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Abstract—In this paper, we propose and implement a smart
Electric Vehicle (EV) charging algorithm to control the EV
charging infrastructures according to users’ price preferences.
EVSE (Electric Vehicle Supply Equipment), equipped with bi-
directional communication devices and smart meters, can be
remotely monitored by the proposed charging algorithm applied
to EV control center and mobile app. On the server side,
ARIMA modd is utilized to fit historical charging load data and
perform day-ahead prediction. A pricing strategy with energy
bidding policy is proposed and implemented to generate a
charging pricelist to be broadcasted to EV users through mobile
app. On the user side, EV drivers can submit their price
preferences and daily travel schedules to negotiate with Control
Center to consume the expected energy and minimize charging
cost simultaneously. The proposed algorithm is tested and
validated through the experimental implementations in UCLA
parking lots.

Index Terms—EV charging scheduling, load prediction, price
preferences, pricing strategy

. INTRODUCTION

Electric Vehicle (EV) is considered as the innovative
technology to gradually replace petroleum-driven vehicles that
rely on diminishing reserves of crude oil [1]-[3]. Accordingly,
many governments are now establishing clear deployment
goals for EVs. The U.S. government, for instance, aims to
achieve one million EV's on the road by the year 2015 [4], and
up to 35% of total vehicles by 2020 [5]. Since the EV motors
are powered by rechargeable battery sets, EVs need to be
charged periodically. However, the increasing penetration of
EVs will have a serious impact on the power grid in
uncontrolled charging scenarios, or named “dumb” charging.
For example, the emerging fleet of EVs will introduce
considerable amount of addition load, which potentialy
increases peak demand or generates new peak, and increase
demand side uncertainties to local distribution power system.
Even a small penetration of EVs might result in the
unacceptable disturbance in power grid. Therefore, smart
charging strategies become significantly important to schedule
EV charging behaviorsintelligently and effectively.

There are a number of EV smart charging studies have
been addressed to date (see e.g. [6]-[9]). The agorithm

proposed in [6] introduced a method to maximize the
electricity energy that is to be delivered to all the EVsin a
fixed period of time. In [7], an operating framework for
aggregators of EVs has been proposed, and a minimum-cost
load scheduling algorithm is designed to determine the energy
transaction strategy in the day-ahead market. The problem of
optimizing EV charge strategy in order to reduce the energy
cost and battery degradation is proposed in [8]. The intelligent
EV scheduling method in [9] is based on the parking lot level
to maximize the profit in grid power transactions. However,
none of these studies considers charging behavior of EV users,
and there is a lack of rea-world implementations to support
their algorithms through the testing EV infrastructures.

Many researches for “smart” algorithms to regulate EV
charging behaviors have been proposed. Generally, they can
be divided into three categories. centralized control [10], [11],
[13], digtributed control [12] and time of use (TOU) price
based control [14], [15] on the side of utility and aggregator.
However, these studies are non-practical, and they are
conventionally based on static scenarios, where the model
parameters (e.g. number of EVs, EV battery sizes, charging
rates and schedule availabilities) are assumed to be known or
fixed factors. On the other hand, vehicle arrival and departure
are dochastic behaviors other than static assumptions.
Additionally, lack of user interaction mechanism with price
and schedule preferences undermines the validity of the
simulation results.

In this paper, we model an aggregator to regulate al
charging facilities in UCLA parking structures, which can
perform bi-directional communication with a control center
configured in the lab. Users are able to manage their charging
sessions with price and schedule preferences through mobile
App. This software system implementation is based on the
charging hardware developed by UCLA Smart Grid Energy
Research Center (SMERC) equipped with wireless
communication modules, current multiplexing circuits and
smart meters [16]. Thus real-time charging profile, such as
charging rate and meter status, can be obtained by control
center and user mobile App to perform charging controls. The
algorithms on control center will be able to retrieve and pre-
process the historical data into a proper format. ARIMA
model is selected to model the real-world charging records in
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a fashion of time series. In the system model, we assume that
Control Center is required to flatten the load curve based on
day-ahead load prediction and generate corresponding price
list for users to respond to. A simple price model is proposed
to generate price according to the predicted load and the
desired load curve. On user side, different price options (from
highest to lowest) are available for selection, which indicates
user’s charging will start only the price value falls below the
accepted one.

The objective of this paper is to introduce, utilize and
implement the proposed smart EV charging strategy
considering user’s price preferences to demonstrate a user-
friendly and grid-friendly EV charging infrastructure. The
contributions of this paper can be summarized as the
following. First, we implement a flexible charging scheme
with control algorithms on both server side and user side.
Second, we deploy a pricing policy with simple bidding
strategy, considering aggregator’s predicted charging load by
ARIMA model and desired load profile. Third, the
effectiveness of this algorithm to shift load from higher price
period is validated by experiment data.

This rest of this paper is organized as the following. The
system model, including different modules and their functions
isdiscussed in section I1. In section [11, system load prediction
based on time series analysis is discussed. In this part, the
historical charging records is pre-processed and fitted into
ARMA model. In section 1V, a simple pricing strategy with
bidding policy is utilized to produce price list based on the
predicted EV load profile and the aggregator’s favorable load
curve. Finaly, the experiment results are discussed in section
V.

Il. SYSTEM MODEL

A.  System Overview

In the implementation of this smart charging system,
generdly there are three key components. server side control
algorithms, user side mobile App and smart charging
hardware, as shown in Figure 1.

Control Center
The proposed algorithm

® Prediction, historical data

e User interaction, negotiation
® Pricing strategy
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® Dynamic scheduling, etc¢

Figurel. System Diagram

On server side, control center is able to monitor and
regulate all charging behaviors. Historical charging records
are fitted into ARIMA model for day-ahead load prediction.
The predicted EV load is then applied into a pricing model to
generate EV price list, with the desired system EV load curve
considered. The interval for price list is set to one hour in this
implementation. Power information and meter status for al
EVSEs are automatically collected. The other functional
module on server side is the controlling algorithm to
dynamically regulate charging behaviors by splitting current
or time quantum according to users’ varied schedule
preferences and price preferences.

On user side, a mobile app is deployed to enable users to
manage charging sessions interactively. EV users, whose daily
travel schedules may vary, are able to select charging profile,
when they arrive in parking structures in campus. Then, after
user selects charging facility, he/she will be able to select
charging parameters and schedule preferences, including price
options (from higher to lower) and estimated departure time
listed in mobile App. The selected price is maximum price this
user accepts, which indicates the charging will start when
price falls below the accepted one. After selection of charging
profile, the server will respond to this charging request and
caculate the predicted energy supply based on users’
preferences and charging time range. If users do not agree
with this arrangement, it is free for them to modify the
charging preferences. This negotiation mechanism will help
EV user avoid high pricesintervals automaticaly.

[11.  EV CHARGING LOAD PREDICTION

We average system-wide charging load on an hour basis
for better prediction. As is shown in Figure 2, the system EV
charging load indicates a periodicity property, i.e. the load has
a similar pattern every other week and on each workday
except Friday. However, the historical data is imperfect with
data missing for certain time interva's and wrong value caused
by hardware failure. Thus, data modification method is
implemented to correct the data series.
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Figure2. EV Load from Mar. 30th to Jun. 6th

Autoregressive moving average (ARMA), as a stationary
time series model, is chosen to model the data and perform
prediction. There are two parts in ARMA moddl, i.e
autoregressive (AR) part with order p, and moving-average
(MA) part with order g. The general expression is,

X=X == (2% X p-1 =&~ O 4 — = gqgt-q D



And ¢, is a white noise with 0-mean and variance equal

to o7 . The procedures to handle historical charging load
records are;

i.  Error correction and data pre-process

ii. Determine ordersfor ARMA model, i.epand q
iii. Model Fit, i.e caculateg , 6 values

iv. Model validation, i.e error analysis

Since the raw data, even after modification, has non-
stationarity property, differencing steps are necessary to
transform into stationary time series. The seasona factor is
identified as 168 hours from plot, equivalent to one week, to
remove data periodicity. Additionaly, to make the model
stable without incremental and decremental trend, Y, is first-

order differentiated with adjacent values in time series.

Y= X =X )

©)

Akaike and Bayesian Information Criteria (AIC, BIC) is
utilized to evaluate the selections of model orders. The
prediction results are shown in the figure below.
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Figure3. Actual Load vsVirtua Load on Jun. 3rd

IV. PRICING STRATEGY AND BIDDING PoLICY

A. Pricing strategy

The purpose of designing an appropriate pricing strategy is
to encourage EV users to shift their EV charging load to a
preferable time range. Since charging facilities are installed in
a university campus, charging behaviors are believed to have
similar patterns in terms of arriving time, leaving time and
energy required by faculty and students. It is assumed that
varied persons may have different reactions towards price
options, e.g. for a certain day, 20% of al customers are willing
to pay the highest prices to charge enough energy as soon as
possible. Another assumption is that electricity price is
linearly related to system-wide load/demand, i.e. price
increases as predicted demand increases. Thus, 24 prices, one
for each hour, are generated day ahead, by taking both EV

predicced EV charging load and desired load into
consideration. The price is defined by:
Pi:Pb+a(Lpi_Ldi) 4)

P denotes charging price ini,, hour of current day, P, denotes
the base price for the EVSE selected, L, is predicted load
value for i, hour, L, denotes the desired load value for
i,, hour. «is a coefficient defined to reflect the relationship

between load and price. We offer users with 5 price options,
from highest to lowest, as a charging threshold, i.e. accepted
maximum price. As an example, if charging aggregator’s
purpose is to dis-encourage EV users to charge between 1:00
PM and 3:00 PM.

B. Bidding Policy:

For each level | EVSE, it has 4 outlets and only one input
power source. Only one vehicle is alowed to charge due to the
inner circuit design. Thus, the palicy is to determine timing to
switch from one vehicle to another according to users’
preferences and priorities. An accepted price threshold is
select before users submit charging, which is assumed to
reflect how urgent he/she needs to charge. As a result, a
charging session with higher price has higher priority and is
able to consume more energy within every time quantum. The
criteriafor algorithm to switch charging session is

Tiz(Pi/Zn:F{).AT:yi.AT ©)

Where T is continuous charging time since turned on last

time, P the price selected by i, user, AT is the time

quantum, denoting the timespan of EVSE control loop. y, is

defined as priority coefficient according to bids provided by
usersfor current EV SE.

The scenario for level |1 is different since level || EVSE
has higher power supply with ability to multiplex current. The
EVSE selected for implementation has single power source
(240Vv, 30A). Multiple outlets (stations) can charge at the
same time but current for each outlet should be between 5A
(10% duty cycle) to 30A (50% duty cycle). Accordingly, the
algorithm will determine the energy sharing policy in a current
multiplexing manner. To determine each participating
vehicle’s charging duty cycle (DC), a two-step process is
conducted. The first step calculation will rule out the vehicles
whose duty cycle values are lower than 10%, and second step
will calculate again to reallocate the source current.

DCI = Imax(F?/ZFT): |max'7i

i=1

(6)

n

where priority coefficient y, isdefinedas y, =P/ ) P.

C. Billing Policy

The final cost for participating users consists of not only
expense for purchasing electricity but the fee for occupying
the charging service priority. Thus, the final cost for each user
can be expressed in a ssimple model with electricity price for
specific hour, P and current user’s priority ratio, y, :

K K
C=Y n AR R =Y (1+f7) AR-R ()
k=ko k=ko



Where C denotes the final cost, 7 is the cost factor
considering priority to occupy power source in k, timesot.
For simplicity, we apply 7, =1+ -y, to include both the cost
for purchasing electricity and priority service fee. f denotes
priority price coefficient and is set to 0.1 tentatively in
experiment. B, is the price for k, timeslot and R, is the
charging rate in iy, timeslot. In both level | and level Il
charging scenarios, priority coefficient y, can be obtained by

calculating the ratio of current user’s bid among al playersin
certain EVSE.

D. Algorithms for Implementation

Implemented algorithms on server side are cepable of
regulating charging sessions with dynamic arriving time,
departure time and varied price preferences. For explanation,
the simplified versions of implemented algorithms are
illustrated below:

e ™ e ™

( control Loop Start | | Control Loop Start

1. Check unclosed 1. Check unclosed chargings and
chargings retrieve current duty cycles

2.Sort charging list 2.Retrieve bids from users,
by selected prices, calculate priority coefficients

departing time and assign new duty cycles
accordingly

3. For each charging
in list, calculate
priority coefficient

3. sort charging list by old and
new duty cycles

___a-Check current charging:—_ a New 5. Rule out this
<\Cnntmuous charging time >/> dutycycle>10% N> chargi(;\if:;‘this
*Ti roun idding
\vilmequantum/ 4
\T/
\4 Y
S AN v
(5. continue and " P ~
\Thread Sleep 6. Assign new duty (7. Continue and
N / cycle to outlet \_ Thread sleep

Figure4. Simplified Level | and Level Il Algorithm

For level | EVSE, after each control loop starts, algorithm
will select active charging sessions for current EVSE from
database, and sort them by their accepted prices and departure
time. Only the charging sessions, whose prices agree with user
price preferences, can be retrieved. It is assumed that EV
drivers, with higher accepted prices and earlier departing time,
are in more urgent need for energy and will be given higher
priorities than others. To guarantee the energy assigned among
users in each time quantum is proportional to their priorities,
algorithm calculates priority coefficient y;, and the continuous

charging time T, in each control loop. If current charging

session has used up its portion of charging time in current time
guantum, algorithm will switch from this charging to a lower
one from charging session list. For level Il EVSE, priority
coefficients and corresponding duty cycle are calculated in a
two-step manner. In the first step, charging session will
temporarily be disabled if the duty cycle calculated is lower
than 10% or user accepted price is lower than current price.
Then, after ruling out the unqualified charging sessions,
algorithm will re-allocate the power source to each remaining

session, proportionally to its priority coefficient. The charging
sessions will be closed if current is lower than threshold or
schedule deadlineis reached.

V. RESULT ANALYSIS

To explain the energy sharing and scheduling mechanism,
charging records for typical days are retrieved from database
for analysis. For level | EVSE, records for July 5th, 2014 are
selected since there are 4 users submitted their charging
sessions with different price preferences. The highest price is
15 cents’kWh, which happens around 13:30 PM.

Experiment Data for Level | on 07/15/2014
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Figure6. Level | Cost vs Energy Consumption

According to experiment data shown above, the first user
(userd) started charging around 7:00 AM in the morning with
11 centgkWh and finished charging around 10:30 AM. After
a while, user2 and user3 joined the energy sharing program
and occupied charging periods, which are proportiona to their
priority coefficients. The last user, userl, selected the lowest
price of the day around noon. Thus, higher charging was
disabled soon after charging session initialization and re-
activated after 16:00 PM when system price signal is lower
than higher accepted price. Since her/his duration of stay in
campus is longer than other users, it is wise of her/him to wait
until price is lower in latter hours and avoid higher price
period. Charging cost plot implies that users may save
charging cost by placing a proper price. Moreover, experiment
results also suggest that users’ schedules with price
preferences is potentialy grid-friendly because the charging
load for higher price period, usualy aso higher system load
period, can be shifted to time intervals with lower the system
pressure.
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Figure8. Level Il Cost vs Energy Consumption

For leve Il EV SE, multiple vehicles can consume power from
a single power source simultaneously. Charging records on
July 29th, 2014, when the highest price is 37 centgkWh, are
retrieved from database. As is shown in following Figures, 4
active charging sessions are submitted by users. The first user
(userl) selected a medium price (the third highest price) from
the five price options offered by aggregator around 7:00 AM.
When he is the only consumer for that EVSE, his priority
coefficient , is 1 and he was assigned with the maximum

duty cycle. For circuit stability reason, maximum duty cycle
for this EVSE is set to 45%. Around 8:15 AM, additional 2
users with higher prices submitted their charging sessions for
that EVSE. Accordingly, the current is multiplexed for each
user proportionally to y, . Around 12:00 PM, as the system

price increases to a level which is higher than both userl and
userd’s accepted prices, their charging sessions are disabled
temporarily. Thus, user2 with the highest price could consume
al power supply until it finished charging. Userl and user4
halted their charging and waited for price to drop down.
Finaly userl finished his charging around 17:00 PM. User3
was unable to obtain any power supply, because the system
price was never lower than her/his accepted price even she/he
submitted charging schedule as from 9:00 AM to 12:00 PM.
From the experiment results, charging sessions with higher
price tend to charge at a higher rate and consume more energy
than other users in the same period. Moreover, for users with
longer time of stay in campus, a better price or bid strategy
exists to charge enough energy, while save charging cost. The
cost and energy consumption comparison is plotted in Figure
9.

VI. CONCLUSION

In this paper, we implemented a price-based smart
charging agorithm in a university campus. ARIMA was
applied to model the historical charging records and perform
day-ahead prediction. We deployed a pricing strategy with
bidding policy to determine EV charging price, considering
predicted load and system desired load curve. We implement
server side controlling agorithm to dynamically regulate
charging sessions for a single EVSE according to price and
schedule preferences. Stochastic modeling of users’ charging
behaviors, EV energy transaction market and control strategy
design will be carried out for future publications.
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