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Abstract—Three algorithms for the forecasting of energy 

consumption at individual EV charging outlets have been 

applied to real world data from the UCLA campus. Out of these 

three algorithms, namely k-Nearest Neighbor (kNN), ARIMA, 

and Pattern Sequence Forecasting (PSF), kNN with k=1, was the 

best and PSF was the worst performing algorithm with respect 

to the SMAPE measure. The advantage of PSF is its increased 

robustness to noise by substituting the real valued time series 

with an integer valued one, and the advantage of NN is having 

the least SMAPE for our data. We propose a Modified PSF 

algorithm (MPSF) which is a combination of PSF and NN; it 

could be interpreted as NN on integer valued data or as PSF 

with considering only the most recent neighbor to produce the 

output. Some other shortcomings of PSF are also addressed in 

the MPSF. Results show that MPSF has improved the forecast 

performance. 

I. INTRODUCTION 

Reducing the charging time of Electric Vehicles (EVs) 
(and Plug-in Hybrid Electric Vehicles (PHEVs)) is a big 
challenge. The minimum battery size for EVs has to be around 
9 kWh according to the EV33 rule [3]. In practice, most EVs 
have larger batteries, e.g., 16.5 kWh for Chevrolet Volt, 
24kWh for Nissan Leaf, or up to 85kWh for Tesla. Although 
there are fast DC chargers that can deliver up to 50kW (100A 
at 500VDC), the majority of charging stations are Level 1 
household chargers, delivering 3.3 kW (16A at 230VAC), 
which makes the charging last around 8 hours for a Nissan 
Leaf. EV owners also can (and sometimes are obligated to) 
charge their vehicle in places other than home, such as public 
charging stations or charging stations at their work place. As 
of May 2014, there are 22,671 non-residential charging outlets 
in the US [1]. Although there has been a lot of research on 
charging station infrastructure [4]-[7], only 592 of the above 
mentioned stations are CHAdeMo fast DC chargers [2]. In this 
situation, an estimation of how long an EV owner should wait 
in order to charge the EV can be a very beneficial piece of 
information, especially if the expected waiting time can be 
accessed through the Internet or on a smartphone before 
leaving for the charging station. On the other hand, having 
access to this data will be useful for the EV charging station 
owners too, since it will help them to adjust their inventory in 

advance. Both of these requirements can be addressed by the 
energy consumption forecast at EV charging stations.  

 For the above mentioned reasons, forecasting EV loads is 
of recent interest to researchers.  In [19], authors have 
proposed a method to forecast the EV charging load in China 
based on the Monte Carlo simulation. Reference [20] 
discusses three daily-load forecasting methods, namely BP 
and RBF Neural Networks, and GM(1,1) from the Gray model 
families on one charging station. Another method has been 
proposed in [21] based on Support Vector Regression for 
forecasting EV charging loads at the city level. Four 
forecasting methods including Decision Tables, Decision 
Trees, MPL Neural Networks, and Support Vector Machines 
(SVM) have been compared in [22] on the US aggregated 
residential data. 

The work presented here is different from previously 
mentioned studies in that we have used just one type of 
recorded data, Charging Records, which only contains the start 
and end of the charging transaction and the total amount  of 
energy received in the charging transaction (a scalar value; not 
time dependent). Geographical or driving habit related data 
was not used in our prediction. Our predictions are at the 
charging outlet level (not charging station, parking lot or city 
level) which makes it a more difficult problem as it does not 
have the aggregated behavior of charging stations, parking 
lots, or cities. 

In our previous work [8], we have proposed a framework 
for fast prediction of the EV load at the charging outlet level 
for cellphone application. We found that the k-Nearest 
Neighbor (kNN) algorithm had a better performance. As a 
continuation of the previous work, in this paper we have 
compared kNN with two other algorithms: ARIMA as an 
example of the classical statistical method and Pattern 
Sequence-based Forecasting (PSF) as a recently proposed 
successful algorithm in energy price forecasting. 

The rest of this paper is organized as follows: Section II 
formulates the problem, Section III briefly explains the kNN, 
ARIMA, and PSF methods. Section IV reports and analyzes 
the result of applying these algorithms on the University of 
California, Los Angeles (UCLA) parking structures’ EV 

This work has been sponsored in part by grant from the LADWP/DOE fund 
20699 & 20686, Smart Grid Regional Demonstration Project. 
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k-Nearest Neighbor Algorithm 

Inputs: �����, �����, ����∗�, 
 
Output: ����∗� 
1.    for �	 ∈ �� 
2. ������� � ‖����∗� � ����‖ 
3.    for �	 ∈ �1, … , 
� 
4.    ������ � index	of	�!" smallest������  
5.				����∗� � (

) ∑ ���������+∈�(,…,)�  

charging data. Section V proposes a new algorithm, Modified 
PSF (MPSF), and presents its application to our data, and 
Section VI concludes the paper with presenting the direction 
for the future work. 

II. PROBLEM FORMULATION 

The objective is to predict the energy demand in the next 
24 hours at each charging outlet. The total energy available for 
all charging stations in a parking structure is constrained by 
the size of the distribution transformer. Formally, we assume 
there is some function relating future available energy and the 
past consumed energy: 

,-��� � ./,�� � ��, 0���1					� ∈ �1,2, … �																								�1�, 
where ,��� is the actual energy consumption at time t, ,-��� is 
the prediction of the energy consumption at time t, 0��� is the 
set of all variables (such as noise) other than past energy 
consumption records, ,�� � ��, that . might depend on.   

As the usual practice in forecasting, we are interested to 
find an estimation of ,��� according to some distance criteria. 
For the distance (error) measurement, we have chosen 
Symmetric Mean Absolute Percentage Error (SMAPE). For 
the day i, the SMAPE is defined as: 

3456,��� � 	 (
7 ∑ |9�!�:9-�!�|

9�!�;9-�!� < 100,!∈>?@�+� 																			 �2�, 
where Ais the horizon of prediction in a given day. In this 
paper H is 24. 

The last portion of the data (last 10% in this paper) is set 
aside as the test set to evaluate the performance of the 
algorithm. Thus, our goal is to find an algorithm that 
minimizes the error between actual value and its prediction on 
the test set.  

We use the notation ,-���	as the vector of prediction for the 
next 24 hours ending at t (Fig 1. a). Also, �� � �1,2, … , B!�� 
and �� � �B!� C 1, … , B� are the set of indexes for training 
and test sets respectively.  

 
Figure 1.  a) energy consumption vector (E) for 24 hours , b) input-output 
pairs and division of data into training and test sets, c) labeling inputs as x 

and outputs as y. 

III. APPLIED ALGORITHMS 

The three prediction algorithms used in this paper have 
been described here briefly. A detailed description can be 
found in [3]. 

A. K-Nearest Neighbor 

This algorithm is a well-known algorithm in the machine 
learning community [12] which previously has shown 
promising results on our data [8] and is used as a means of 
comparison in this paper.  

Based on k-Nearest Neighbor (kNN) algorithm, each 
sample (training, test or validation) is composed of input and 
output pairs. In our application, the output is the energy 
consumption for the next 24 hours,	���� � ,���, and the input 
is the concatenation of the consumption records for up to D 
prior days,	���� � 	 �,�� � 24�, ,�� � 48�, … , ,�� � 24F�� 
(Fig. 1. c). This concatenation repeats for all days: if there are 
N days in the data set, there will be N-D+1 of these input-
output pairs (Fig 1.b). The total number of data points is	G �24B. Now, in order to find an estimate for ����∗� where ��∗ ∈�� is an instance of test set indexes, first the distance between ����∗� and all other ����� that belong to the training set is 
computed. Distance could be any norm of their difference; we 
have used the Euclidian distance here. After determining the k 
closest	����� to	����∗�, the average of their corresponding ����� is generated as	����∗�. In this algorithm, the parameter k 
needs to be determined. Fig. 2 illustrates the algorithm.  

Figure 2.  k-Nearest Neighbor Algorithm. 

B. Auto Regressive Integrated Moving Average (ARIMA)  

This model for time series behavior which is also called 
Box-Jenkins models [9] (because of Box and Jenkins’ 
fundamental work in this area) models the behavior of the 
future variables as a linear combination of the past values and 
noise terms. The Auto Regressive (AR) portion models the 
contribution of the past values of the variable, while the 
Moving Average (MA) portion models the contribution of 
noise terms. The Integrated (I) portion models the number of 
differences needed in order to transform the time series to a 
stationary time series [13]. The ARIMA model is often 
specified by ARIMA(p,d,q); p, d and q  are the order of the 
AR, I, and MA terms respectively. Mathematically 
ARIMA(p,d,q) for variable	H��� can be written as: 

I1 � J K+
L

+M(
N+O �1 � N�PH��� � I1 � J Q+

R

+M(
N+O 	0���  (3), 

where N is the lag operator such that NH��� � H�� � 1�, 0��� 
is a representative of the noise (or shock or error) contribution, 

a) 

 
b) 

 
c) 

 



and K, Q are the coefficients of the model that need to be 
determined. For our problem, the formula can be rewritten as 
following 

,-��� � �1 � N�:P I1 � J Q+
R

+M(
N+O 	0���

C IJ K+
L

+M(
N+O ,��� 

 

 
(4). 
 

Notice that instead of forecasting for the next 24 hours all 
at once, each hour is forecast based on the previously forecast 
hour(s) and the past actual values. This process iterates 24 
times to complete the prediction of the next 24 hours.  

Estimation of Ks and Qs is usually less challenging and is 
done by some sort of fitting method like Maximum Likelihood 
(ML) estimation once the order of model (i.e., determining p, 
d, and q) is determined. Selecting the proper order for the 
model is usually much more difficult, and there is no unique 
method for it. One approach is to use the correlation analysis 
of the time series and error terms through Autocorrelation 
Function (ACF) and Partial Autocorrelation Function (PACF). 
There are suggested tips for determining p and q based on 
ACF and PACF plots but it does not always give the best 
model [13]. After selecting the model and estimating the 
parameters, the fitness of the model to data is examined with 
criteria such as Akaike Information Criterion (AIC), or 
Bayesian Information Criterion (BIC). It is worth mentioning 
that better AIC or BIC does not mean that model has the least 
SMAPE. Therefore, we have used cross validation to select 
the best model.  

In this study, we used the ‘auto.arima’ function of the 
‘forecast’ toolbox in the R programming language to select the 
model and estimate the parameters [14]. The cross validation 
was used to determine the (p,d,q) triple that reduces the 
SMAPE the most. The K and Q parameters were estimated on 
the training data for the optimum selected model to forecast on 
the test dataset. 

C. Pattern Sequence-based Forecasting (PSF) 

This method was first introduced in [15] and an improved 
version was published later  [16]. The idea is based on 
assigning each 24 hour set, i.e., a day, to a cluster and then the 
forecast is based on the cluster labels rather than actual values 
in each day. By clustering, the dimension of each day reduces 
to one (label of the day) instead of 24 (values for 24 hours). It 
also adds the robustness by substituting real values (e.g., 
power consumption) with integer numbers (cluster labels). 

The first step in applying this algorithm is to find the 
clustering method and the optimum number of clusters. In this 
study, we use the k-means clustering algorithm similar to the 
one in [15]. In order to determine the optimum number of 
clusters, k-means clustering is performed on the training 
dataset for a range of k and the one with the higher validity 
index is selected. The value of k varies from 2 to the number 
of unique days in the dataset. The validity index is a clustering 
statistic that helps to find the optimum number of clusters. The 
silhouette index,	3S, is the validity index used in [15]. If the 

total number of data points is	B!�, for each data point	,��� 
(i.e., a day in the training dataset)	which belongs to cluster T 
with GU members, silhouette value is defined as following: 

��V��� � W��� � X���max	�W���, X����  
(5), 
 

where   

W��� � 1GU � 1 J ���, ��
YZ+,Y∈[

 

X��� � 1B!� � GU J ���, ��
Y∉[

 

 

 
(6), 
 

and ���, �� denotes the dissimilarity or distance between ,��� 
and 	,���. Value of ��V��� can range between -1 and +1 where 
a negative value (W��� < X���) indicates a poor clustering for 
data point 	,��� (the average distance of the 	,��� from other 
data points in the same cluster is more than the average 
distance of the 	,��� from all other data points belonging to 
other clusters) and similarly, a positive value indicates a 
suitable clustering for the	,���. The silhouette index is then 
calculated as the average of ��V��� on all the data points. 
Evidently, the number of clusters that maximizes the 
silhouette index is selected as optimum. 

In order to improve the finding of the true optimum number of 
clusters, it has been proposed in [16] to use three different 
validity indices for clustering, namely silhouette, Dunn, and 
Davies-Bouldin. The optimum number of clusters is then 
picked based on a voting mechanism which is very similar to 
majority voting. However, in our simulations, these three 
indices rarely agreed even on the top five number of clusters, 
so we decided to only use silhouette index as in [15]. 

After clustering, a 24 hour vector of each day is being 
substituted by a cluster number; so the real valued time series 
of �,�24�, ,�48�, … , ,�G � 24�, ,�G�� is replaced with an 
integer valued time series of �^�1�, ^�2�, … , ^�_:`a

`a �, ^ b _
`ac� 

where ^ b +
`ac indicates the cluster label for data point ,���. 

Now, in order to find an estimate for		,d���∗�, where ��∗ ∈ �� is 
an instance of test set indexes, a template of cluster labels for 
the previous days �^���∗ � F�, … , ^���∗ � 2�, ^���∗ � 1�� is 
created where similar to kNN, F is the depth of comparison 
(which is called window length in [16]). Then, the time series 
of all the preceding days of	��∗, i.e. �^�1�, ^�2�, … , ^���∗ �2�, ^���∗ � 1�� is matched against the above mentioned 
template. 	,-���∗� is then equal to the average of the cluster 
centers of the days following immediately after the matched 
template indices.  If there is no match for the template with the 
length of	F, the template length is shortened to F � 1 and 
algorithm iterates until there is some match in the time series. 
Similar to kNN, parameter F is determined through cross 
validation. 

The steps of PSF are detailed in Fig. 3.  



Pattern Sequence-based Forecasting (PSF) Algorithm 
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Figure 3.  PSF Algorithm according to [15]. 

IV. SIMULATION AND ANALYSIS 

A. Data and Preprocessing 

The algorithms described above are applied to charging 
stations located on the UCLA campus. The data used in this 
paper were recorded from December 7, 2011 to October 16, 
2013; however, not all outlets were in use all days. Among 
charging outlets at UCLA, 15 outlets have charging data for 
more than 60 effective days (days that some nonzero charging 
has been reported); these outlets have been used in our 
implementation. The number of effective days for each outlet 
is reported in Table III.  

Data for each outlet is in the format that is called Charging 
Records. Each charging record contains the beginning and end 
of the charging time as well as the acquired energy. The 
Charging Records are converted to time series by uniformly 
dividing the acquired energy to the charging interval; e.g., if 
charging interval is 3 hours and the acquired energy is 3kWh, 
it is assumed that the EV received 1kWh of energy in each 
hour.  

There was no normalization or feature extracting from the 
data. The only implemented pre-processing was to force 
energy records that were mistakenly recorded as more than the 
physical maximum of the charging device (,v?u) and less 
than zero to the interval of	�0, ,v?u�. 
B. Parameter Selection 

The following combinatorial parameters need to be 
determined for our algorithms via cross validation: Depth (F) 
for kNN and PSF, number of neighbors (
) for kNN, and 
(p,d,q) for ARIMA.   

There are some challenges with cross validation when 
applying machine learning methods to time series forecasting 
problems [17]. On one hand, in the machine learning 
community, methods such as k-fold cross validation are 
popular. In k-fold cross validation, for evaluating a certain set 
of candidate parameters, the training data is randomly divided 
into k blocks. Then the algorithm trains on k-1 blocks while 
the error is calculated on the remaining part, i.e., the validation 
set. This process iterates for total of k times, where each time 

one of the blocks will be the validation set and the other k-1 
blocks will make up the training set. The average error of the 
algorithm on these k iterations will determine the final error 
for the current selection of parameters. The whole process is 
repeated for different combinations of parameters and the 
combination that yields the least final error is selected as 
algorithm parameters. For k-fold cross validation, 5 or 10 is a 
typical choice for k [10]. 

On the other hand, in time series forecasting literature, in 
order to recognize the temporal order of the data, methods 
similar to last block validation are more popular. In this 
method, only the last block of the training data is considered 
as validation data and the performance of different parameters 
are reported on it. It is similar to k-fold cross validation, 
except that the data is not selected randomly and only the last 
folder is being treated as validation set. 

Advantage of k-fold cross-validation is to use all the 
training data for validation whereas advantage of the last block 
validation is respecting the temporal order. However, it has 
been shown that last block validation has a poor estimation of 
the error on the test set [17]. In order to take advantage of 
these two methods, we are using a modified form of blocked 
cross validation method. Blocked cross validation [17] is 
similar to k-fold cross validation, except that the order of the 
samples in each block has been preserved. Now, since the first 
block does not have any preceding values, the modification 
(similar to [18]) is to select cross validation blocks after a 
minimum training data (which is used for training the first 
block). Fig. 4 illustrates the modified blocked cross validation 
with five validation blocks. First, the algorithm is trained on 
{T1, T2} blocks and validated on V1 block, then it is trained 
on {T1,T2,V1} blocks and validated on V2 block, and so on. 
This cross validation method uses the maximum possible data 
(in comparison with last block validation) while respecting the 
temporal order of time series data.  

Figure 4.  Modified blocked cross vailadtion. Training data is divided to 
minimum training data {T1,T2} and validation data {V1,…V5}. Model is 
first trained on minimum training data {T1,T2} and evaluated on V1, then it 

is trained on {T1,T2,V1} and evaluated on V2, up until training on 
{T1,T2,V1,…,V4} and evaluating on V5.  

In cross validation, the depth parameter (F) is varied 
between 1 to 60 (equal to looking only at yesterday or up to 
past two months) and the number of neighbors (k) varied 
between 1 to 10 for kNN. Also, in the auto.arima function, 
maximum of p and q was set to 5 and 8 respectively. 
Parameter d was picked by the auto.arima function based on 
the KPSS test [14]. 

C. Results and analysis 

Training set in our simulation was the first 90% of the data 
which makes the test set the last 10% of the data. Minimum 
triaging data was 30% of the training data (30% of 90%=27% 
of the whole data) and validation data consist 70% of the 
training data. The results were not that sensitive to less or 



more minimum training data. We used five blocks in cross 
validation. 

Table I and II show different parameters selected through 
cross validation, for each site and each algorithm. 

Table IV shows the average and standard deviation of 
SMAPE on test days for each algorithm and each outlet. 

TABLE I.  SELECTED PARAMETERS FOR EACH ALGORITHM BASED ON 
CROSS VALIDATION RESULTS 

No Outlet kNN 

(Depth) 
ARIMA 

(p,d,q) 
PSF 

(Depth) 
MPSF 

(Depth) 
1 PS3L401LIA3 50 5,1,5 20 1 
2 PS8L201LIA1 40 1,1,8 53 1 
3 PS8L201LIA3 60 0,1,8 60 1 
4 PS8L201LIA4 25 3,1,8 49 1 
5 PS8L202LIIA1 10 2,1,6 59 1 
6 PS8L202LIIA2 7 5,1,7 7 1 
7 PS8L202LIIA3 15 5,0,8 59 1 
8 PS9L401LIA1 8 4,1,6 5 1 
9 PS9L401LIA2 60 5,1,5 12 1 
10 PS9L401LIA3 20 1,1,2 60 1 
11 PS9L401LIA5 6 4,1,5 33 1 
12 PS9L401LIA6 60 5,1,6 11 2 
13 PS9L601LIA1 45 4,1,8 14 1 
14 PS9L601LIA3 40 4,1,5 17 1 
15 PS9L601LIA4 50 5,1,8 25 1 

 

As it was reported in our earlier work [8], and can be seen 
in Table II, the optimum k (number of neighbors) is chosen to 
be equal to 1 for the kNN algorithm in all outlets. This shows 
that, regardless of the optimum number of previous days to 
forecast, when dealing with algorithms based on nearest 
neighbors, it is always better to look at the most similar event 
in the past and copy its future energy consumption values as 
the prediction.  

TABLE II.  SELECTED NUMBER OF 
NEIGHBOURS FOR KNN AND CLUSTERS FOR PSF 

BASED ON CROSS VALIDATION RESULTS  

No kNN 

(Neighbors) 
PSF 

(Clusters) 
MPSF 

(Clusters) 
 No Effective 

Days 

 1 1 29 28  1 95 
2 1 20 33  2 84 
3 1 38 47  3 97 
4 1 29 24  4 171 
5 1 98 89  5 163 
6 1 101 101  6 168 
7 1 2 90  7 151 
8 1 44 65  8 178 
9 1 71 88  9 126 
10 1 2 130  10 307 
11 1 86 86  11 189 
12 1 104 127  12 269 
13 1 80 74  13 206 
14 1 65 54  14 178 
15 1 53 28  15 124 

 

Another interesting observation is the poor average 
performance of the ARIMA model compared with NN (Table 
IV, last row). We speculate the reason is lots of irregularities 
in the data along with sparseness (some outlet plugs are not 
used for a few days and these days do not occur periodically). 

Consequently, ARIMA that looks for periodic behaviors will 
fail in this situation compared to NN that looks for local 
similarities and is able to work around this situation. 

All simulations were run with RStudio Version 0.98.507 
on an Intel Core i-7 CPU at 3.40 GHz with 16 GB RAM. 

TABLE IV.  AVERAGE AND STANDARD DEVIATION OF SMAPE (%) ON 
TEST DAYS FOR EACH ALGORITHM 

No kNN ARIMA PSF MPSF 

1 3.95 ± 6.64 9.71 ± 29.28 42.50 ± 39.41 6.30 ± 8.79 
2 6.02 ± 13.12 5.30 ± 22.33 8.35 ± 19.65 0.90 ± 3.64 
3 0.60 ± 2.18 1.13 ± 10.58 70.01 ± 7.26 0.25 ± 1.56 
4 13.31 ± 12.94 26.17 ± 43.78 15.85 ± 25.52 10.72 ± 11.80 
5 20.46 ± 18.64 39.42 ± 48.23 38.01 ± 23.89 31.99 ± 22.00 
6 36.25 ± 15.99 40.39 ± 48.58 37.04 ± 27.63 26.67 ± 16.99 
7 25.72 ± 19.26 84.18 ± 34.60 81.81 ± 20.89 23.33 ± 18.41 
8 29.48 ± 32.33 40.63 ± 48.61 27.82 ± 16.02 18.38 ± 21.77 
9 17.56 ± 12.01 46.65 ± 49.33 22.00 ± 12.55 13.98 ± 12.72 
10 7.80 ± 15.81 11.81 ± 31.63 96.87 ± 9.01 7.76 ± 17.51 
11 14.23 ± 14.97 8.05 ± 26.83 49.07 ± 39.38 8.40 ± 13.68 
12 18.05 ± 23.27 9.34 ± 28.47 49.63 ± 31.46 23.25 ± 20.31 
13 16.94 ± 14.23 27.84 ± 44.20 35.85 ± 33.73 15.51 ± 10.64 
14 9.04 ± 9.55 15.18 ± 34.95 39.50 ± 34.38 10.72 ± 10.70 
15 11.88 ± 14.34 8.57 ± 27.46 35.08 ± 39.08 8.63 ± 12.14 
Mean 15.42 ± 15.02 24.96 ± 35.26 43.29 ± 25.32 13.78 ± 13.51 

 

V. PROPOSED ALGORITHM: MODIFIED PSF 

Based on the results analyzed in the previous section, the 
Nearest Neighbor (NN) algorithm has higher accuracy on 
most of the charging outlets; and outperforms PSF. However, 
noticing the way PSF works, it is very similar to kNN, with 
the difference that the number of nearest neighbors (k) is not 
specified beforehand; rather it is equal to the number of 
template matching incidents. On the other hand, from the 
results in Table II, it is evident that kNN has best performance 
when only one nearest neighbor is considered. Therefore, we 
propose a modified PSF, so that the PSF considers only the 
most recent match in the previous data and returns the 
corresponding cluster center as output.  

Also, the optimum cluster size seems to be ill conditioned 
for some of outlets, e.g., outlet 7, and 10. As an example 
silhouette index as a function of number of clusters is depicted 
in Fig 5 for outlet 10. This is expected since the data is sparse; 
therefore, the number of clusters that maximizes the silhouette 
index might be only two (one cluster for near zero days and 
one cluster for non-zero days). Two clusters essentially map 
the time series to a binary one and it is not distinguishing 
enough for forecasting purposes since it cannot code different 
possible scenarios.  We decided to start k (number of clusters 
in k-means) equal to 10% of distinct days to avoid degenerate 
clustering. 

An issue in the original PSF algorithm is that sometimes 
there is no matched sequence in the past, even when the depth 
of the template is 1. This means that the last day in the test 
template	^���∗ � 1�, is a member of a cluster with only one 
member. The algorithm fails in this case. In our modification, 
we set the output in such a case to be the center of the most 
common cluster.   The modified algorithm is depicted in Fig 6.  

TABLE III.         NUMBER 
OF EFFECTIVE DAYS FOR 
EACH CHARGING OUTLET 

 



Modified Pattern Sequence-based Forecasting (MPSF) 

Algorithm 

Inputs: e,����f � �,�24�, ,�48�, … , ,�G � 24�, ,�G��	, F	 
Output: ,-���∗� 
1.    for 
	 ∈ �0.1 < hiG�jik	e,����fh, … , hiG�jik	e,����fh� 
2. Perform k-means clustering with 
	 → T) with cluster 

centers TT(, TT`, … , TT)  
3.    Calculate 3S�
� 
4.    
∗ � arg	� min)	 3S�
�) 
5.    Replace �,�����	with �^�!o`a�� according to T)∗ 
6.    while ���� � 	∅	&	F > 0� 
7.     �kqr���∗� 	� 	 �^���∗ � F�, … , ^���∗ � 2�, ^���∗ � 1��   
8. ��� � max	�.�G���kqr+∈!o

��� �� �kqr���∗�)) 
9. F � F � 1 
10.    if F � 	0 
11.     ��� � arg	�max zcount+∈!o ^���}� 
12.				,-���∗� � TTU�+Pu� 
 

 
Figure 5.  Silhouette index for clustering outlet 10 data. At 2 (slected by 
PSF), there is a cosmetic maximum for the index while 130 (selcted by 

MPSF) seems to be a better maximum; clustering and prediction error wise.  

The result of applying the MPSF is shown in Table IV. 
Comparing PSF and MPSF results, it is interesting how 
increase in the optimum number of clusters (Table II), has 
decreased the depth of template matching (Table I) such that 
for most outlets, by looking only at today’s data a low error 
prediction can be made for tomorrow’s consumption.  

Figure 6.  Modififed PSF (MPSF) Algorithm. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we analyze three algorithms for the 
prediction of energy consumption in EV charging stations at 
the outlet level and propose an improved one. Out of these 
three algorithms, kNN, ARIMA, and PSF, Nearest Neighbor 
(kNN with k=1) was the most successful algorithm with the 
SMAPE measure. Considering the advantage of PSF which is 
increased robustness to noise in comparison with NN, and the 
advantage of NN which has the least SMAPE for our data, we 
proposed Modified PSF (MPSF) where only the most recent 
match in the previous data is used to generate the prediction. 
Results show that the modification has improved the 
performance. 

The NN algorithm is currently running on the cellphone 
application for EV owners at UCLA due to its speed [8]. In 
the future work, we plan to reduce the computational load of 

the MSPF algorithm further, to make it suitable for the real 
time cellphone application.  
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