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Abstract—In this paper, we propose and implement a smart 
Electric Vehicle (EV) charging algorithm to control the EV 
charging infrastructures according to users’ price preferences. 
EVSE (Electric Vehicle Supply Equipment), equipped with bi-
directional communication devices and smart meters, can be 
remotely monitored by the proposed charging algorithm applied 
to EV control center and mobile app. On the server side, 
ARIMA model is utilized to fit historical charging load data and 
perform day-ahead prediction. A pricing strategy with energy 
bidding policy is proposed and implemented to generate a 
charging price list to be broadcasted to EV users through mobile 
app. On the user side, EV drivers can submit their price 
preferences and daily travel schedules to negotiate with Control 
Center to consume the expected energy and minimize charging 
cost simultaneously. The proposed algorithm is tested and 
validated through the experimental implementations in UCLA 
parking lots.  

Index Terms—EV charging scheduling, load prediction, price 
preferences, pricing strategy 

I. INTRODUCTION 

Electric Vehicle (EV) is considered as the innovative 
technology to gradually replace petroleum-driven vehicles that 
rely on diminishing reserves of crude oil [1]-[3]. Accordingly, 
many governments are now establishing clear deployment 
goals for EVs.  The U.S. government, for instance, aims to 
achieve one million EVs on the road by the year 2015 [4], and 
up to 35% of total vehicles by 2020 [5]. Since the EV motors 
are powered by rechargeable battery sets, EVs need to be 
charged periodically. However, the increasing penetration of 
EVs will have a serious impact on the power grid in 
uncontrolled charging scenarios, or named “dumb” charging. 
For example, the emerging fleet of EVs will introduce 
considerable amount of addition load, which potentially 
increases peak demand or generates new peak, and increase 
demand side uncertainties to local distribution power system. 
Even a small penetration of EVs might result in the 
unacceptable disturbance in power grid. Therefore, smart 
charging strategies become significantly important to schedule 
EV charging behaviors intelligently and effectively.  

There are a number of EV smart charging studies have 
been addressed to date (see e.g. [6]-[9]). The algorithm 

proposed in [6] introduced a method to maximize the 
electricity energy that is to be delivered to all the EVs in a 
fixed period of time. In [7], an operating framework for 
aggregators of EVs has been proposed, and a minimum-cost 
load scheduling algorithm is designed to determine the energy 
transaction strategy in the day-ahead market. The problem of 
optimizing EV charge strategy in order to reduce the energy 
cost and battery degradation is proposed in [8]. The intelligent 
EV scheduling method in [9] is based on the parking lot level 
to maximize the profit in grid power transactions. However, 
none of these studies considers charging behavior of EV users, 
and there is a lack of real-world implementations to support 
their algorithms through the testing EV infrastructures.  

Many researches for “smart” algorithms to regulate EV 
charging behaviors have been proposed. Generally, they can 
be divided into  three categories: centralized control [10], [11], 
[13], distributed control [12] and time of use (TOU) price 
based control [14], [15] on the side of utility and aggregator. 
However, these studies are non-practical, and they are 
conventionally based on static scenarios, where the model 
parameters (e.g. number of EVs, EV battery sizes, charging 
rates and schedule availabilities) are assumed to be known or 
fixed factors. On the other hand, vehicle arrival and departure 
are stochastic behaviors other than static assumptions. 
Additionally, lack of user interaction mechanism with price 
and schedule preferences undermines the validity of the 
simulation results.   

In this paper, we model an aggregator to regulate all 
charging facilities in UCLA parking structures, which can 
perform bi-directional communication with a control center 
configured in the lab. Users are able to manage their charging 
sessions with price and schedule preferences through mobile 
App. This software system implementation is based on the 
charging hardware developed by UCLA Smart Grid Energy 
Research Center (SMERC) equipped with wireless 
communication modules, current multiplexing circuits and 
smart meters [16]. Thus real-time charging profile, such as 
charging rate and meter status, can be obtained by control 
center and user mobile App to perform charging controls.  The 
algorithms on control center will be able to retrieve and pre-
process the historical data into a proper format. ARIMA 
model is selected to model the real-world charging records in 
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a fashion of time series. In the system model, we assume that 
Control Center is required to flatten the load curve based on 
day-ahead load prediction and generate corresponding price 
list for users to respond to. A simple price model is proposed 
to generate price according to the predicted load and the 
desired load curve. On user side, different price options (from 
highest to lowest) are available for selection, which indicates 
user’s charging will start only the price value falls below the 
accepted one.  

The objective of this paper is to introduce, utilize and 
implement the proposed smart EV charging strategy 
considering user’s price preferences to demonstrate a user-
friendly and grid-friendly EV charging infrastructure. The 
contributions of this paper can be summarized as the 
following. First, we implement a flexible charging scheme 
with control algorithms on both server side and user side. 
Second, we deploy a pricing policy with simple bidding 
strategy, considering aggregator’s predicted charging load by 
ARIMA model and desired load profile. Third, the 
effectiveness of this algorithm to shift load from higher price 
period is validated by experiment data. 

This rest of this paper is organized as the following. The 
system model, including different modules and their functions 
is discussed in section II. In section III, system load prediction 
based on time series analysis is discussed. In this part, the 
historical charging records is pre-processed and fitted into 
ARMA model. In section IV, a simple pricing strategy with 
bidding policy is utilized to produce price list based on the 
predicted EV load profile and the aggregator’s favorable load 
curve. Finally, the experiment results are discussed in section 
V. 

II. SYSTEM MODEL 

A.  System Overview 

In the implementation of this smart charging system, 
generally there are three key components: server side control 
algorithms, user side mobile App and smart charging 
hardware, as shown in Figure 1.  

 

 

Figure 1.  System Diagram 

On server side, control center is able to monitor and 
regulate all charging behaviors. Historical charging records 
are fitted into ARIMA model for day-ahead load prediction. 
The predicted EV load is then applied into a pricing model to 
generate EV price list, with the desired system EV load curve 
considered. The interval for price list is set to one hour in this 
implementation. Power information and meter status for all 
EVSEs are automatically collected. The other functional 
module on server side is the controlling algorithm to 
dynamically regulate charging behaviors by splitting current 
or time quantum according to users’ varied schedule 
preferences and price preferences.  

On user side, a mobile app is deployed to enable users to 
manage charging sessions interactively. EV users, whose daily 
travel schedules may vary, are able to select charging profile, 
when they arrive in parking structures in campus. Then, after 
user selects charging facility, he/she will be able to select 
charging parameters and schedule preferences, including price 
options (from higher to lower) and estimated departure time 
listed in mobile App. The selected price is maximum price this 
user accepts, which indicates the charging will start when 
price falls below the accepted one. After selection of charging 
profile, the server will respond to this charging request and 
calculate the predicted energy supply based on users’ 
preferences and charging time range. If users do not agree 
with this arrangement, it is free for them to modify the 
charging preferences. This negotiation mechanism will help 
EV user avoid high prices intervals automatically. 

III. EV CHARGING LOAD PREDICTION 

We average system-wide charging load on an hour basis 
for better prediction. As is shown in Figure 2, the system EV 
charging load indicates a periodicity property, i.e. the load has 
a similar pattern every other week and on each workday 
except Friday. However, the historical data is imperfect with 
data missing for certain time intervals and wrong value caused 
by hardware failure. Thus, data modification method is 
implemented to correct the data series.  

 

 

Figure 2.  EV Load from Mar. 30th to Jun. 6th 

Autoregressive moving average (ARMA), as a stationary 
time series model, is chosen to model the data and perform 
prediction. There are two parts in ARMA model, i.e. 
autoregressive (AR) part with order p, and moving-average 
(MA) part with order q. The general expression is, 

    1 1 1 1 1t t p p t t q t qX X X                         (1)  



And t is a white noise with 0-mean and variance equal 

to 2
 . The procedures to handle historical charging load 

records are:  

i. Error correction and data pre-process 
ii. Determine orders for ARMA model, . . pi e and q  
iii. Model Fit, . .i e  calculate , values 

iv. Model validation, . .i e error analysis 

Since the raw data, even after modification, has non-
stationarity property, differencing steps are necessary to 
transform into stationary time series. The seasonal factor is 
identified as 168 hours from plot, equivalent to one week, to 
remove data periodicity. Additionally, to make the model 
stable without incremental and decremental trend, tY is first-
order differentiated with adjacent values in time series. 

                                         t t t sY X X                                    (2) 

                                     1
1t t t tW Y Y Y                                 (3) 

Akaike and Bayesian Information Criteria (AIC, BIC) is 
utilized to evaluate the selections of model orders. The 
prediction results are shown in the figure below. 

 

Figure 3.  Actual Load vs Virtual Load on Jun. 3rd 

IV. PRICING STRATEGY AND BIDDING POLICY 

A. Pricing strategy 

The purpose of designing an appropriate pricing strategy is 
to encourage EV users to shift their EV charging load to a 
preferable time range. Since charging facilities are installed in 
a university campus, charging behaviors are believed to have 
similar patterns in terms of arriving time, leaving time and 
energy required by faculty and students. It is assumed that 
varied persons may have different reactions towards price 
options, e.g. for a certain day, 20% of all customers are willing 
to pay the highest prices to charge enough energy as soon as 
possible. Another assumption is that electricity price is 
linearly related to system-wide load/demand, i.e. price 
increases as predicted demand increases. Thus, 24 prices, one 
for each hour, are generated day ahead, by taking both EV 
predicted EV charging load and desired load into 
consideration. The price is defined by: 

                               ( )i b pi diP P L L                             (4) 

iP denotes charging price in thi hour of current day, bP  denotes 

the base price for the EVSE selected, piL  is predicted load 

value for thi hour, diL  denotes the desired load value for 

thi hour.  is a coefficient defined to reflect the relationship 
between load and price. We offer users with 5 price options, 
from highest to lowest, as a charging threshold, i.e. accepted 
maximum price. As an example, if charging aggregator’s 
purpose is to dis-encourage EV users to charge between 1:00 
PM and 3:00 PM.  

B. Bidding Policy: 

For each level I EVSE, it has 4 outlets and only one input 
power source. Only one vehicle is allowed to charge due to the 
inner circuit design. Thus, the policy is to determine timing to 
switch from one vehicle to another according to users’ 
preferences and priorities. An accepted price threshold is 
select before users submit charging, which is assumed to 
reflect how urgent he/she needs to charge. As a result, a 
charging session with higher price has higher priority and is 
able to consume more energy within every time quantum. The 
criteria for algorithm to switch charging session is 

                                
1

(P / )
n

i i i i
i

T P T T


                       (5) 

Where iT  is continuous charging time since turned on last 

time, iP  the price selected by thi  user, T is the time 

quantum, denoting the timespan of EVSE control loop. i is 
defined as priority coefficient according to bids provided by 
users for current EVSE.  

The scenario for level II is different since level II EVSE 
has higher power supply with ability to multiplex current. The 
EVSE selected for implementation has single power source 
(240V, 30A). Multiple outlets (stations) can charge at the 
same time but current for each outlet should be between 5A 
(10% duty cycle) to 30A (50% duty cycle). Accordingly, the 
algorithm will determine the energy sharing policy in a current 
multiplexing manner. To determine each participating 
vehicle’s charging duty cycle (DC), a two-step process is 
conducted. The first step calculation will rule out the vehicles 
whose duty cycle values are lower than 10%, and second step 
will calculate again to reallocate the source current.  

                              max max
1

(P / )
n

i i i i
i

DC I P I 


                   (6) 

where priority coefficient i  is defined as 
1

P /
n

i i i
i

P


  . 

C. Billing Policy 

The final cost for participating users consists of not only 
expense for purchasing electricity but the fee for occupying 
the charging service priority. Thus, the final cost for each user 
can be expressed in a simple model with electricity price for 
specific hour, iP and current user’s priority ratio, i : 

            
0 0

(1 )
l lk k

k k k k k k
k k k k

C t P R t P R  
 

                (7) 



Where C denotes the final cost, i is the cost factor 

considering priority to occupy power source in thk  timeslot. 

For simplicity, we apply 1k k     to include both the cost 

for purchasing electricity and priority service fee.   denotes 
priority price coefficient and is set to 0.1 tentatively in 
experiment. kP  is the price for thk  timeslot and kR is the 

charging rate in thi  timeslot. In both level I and level II 

charging scenarios, priority coefficient k can be obtained by 
calculating the ratio of current user’s bid among all players in 
certain EVSE.  

D. Algorithms for Implementation 

Implemented algorithms on server side are capable of 
regulating charging sessions with dynamic arriving time, 
departure time and varied price preferences. For explanation, 
the simplified versions of implemented algorithms are 
illustrated below: 

1. Check unclosed 
chargings

Control Loop Start

2.Sort charging list 
by selected prices, 

departing time

3. For each charging 
in list, calculate 

priority coefficient

4. Check current charging:
Continuous charging time > 

γ*Timequantum

5. Continue and 
Thread Sleep

Y

Control Loop Start

1. Check unclosed chargings and 
retrieve current duty cycles

2.Retrieve bids from users, 
calculate priority coefficients 
and assign new duty cycles 

accordingly

3. sort charging list by old and 
new duty cycles

4. New 
dutycycle>10%

5. Rule out this 
charging for this 
round bidding

N

6. Assign new duty 
cycle to outlet

Y

7. Continue and 
Thread sleep

 

Figure 4.  Simplified Level I and Level II Algorithm 

For level I EVSE, after each control loop starts, algorithm 
will select active charging sessions for current EVSE from 
database, and sort them by their accepted prices and departure 
time. Only the charging sessions, whose prices agree with user 
price preferences, can be retrieved. It is assumed that EV 
drivers, with higher accepted prices and earlier departing time, 
are in more urgent need for energy and will be given higher 
priorities than others. To guarantee the energy assigned among 
users in each time quantum is proportional to their priorities, 
algorithm calculates priority coefficient i  and the continuous 

charging time iT  in each control loop. If current charging 
session has used up its portion of charging time in current time 
quantum, algorithm will switch from this charging to a lower 
one from charging session list. For level II EVSE, priority 
coefficients and corresponding duty cycle are calculated in a 
two-step manner. In the first step, charging session will 
temporarily be disabled if the duty cycle calculated is lower 
than 10% or user accepted price is lower than current price. 
Then, after ruling out the unqualified charging sessions, 
algorithm will re-allocate the power source to each remaining 

session, proportionally to its priority coefficient. The charging 
sessions will be closed if current is lower than threshold or 
schedule deadline is reached. 

V. RESULT ANALYSIS 

To explain the energy sharing and scheduling mechanism, 
charging records for typical days are retrieved from database 
for analysis.  For level I EVSE, records for July 5th, 2014 are 
selected since there are 4 users submitted their charging 
sessions with different price preferences. The highest price is 
15 cents/kWh, which happens around 13:30 PM.  

 

Figure 5.  Level I Experiment Data 

 

Figure 6.  Level I Cost vs Energy Consumption 

According to experiment data shown above, the first user 
(user4) started charging around 7:00 AM in the morning with 
11 cents/kWh and finished charging around 10:30 AM.  After 
a while, user2 and user3 joined the energy sharing program 
and occupied charging periods, which are proportional to their 
priority coefficients. The last user, user1, selected the lowest 
price of the day around noon. Thus, his/her charging was 
disabled soon after charging session initialization and re-
activated after 16:00 PM when system price signal is lower 
than his/her accepted price. Since her/his duration of stay in 
campus is longer than other users, it is wise of her/him to wait 
until price is lower in latter hours and avoid higher price 
period. Charging cost plot implies that users may save 
charging cost by placing a proper price. Moreover, experiment 
results also suggest that users’ schedules with price 
preferences is potentially grid-friendly because the charging 
load for higher price period, usually also higher system load 
period, can be shifted to time intervals with lower the system 
pressure. 



 

Figure 7.  Level II Experiment Data 

 

Figure 8.  Level II Cost vs Energy Consumption 

For level II EVSE, multiple vehicles can consume power from 
a single power source simultaneously. Charging records on 
July 29th, 2014, when the highest price is 37 cents/kWh, are 
retrieved from database. As is shown in following Figures, 4 
active charging sessions are submitted by users. The first user 
(user1) selected a medium price (the third highest price) from 
the five price options offered by aggregator around 7:00 AM. 
When he is the only consumer for that EVSE, his priority 
coefficient i  is 1 and he was assigned with the maximum 
duty cycle. For circuit stability reason, maximum duty cycle 
for this EVSE is set to 45%. Around 8:15 AM, additional 2 
users with higher prices submitted their charging sessions for 
that EVSE. Accordingly, the current is multiplexed for each 
user proportionally to i . Around 12:00 PM, as the system 
price increases to a level which is higher than both user1 and 
user4’s accepted prices, their charging sessions are disabled 
temporarily. Thus, user2 with the highest price could consume 
all power supply until it finished charging. User1 and user4 
halted their charging and waited for price to drop down. 
Finally user1 finished his charging around 17:00 PM. User3 
was unable to obtain any power supply, because the system 
price was never lower than her/his accepted price even she/he 
submitted charging schedule as from 9:00 AM to 12:00 PM. 
From the experiment results, charging sessions with higher 
price tend to charge at a higher rate and consume more energy 
than other users in the same period. Moreover, for users with 
longer time of stay in campus, a better price or bid strategy 
exists to charge enough energy, while save charging cost. The 
cost and energy consumption comparison is plotted in Figure 
9. 

VI. CONCLUSION 

In this paper, we implemented a price-based smart 
charging algorithm in a university campus.  ARIMA was 
applied to model the historical charging records and perform 
day-ahead prediction. We deployed a pricing strategy with 
bidding policy to determine EV charging price, considering 
predicted load and system desired load curve. We implement 
server side controlling algorithm to dynamically regulate 
charging sessions for a single EVSE according to price and 
schedule preferences. Stochastic modeling of users’ charging 
behaviors, EV energy transaction market and control strategy 
design will be carried out for future publications. 
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