206
14 1 65 54 14 178
15 1 53 28 15 124

Another interesting observation is the poor average
performance of the ARIMA model compared with NN (Table
IV, last row). We speculate the reason is lots of irregularities
in the data along with sparseness (some outlet plugs are not
used for a few days and these days do not occur periodically).

Consequently, ARIMA that looks for periodic behaviors will
fail in this situation compared to NN that looks for local
similarities and is able to work around this situation.

All simulations were run with RStudio Version 0.98.507
on an Intel Core i-7 CPU at 3.40 GHz with 16 GB RAM.

TABLE IV. AVERAGE AND STANDARD DEVIATION OF SMAPE (%) ON
TEST DAYS FOR EACH ALGORITHM

No kNN ARIMA PSF MPSF

1 3.95 ± 6.64 9.71 ± 29.28 42.50 ± 39.41 6.30 ± 8.79
2 6.02 ± 13.12 5.30 ± 22.33 8.35 ± 19.65 0.90 ± 3.64
3 0.60 ± 2.18 1.13 ± 10.58 70.01 ± 7.26 0.25 ± 1.56
4 13.31 ± 12.94 26.17 ± 43.78 15.85 ± 25.52 10.72 ± 11.80
5 20.46 ± 18.64 39.42 ± 48.23 38.01 ± 23.89 31.99 ± 22.00
6 36.25 ± 15.99 40.39 ± 48.58 37.04 ± 27.63 26.67 ± 16.99
7 25.72 ± 19.26 84.18 ± 34.60 81.81 ± 20.89 23.33 ± 18.41
8 29.48 ± 32.33 40.63 ± 48.61 27.82 ± 16.02 18.38 ± 21.77
9 17.56 ± 12.01 46.65 ± 49.33 22.00 ± 12.55 13.98 ± 12.72
10 7.80 ± 15.81 11.81 ± 31.63 96.87 ± 9.01 7.76 ± 17.51
11 14.23 ± 14.97 8.05 ± 26.83 49.07 ± 39.38 8.40 ± 13.68
12 18.05 ± 23.27 9.34 ± 28.47 49.63 ± 31.46 23.25 ± 20.31
13 16.94 ± 14.23 27.84 ± 44.20 35.85 ± 33.73 15.51 ± 10.64
14 9.04 ± 9.55 15.18 ± 34.95 39.50 ± 34.38 10.72 ± 10.70
15 11.88 ± 14.34 8.57 ± 27.46 35.08 ± 39.08 8.63 ± 12.14
Mean 15.42 ± 15.02 24.96 ± 35.26 43.29 ± 25.32 13.78 ± 13.51

V. PROPOSED ALGORITHM: MODIFIED PSF

Based on the results analyzed in the previous section, the
Nearest Neighbor (NN) algorithm has higher accuracy on
most of the charging outlets; and outperforms PSF. However,
noticing the way PSF works, it is very similar to kNN, with
the difference that the number of nearest neighbors (k) is not
specified beforehand; rather it is equal to the number of
template matching incidents. On the other hand, from the
results in Table II, it is evident that kNN has best performance
when only one nearest neighbor is considered. Therefore, we
propose a modified PSF, so that the PSF considers only the
most recent match in the previous data and returns the
corresponding cluster center as output.

Also, the optimum cluster size seems to be ill conditioned
for some of outlets, e.g., outlet 7, and 10. As an example
silhouette index as a function of number of clusters is depicted
in Fig 5 for outlet 10. This is expected since the data is sparse;
therefore, the number of clusters that maximizes the silhouette
index might be only two (one cluster for near zero days and
one cluster for non-zero days). Two clusters essentially map
the time series to a binary one and it is not distinguishing
enough for forecasting purposes since it cannot code different
possible scenarios. We decided to start k (number of clusters
in k-means) equal to 10% of distinct days to avoid degenerate
clustering.

An issue in the original PSF algorithm is that sometimes
there is no matched sequence in the past, even when the depth
of the template is 1. This means that the last day in the test
template	^���∗ � 1�, is a member of a cluster with only one
member. The algorithm fails in this case. In our modification,
we set the output in such a case to be the center of the most
common cluster. The modified algorithm is depicted in Fig 6.

TABLE III. NUMBER
OF EFFECTIVE DAYS FOR
EACH CHARGING OUTLET

Modified Pattern Sequence-based Forecasting (MPSF)

Algorithm

Inputs: e,����f � �,�24�, ,�48�, … , ,�G � 24�, ,�G��	, F	
Output: ,-���∗�
1. for
	 ∈ �0.1 < hiG�jik	e,����fh, … , hiG�jik	e,����fh�
2. Perform k-means clustering with
	 → T) with cluster

centers TT(, TT`, … , TT)
3. Calculate 3S�
�
4.
∗ � arg	� min)	 3S�
�)
5. Replace �,�����	with �^�!o`a�� according to T)∗
6. while ���� � 	∅	&	F > 0�
7. �kqr���∗� 	� 	 �^���∗ � F�, … , ^���∗ � 2�, ^���∗ � 1��
8. ��� � max	�.�G���kqr+∈!o

��� �� �kqr���∗�))
9. F � F � 1
10. if F � 	0
11. ��� � arg	�max zcount+∈!o ^���}�
12.				,-���∗� � TTU�+Pu�

Figure 5. Silhouette index for clustering outlet 10 data. At 2 (slected by
PSF), there is a cosmetic maximum for the index while 130 (selcted by

MPSF) seems to be a better maximum; clustering and prediction error wise.

The result of applying the MPSF is shown in Table IV.
Comparing PSF and MPSF results, it is interesting how
increase in the optimum number of clusters (Table II), has
decreased the depth of template matching (Table I) such that
for most outlets, by looking only at today’s data a low error
prediction can be made for tomorrow’s consumption.

Figure 6. Modififed PSF (MPSF) Algorithm.

VI. CONCLUSION AND FUTURE WORK

In this paper, we analyze three algorithms for the
prediction of energy consumption in EV charging stations at
the outlet level and propose an improved one. Out of these
three algorithms, kNN, ARIMA, and PSF, Nearest Neighbor
(kNN with k=1) was the most successful algorithm with the
SMAPE measure. Considering the advantage of PSF which is
increased robustness to noise in comparison with NN, and the
advantage of NN which has the least SMAPE for our data, we
proposed Modified PSF (MPSF) where only the most recent
match in the previous data is used to generate the prediction.
Results show that the modification has improved the
performance.

The NN algorithm is currently running on the cellphone
application for EV owners at UCLA due to its speed [8]. In
the future work, we plan to reduce the computational load of

the MSPF algorithm further, to make it suitable for the real
time cellphone application.

REFERENCES
[1] Alternative Fuels Data Center, U.S. Department of Energy, [Online].

Available http://www.afdc.energy.gov/fuels/stations_counts.html
[2] http://www.chademo.com/
[3] M. Majidpour, W.P. Chen, “Grid and Schedule Constrained Electric

Vehicle Charging Algorithm Using Node Sensitivity Approach”, Proc.
2012 Intl. Conf. Connected Vehicles and Expo (ICCVE), pp. 304-310.

[4] C. Chung, A. Shepelev, C. Qiu, C. Chu, R. Gadh, "Design of RFID
Mesh Network for Electric Vehicle Smart Charging Infrastructure",
IEEE RFID TA 2013, Johor Bahru, Malaysia, 4-5 September, 2013.

[5] S. Mal, A. Chattopadhyay, A. Yang, R. Gadh, "Electric vehicle smart
charging and vehicle-to-grid operation", Intl Journal of Parallel,
Emergent and Distributed Systems, vol. 27, no. 3. March 2012.

[6] C.Chung, E. Youn, J. Chynoweth, C. Qiu, C. Chu, R. Gadh, "Safety
Design for Smart Electric Vehicle Charging with Current and
Multiplexing Control", 2013 IEEE International Conference on Smart
Grid Communications, Vancouver, Canada, 21-24 October, 2013.

[7] C. Chung, J. Chynoweth, C. Qiu, C. Chu, R. Gadh, "Design of Fast
Response Smart Electric Vehicle Charging Infrastructure", IEEE Green
Energy and Systems Conf., Long Beach, CA, Nov 25, 2013.

[8] M. Majidpour, C. Qiu, C-Y. Chung, P. Chu, R. Gadh, H. Pota, “Fast
Demand Forecast of Electric Vehicle Charging Stations for Cell Phone
Application”, in Proc. IEEE/PES General Meeting, 27-31 July 2014,
Washington, D.C.,USA, in press.

[9] GEP Box, GM Jenkins, GC Reinsel, Time series analysis: forecasting
and control, Wiley Series in Probability and Statistics, 2013 (4th ed.)

[10] R. Kohavi, "A study of cross-validation and bootstrap for accuracy
estimation and model selection". Proc. of the Fourteenth International
Joint Conference on Artificial Intelligence 2 (12): pp.1137–1143, 1995.

[11] C. M. Bishop, N. M. Nasrabadi, Pattern recognition and machine
learning. Vol. 1. New York: springer, 2006.

[12] N. S. Altman, "An introduction to kernel and nearest-neighbor
nonparametric regression". The American Statistician 46 (3): pp. 175–
185, 1992.

[13] Weisang, G., & Awazu, Y. (2008). Vagaries of the Euro: an
Introduction to ARIMA Modeling. Case Studies in Business, Industry,
and Government Statistics, 2, 45-55.

[14] Hyndman, R.J. and Khandakar, Y. (2008) "Automatic time series
forecasting: The forecast package for R", Journal of Statistical
Software, 26(3).

[15] Martínez-Álvarez, F., Troncoso, A., Riquelme, J. C., & Aguilar-Ruiz, J.
S. (2008, December). LBF: A labeled-based forecasting algorithm and
its application to electricity price time series. In Data Mining, 2008.
ICDM'08. Eighth IEEE International Conference on (pp. 453-461).
IEEE.

[16] Martinez Alvarez, F., Troncoso, A., Riquelme, J. C., & Aguilar Ruiz, J.
S. (2011). Energy time series forecasting based on pattern sequence
similarity. Knowledge and Data Engineering, IEEE Transactions on,
23(8), 1230-1243.

[17] Bergmeir, Christoph, and José M. Benítez. "On the use of cross-
validation for time series predictor evaluation." Information Sciences
191 (2012): 192-213.

[18] http://robjhyndman.com/hyndsight/crossvalidation/
[19] Luo, Zhuowei, Yonghua Song, Zechun Hu, Zhiwei Xu, Xia Yang, and

Kaiqiao Zhan. "Forecasting charging load of plug-in electric vehicles in
China." In Power and Energy Society General Meeting, 2011 IEEE, pp.
1-8. IEEE, 2011.

[20] Feixiang, Xie, Huang Mei, Zhang Weige, and Li Juan. "Research on
electric vehicle charging station load forecasting." In Advanced Power
System Automation and Protection (APAP), 2011 International
Conference on, vol. 3, pp. 2055-2060. IEEE, 2011.

[21] Chen, Wenying, Xingying Chen, Yingchen Liao, Gang Wang, Jianguo
Yao, and Kai Chen. "Short-term load forecasting based on time series
reconstruction and support vector regression." In TENCON 2013-2013
IEEE Region 10 Conference (31194), pp. 1-4. IEEE, 2013.

[22] Xydas, E. S., C. E. Marmaras, L. M. Cipcigan, A. S. Hassan, and N.
Jenkins. "Electric Vehicle Load Forecasting using Data Mining
Methods."

0 50 100 150 200 250 300

0
.5

0
.7

0
.9

Number of Clusters

S
il
h
o
u
e
tt
e
 I
n
d
e
x

