
 

 

 

Predictive Scheduling for Electric Vehicles 

Considering Uncertainty of Load and User 

Behavior  

 

Bin Wang, Rui Huang, Yubo Wang, Hamidreza Nazaripouya, Charlie Qiu, Chi-Cheng 

Chu, Rajit Gadh 

Department of Mechanical Engineering 

University of California, Los Angeles, USA 

{wangbin, gadh}@ucla.edu   



Acknowledgement 

This material is based upon work supported by the Department of Energy under Award Number 

DE-OE0000192.  

Disclaimer 

 This report was prepared as an account of work sponsored by an agency of the United States 

Government. Neither the United States Government nor any agency thereof, the Los Angeles 

Department of Water and Power, nor any of their employees, makes any warranty, express or 

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or 

usefulness of any information, apparatus, product, or process disclosed, or represents that its 

use would not infringe privately owned rights. Reference herein to any specific commercial 

product, process, or service by trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the United 

States Government or any agency thereof. The views and opinions of authors expressed herein 

do not necessarily state or reflect those of the United States Government or any agency 

thereof. 



Predictive Scheduling for Electric Vehicles 
Considering Uncertainty of Load and User Behaviors  

Bin Wang, Rui Huang, Yubo Wang, Hamidreza Nazaripouya, Charlie Qiu, Chi-Cheng Chu, Rajit Gadh 

Department of Mechanical Engineering 

University of California, Los Angeles, USA 

{wangbin, gadh}@ucla.edu 
 

Abstract—Un-coordinated Electric Vehicle (EV) charging can 
create unexpected load in local distribution grid, which may 
degrade the power quality and system reliability. The 
uncertainty of EV load, user behaviors and other baseload in 
distribution grid, is one of challenges that impedes optimal 
control for EV charging problem. Previous researches did not 
fully solve this problem due to lack of real-world EV charging 
data and proper stochastic model to describe these behaviors. In 
this paper, we propose a new predictive EV scheduling algorithm 
(PESA) inspired by Model Predictive Control (MPC), which 
includes a dynamic load estimation module and a predictive 
optimization module. The user-related EV load and base load are 
dynamically estimated based on the historical data. At each time 
interval, the predictive optimization program will be computed 
for optimal schedules given the estimated parameters. Only the 
first element from the algorithm outputs will be implemented 
according to MPC paradigm. Current-multiplexing function in 
each Electric Vehicle Supply Equipment (EVSE) is considered 
and accordingly a virtual load is modeled to handle the 
uncertainties of future EV energy demands. This system is 
validated by the real-world EV charging data collected on UCLA 
campus and the experimental results indicate that our proposed 
model not only reduces load variation up to 40% but also 
maintains a high level of robustness. Finally, IEC 61850 standard 
is utilized to standardize the data models involved, which brings 
significance to more reliable and large-scale implementation. 

Keywords—EV Scheduling; Predictive Control; IEC 61850； 

Renewable Energy Integration;  

I. INTRODUCTION 

 Electric Vehicle and corresponding charging infrastructure 
have received much attention in recent years due to the lack of 
fossil fuel and pressure from government to reduce carbon 
emission[1]. The initiative from California government, 1 
million zero-emission EVs are expected to be on road by 
2020[2]. Accordingly, there will be more Electric Vehicle 
Supply Equipments (EVSEs) to be installed as the penetration 
of EV increases in the foreseeable future. Un-coordinated 
Electric Vehicle charging can create unexpected load in local 
distribution grid, which may degrade the power quality and 
system reliability[3]. Many pioneer researches[5],[10]-[14] on 
advanced charging infrastructure, including both software and 
hardware that are developed to facilitate the acceptance of EVs. 
However, it is still a challenging task to regulate numerous EV 
charging behaviors in real-time due to the following reasons: 1) 
the randomness of EV user behaviors, such as arrival time, 
departure time and energy demand; 2) complexity of stochastic 
models that describe the loads, renewables and EVs. Thus, 

more efforts should be made to design a real-time energy 
scheduling system that considers the above factors. 

Previous researches have proposed several viable 
scheduling schemes for deferrable load control. An optimal 
distributed charging protocol is designed and implemented in 
simulations with a large number of EVs in [4]. Valley-filling 
and load-following strategies are proposed to provide grid-side 
regulations with deferrable EV load. However, these solutions 
assume static travel schedules for EV users without 
uncertainties, which is not true in reality. Price-based charging 
algorithm is designed and implemented with user preferences 
in [5]. Uncertainties of renewable generation and EV load are 
considered in [6]-[9]. [7] utilizes receding horizon scheduling 
techniques based on MPC to handle uncertainties of EV arrival 
and renewable generation periodically. In addition, in [7] a 
proof for optimality is provided given the Gaussian noise of 
baseload. However, the estimation for the short-term EV 
energy demand is derived from a simple assumption rather than 
from real-world EV energy consumption data, which 
undermines the problem formulation and the simulation results. 
The power consumptions for different EVSEs are also assumed 
to be un-correlated and no power sharing scheme exists. The 
EVSE[10] designed and manufactured by UCLA Smart Grid 
Energy Research Center (SMERC) has the capacity to allow 
multiple charging sessions at the same time by power-sharing 
and current-multiplexing circuit design. Event-based 
scheduling algorithms, considering random user behaviors are 
developed in [11]. Vehicle-to-Grid and Vehicle-to-Building 
services[12],[13] are developed for various EV energy 
consumption scenarios. Accordingly, smart EV charging 
algorithms are designed to support more complex functions 
that satisfy both EV energy demand and also provide grid-side 
services, such as load flattening and load following. 

In this paper, we proposed a new real-time EV charging 
scheduling algorithm inspired by MPC, which is designed and 
simulated in a micro-grid scenario, including building load, 
solar generation and EV load. A dynamic load estimation and a 
predictive optimization module are implemented to handle the 
uncertainties in system. The contributions of this paper can be 
summarized as: 1) Current-multiplexing is considered in the 
problem formulation and accordingly a virtual load for each 
EVSE is modeled to simulate the uncertain short-term EV 
energy demand. 2) Dynamic estimation method based on K-
nearest neighbor (KNN) are utilized for charging session 
parameters. 3) Online predictive optimization method based on 
MPC is formulated, considering the uncertainties of building 
load and user behaviors; 4) IEC 61850 is utilized to standardize This work has been sponsored in part by grants from the LADWP/DOE 

fund 20699 & 20686 (Smart Grid Regional Demonstration Project). 



the information exchange by modeling the data involved in this 
algorithm, which gives practical meaning to more reliable and 
large-scale implementation. 

The rest of this paper is organized as follows: Section II 
discusses over system architecture. Section III introduces 
detailed problem formulation. Session IV discusses the 
experiment results and potential improvements. Finally, we 
conclude this paper in section V.  

II. SYSTEM OVERVIEW 

A. System Architecture 
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Fig. 1 System Overview 

The proposed system architecture is illustrated in Fig. 1. In 
general, the system has 5 main components, i.e. EVSE, 
building load, solar generation, client mobile application and a 
control center. Real-time energy consumption data with user 
index and device ID are retrieved and transmitted through 
advanced communication networks [14] constructed within 
UCLA campus, and finally stored in a central database. EVSEs 
[5] are controllable by commands from scheduling service on 
server side or client mobile applications, via assigning different 
duty-cycles to different outlets that share the same power 
source from the grid. The mobile application can perform the 
remote control function for each EVSE in our system. Based 
on the real-time power data from all engaged buildings, solar 
generation sites, EVSEs and mobile charging requests, 
scheduling services are able to compute periodically for an 
optimal EV energy scheduling given dynamic estimation of 
short-term energy demand. The building load used here is from 
Cornell University Facilities Service[17] and the solar data is 
from UCLA Ackerman Union Solar Integration project[18]. To 
support reliable and large-scale implementation, IEC 61850 is 
implemented in EVSE gateways and the control center to 
encode/decode all the involved data and communication. This 
architecture has been tested by real EV users in UCLA and is 
friendly to more advanced charging algorithms. 

B. EVSE with Current Multiplexing and Existing Algorithm 

One distinguished feature of the EVSE developed by 
SMERC is power –sharing and current-multiplexing function. 
The power supply from grid can be split into multiple charging 
sessions based on users’ preferences or control signals. The 
current assigned to each vehicle connected to the EVSE is 

proportional to the specified duty-cycle value in control 
signals. The duty-cycle ranges from 0 to 50% according to 
SAE J1772 standard. This design provides more flexibility for 
the algorithm to assign various current to different outlets due 
to varied energy demand and travel schedules. In current 
implementation, the existing charging algorithm is simply to 
check the real-time power consumption value and verify the 
connected vehicle is fully charged. Charging session will be 
closed and notification will be sent to users once the charging 
session is finished. By analyzing the monitoring records 
associated with each user’s charging session, one can extract 
the historical data of energy demand and personal charging 
schedules, such as start time, end time and leave time, which 
will be utilized for the estimation of current charging session. 

C. IEC 61850 Protocol and Integration 

IEC 61850 is an international standard that provides a 
standardized framework that specifies the communication 
protocols, originally for power automation substation[15].The 
advantages include interoperability, free configuration and 
long-term stability[16]. A specialized IEC 61850 gateway is 
designed as communication interface for both control center 
and EVSE in our system. Data models, that include power 
information, EVSE status, charging requests and control 
signals, are all encoded as virtual components in xml-based 
messages to improve the system interoperability and reliability. 
Fig.2 is the schema view of communication and data modeling 
for EV system, based on IEC 61850 protocol. 

 

Fig. 2 Communication & Data Modeling using IEC61850 

III. PROBLEM FORMULATION 

A. Dynamic Parameter Estimation 

The optimization method in this paper is inspired by MPC, 
which is an online optimization method and computes optimal 
scheduling across fixed steps in the future periodically, 
however just realize the first element in the schedule results. 
The procedure continues in every step, taking the updated 
system states into consideration. In our system, the 
optimization program needs to involve the estimations of 
leave time and energy consumption values for all the active 
charging sessions. Thus, proper estimation methods play a 
significant role in improving the system performance. The 
leave time and energy consumption values are estimated 
dynamically, using the following methods. 

1) Session Parameter Estimation 



Each charging session, with a number of properties values, 
such as user index, device ID and start time, finish time, leave 
time and energy consumption, are stored as a record in 
database. We model each record associated with a charging 
session as a tuple: 

𝑠 ≔ (𝑢𝑛, 𝑡𝑠, 𝑡𝑓 , 𝑡𝑙 , 𝑒, 𝑑) 

where 𝑢 is the user index for this session, 𝑑 is the EVSE ID or 
power source ID. 𝑡𝑠, 𝑡𝑓 denotes the start time and finish time 

for the charging session, respectively; 𝑡𝑙  is the leave time; 𝑒 
denotes the energy consumption. K-nearest neighbor (KNN) 
method is utilized to estimate 𝑒  and 𝑡𝑓 . In general, KNN 

calculates the weighted mean of neighbor values, who are 
among top 𝑘 smallest distances with input value. In our case, 
the start time and stay duration in qualified sessions with top 𝑘 
smallest distances with current session value are extracted from 
database and averaged with weights.  

 𝑑𝑖𝑠𝑖,𝑗 = ‖𝑠𝑖 . 𝑡𝑠 − 𝑠𝑗 . 𝑡𝑠‖ (1) 

 
𝑤𝑖 =

𝑑𝑖𝑠𝑘+1,𝑗 − 𝑑𝑖𝑠𝑛,𝑗

𝑑𝑖𝑠𝑘+1,𝑗 − 𝑑𝑖𝑠1,𝑗
 (2) 

where 𝑑𝑖𝑠𝑖,𝑗  denotes the distance between session 𝑠𝑖 and 

session 𝑠𝑗; wi denotes weight of the ith session 𝑠𝑗. 

 𝑒̂𝑛 =
1

𝑘
⋅∑𝑤𝑖 ⋅ (𝑠𝑖 . 𝑒)

𝑘

𝑖=1

 (3) 

 𝑡̂𝑛,𝑓 = 𝑡𝑛,𝑠 +
1

𝑘
⋅∑𝑤𝑖 ⋅ (𝑠𝑖 . 𝑡𝑙 − 𝑠𝑖 . 𝑡𝑠)

𝑘

𝑖=1

 (4) 

where 𝑒̂𝑛 and 𝑡̂𝑛,𝑓 are estimations of energy consumption and 

stay duration; 𝑘 denotes the total number of qualified sessions. 

2) Virtual Load Estimation 

Since the hardware we are modeling in this paper has the 
power sharing and current multiplexing function, it means that 
the charging schedules for vehicles connected to the same 
power source will interact with each other. If taking 
uncertainties of future EV energy demands into consideration, 
the proposed system models an additional virtual EV load for 
each power source to account for the potential deviation. For 
each EVSE, historical data are extracted to construct the 
estimation of future EV load demand. Two steps are needed 
for dynamic virtual load estimation, i.e. total demand 
estimation and real-time update for remaining demand. Total 
demand after time 𝑡 can be computed offline for all charging 
sessions in one specific EVSE: 

 

𝐷𝑡
𝑘 =

1

𝑀
⋅∑𝑠𝑖 . 𝑒

𝑖=𝑀

𝑖=1

 (5) 

where the qualified session 𝑠𝑖  is subject to  
𝑠𝑖 . 𝑡𝑠 = 𝑡 and 𝑠𝑖 . 𝑑 = 𝑘. 

Real-time EV energy demand will be updated based on 
current active charging sessions in power source 𝑘 and their 
estimated energy consumptions. The update for virtual load is 
illustrated in the following equation: 

 𝑡𝑣,𝑓
𝑘 = max⁡(𝑠𝑖 . 𝑡𝑓) (6) 

 
𝑒𝑣
𝑘 = max⁡(0, 𝐷𝑡

𝑘 − 𝐷𝑡𝑓
𝑘 −⁡∑𝑠𝑖 . 𝑒

𝑖∈𝑁

) (7) 

The virtual load charging rate 𝑟𝑣
𝑘(𝑡)  for power source𝑘  is 

modeled as a regular EV load and will be input into the overall 
optimization problem. 

 0 ≤ 𝑟𝑣
𝑘(𝜏) ≤ 𝑟𝑣

𝑚𝑎𝑥 . 𝜂, ∀𝜏 ∈ [𝑡, 𝑡𝑣,𝑓
𝑘 ] (8) 

 

∑𝑟𝑣
𝑘(𝜏)

𝑡𝑣,𝑓

𝜏=𝑡

= 𝑒𝑣
𝑘 (9) 

B. Load Modeling with Uncertainties 

1) Building Load and Solar Generation 

The power consumption for the building and solar power 
generation cannot be exactly known in advance and there exists 
little variation between different days. In this paper, wiener 
filter and historical data are combined as a simple load  
predictor.  

 𝑃𝑏(𝑡) = 𝑃𝑏
𝑒(𝑡) + 𝑃𝑏(𝑡)̅̅ ̅̅ ̅̅ ̅ (10) 

 𝑃𝑏(𝑡)̅̅ ̅̅ ̅̅ ̅ = 𝑃𝑑(𝑡)̅̅ ̅̅ ̅̅ ̅ − 𝑃𝑠(𝑡)̅̅ ̅̅ ̅̅ (11) 

where 𝑃𝑏(𝑡)̅̅ ̅̅ ̅̅ ̅ denotes the average value of base load at the time 
𝑡 , which is the difference between average building power 

consumption value 𝑃𝑑(𝑡)̅̅ ̅̅ ̅̅ ̅  and the average solar generation 

value 𝑃𝑠(𝑡)̅̅ ̅̅ ̅̅ . 𝑃𝑑(𝑡)̅̅ ̅̅ ̅̅ ̅  and 𝑃𝑠(𝑡)̅̅ ̅̅ ̅̅  can be simply obtained by 
averaging historical data for time 𝑡. The assumption for wiener 
filter is that the estimation error can be accumulated by 
previous steps[8] and thus, real-time error calculation is 
performed by: 

 𝑃𝑏,𝑡
𝑒 =∑𝜉(𝑖) ⋅ 𝑓(𝑡 − 𝑖),⁡⁡⁡⁡⁡⁡∀𝑡 ∈ [1, 𝑇]

𝑖=𝑇

𝑖=1

 (12) 

where 𝑃𝑏,𝑡
𝑒  is the error between real base load and predicted 

average baseload at time 𝑡 . 𝜉  is an identically distributed 
random variable with zero mean and variance 𝜎2 . 𝑓  is the 
impulse response of a causal filter, with following form: 

 𝑓(𝑡) = {
0, 𝑡 < 0

𝑎−𝑡 , 𝑡 ≥ 0
 (13) 

Thus, the prediction error for current time 𝑡  is only the 
summation of the previous estimation errors with different 
weights. Note that 𝑓(0) = 1. 

2) EVSE Model 

Due to the characteristics of our EVSE design, more than 
one vehicle can share the power source at the same time, which 
means each charging session has separate constraints. For each 
connected vehicle, we use 𝑟𝑛 = {𝑟𝑡𝑠 , 𝑟𝑡𝑠+∆𝑡 , 𝑟𝑡𝑠+2⋅∆𝑡 , … , 𝑟𝑡𝑓}  to 

denote the power consumption rates from session start time 𝑡𝑠 
to session finish time 𝑡𝑓 . 𝛥𝑡  is the time step we use in this 

paper. The constraint for each charging session: 

 0 ≤ 𝑟𝑣
𝑘(𝑡) + 𝑟𝑛

𝑘(𝑡) ≤ 𝑟𝑘
𝑚𝑎𝑥 . 𝜂, ∀𝑡 ∈ [𝑡𝑛,𝑠, 𝑡̂𝑛,𝑓] (14) 



where 𝑟𝑛
𝑘(𝑡)  is the power consumption rate for vehicle 𝑛 , 

which is connected to power souce 𝑘, at time 𝑡. 𝑟𝑘
𝑚𝑎𝑥  is the 

maximum power supply for power source 𝑘 ; 𝜂  is the safety 

coefficient for this power source. 𝑡̂𝑛,𝑓  denotes the estimated 

finish time for vehicle 𝑛.  

For each power source (EVSE), the same limitation of total 
power consumption also applies: 

 0 ≤ 𝑟𝑣
𝑘(𝑡) + ∑ 𝑟𝑛

𝑘(𝑡)

𝑛∈𝑁𝑘

≤ 𝑟𝑘
𝑚𝑎𝑥 . 𝜂, ∀𝑡 ∈ [𝑡𝑛,𝑠, 𝑡̂𝑛,𝑓] (15) 

where 𝑁𝑘  denotes the number of active charging sessions for 
power source 𝑘.  

3) User Model 

Each charging session in our system is labeled with a 
number of properties, such as user ID, session start time 𝑡𝑛,𝑠, 
session finish time 𝑡𝑛,𝑓, vehicle leave time 𝑡𝑛,𝑙 and the session 

energy consumption 𝑒𝑛 . At the beginning of each charging 
session, estimation algorithm will calculate the predicted 
energy consumption 𝑒̂𝑛  and the real energy consumption 
should be larger than the predicted value, but less than battery 
capacity 𝐸𝑛: 

 𝑒̂𝑛 ≤ 𝑒𝑛(𝑡𝑛,𝑓) ≤ 𝐸𝑛 (16) 

As the time goes on, energy consumption is accumulated at 
each time interval: 

 𝑒𝑛(𝑡) = 𝑒𝑛(𝑡 − ∆𝑡) + 𝑟𝑛(𝑡) ⋅ ∆𝑡,⁡⁡⁡∀𝑡 ∈ [𝑡𝑛,𝑠, 𝑡̂𝑛,𝑓] (17) 

C. Receding Horizon Control 

At each time interval, the scheduler on control center will 
call optimization program to compute for an optimal EV 
charging schedule, considering the estimated travel schedules 
and energy consumption values for all active charging 
sessions. To minimize the overall load fluctuations, the 
optimization problem, referring to [8], is modeled as: 

𝑂𝑏𝑗:  

min∑(𝑃𝑏(𝜏) +∑𝑟𝑛(𝜏)

𝑛∈𝑁

−
1

𝑇 − 𝑡 + 1
⋅ (𝑃𝑏(𝜏) +∑𝑟𝑛(𝜏)

𝑛∈𝑁

))2
𝜏=𝑇

𝜏=𝑡

 (18) 

𝑠. 𝑡. (8)(9), (14) − (17) 

After the algorithm initiation, the baseload that consists of 
building load and solar generation, and EV demand will be 
estimated. At each time interval, parameters for all active 
charging sessions in system will be extracted from database, 
and virtual load will be estimated to solve the optimization 
program. Only the first element in scheduling results ⁡𝑟𝑛(𝑡) is 
used to control specific EVSE and then algorithm moves 
forward to next time interval. This procedure repeats until the 
end of the day. The whole algorithm is summarized in 
Algorithm 1: 

 

 

 

Algorithm 1: Predictive EV Scheduling Algorithm (PESA) 

Calculate baseload 𝑃𝑏,𝑡̅̅ ̅̅ ̅ by averaging historical data 

Estimate EV demand for each EVSE:⁡𝐷𝑡
𝑘 , using (1)(2)(5) 

𝑡 = 1 
Do 

Estimate 𝑃𝑏(𝑡) with error using (10) − (13) 
For each vehicle 𝑛 ∈ 𝑁: 

Estimate leave time 𝑡̂𝑛,𝑓  and energy consumption 𝑒̂𝑛 for 

vehicle 𝑛, using (3)(4) 
End 
Estimate virtual load parameters, using (1)(2), (6) − (9) 
Solve problem (18) ,subject to (8)(9), (14) − (17) 
For each vehicle 𝑛 ∈ 𝑁  

Implement 𝑟𝑛(𝑡) 
End 
𝑡 = 𝑡 + 1 

While 𝑡 ≤ 𝑇 

IV. RESULTS AND DISCUSSION 

In this section, results from PESA is discussed, based on 
comparisons with those algorithms without considering 
uncertainties. The overall load variation is utilized as metric for 
performance evaluation of PESA. Potential improvements are 
also discussed. 

A. Experiment setup 

Real-world charging records from users in UCLA campus 
are utilized for our experiment setup. One day in March, 2015 
is randomly selected as a test day. There are totally 21 charging 
sessions from multiple users on test day, associated with all 
Level II EVSEs. We set the time interval for all data 
preprocessing and PESA to 15 minutes, which is long enough 
considering our problem size and performance requirement. 
The standard variance 𝜎  of 𝜉  is set to 2 according to our 
observation and 𝑎  is set to 0.4 in the wiener filter. Safety 
coefficient 𝜂 is set 0.9. CVX package[19] is used for solving 
the optimization problem in each step. 

B. Scheduling Results and Future Improvements 

 

Fig. 3 Predictive Scheduling Results 

In Fig.3, the brown step curve is the base load generated by 
(10) − (13) on the test day and the red dotted curve is the 
original EV load caused by the real-world charging behaviors. 
PESA is performed every 15 minutes and only the first 
schedule elements from the output is implemented. The blue 
curve is the new energy consumption schedules created by 



PESA. Visually, there is a portion of EV load is shifted from 
around 9:00 AM to 2:00 PM. Thus, the total load with EV, 
solar generation and building load is updated as the green 
curve in Fig.3. Thus, PESA’s ability for valley filling is 
demonstrated.  

Quantitatively, equation (18)  can serve as a numerical 
metric load variation. After applying the updated EV load, the 
variation values for system loads with and without PESA are 
compared in Table I. Scheduled EV load with PESA can 
reduce the load variation drastically by more than 40%. 

Table I Comparison of Load Variation 

 With PESA Without PESA 

Load Variation 40.1413 70.7471 

However, it should be noted that there is  a slight difference 
between original total EV energy consumption and the new 
total EV consumption, which is reflected by the areas under the 
red-dotted curve and the blue curve, respectively. This 
deviation, caused by uncertainties of user behaviors, can be 
used as another criteria for performance evaluation.  We define 
Average Schedule Error Rate (ASER) to represent this 
deviation: 

 𝐴𝑆𝐸𝑅 =
1

𝐿
⋅∑

𝑒𝑛 − 𝑒𝑛,𝑐
𝑒𝑛

𝐿

𝑛

⋅ 100% (19) 

where 𝑒𝑛  is the original energy consumption for one 

charging session. 𝑒𝑛,𝑐 is the energy consumption obtained from 

PESA. 𝐿⁡ denotes the number of charging sessions on a 
particular EVSE. Smaller ASER values denote less deviations 
and higher levels of satisfactions of energy demand from EV 
users. For each level II EVSE in experiment, single ASER is 
calculated as well as the overall value in Table II. 

Table II ASER Values for Different EVSEs 

EVSE ID EVSE 1 EVSE 2 EVSE 3 EVSE 4 Overall 

ASER(%) 7.4061 24.6687 1.6531 19.6281 14.9745 

After comparing different ASER values for different 
EVSEs, we find that, for EVSE 2 and EVSE 4, there are users, 
whose travel schedules and energy demands have quite large 
deviations from their historical routines, i.e, they leave 
unexpectedly at a much earlier time than before or demand 
much higher energy than usual. Even though the overall 
deviation level represented by ASER values are acceptable, 
users, whose daily charging behaviors are beyond estimations, 
will undermine the overall scheduling results. To solve this 
problem completely, the resemblance between current charging 
session and historical sessions should be estimated dynamically 
based on more information extracted from live system.  

V. CONCLUSION 

In this paper, a predictive EV scheduling algorithm(PESA) 
is developed, accounting for the uncertainties of building load, 
renewable generation and EV load. PESA reduces the system 
load variation and maintains high level of satisfaction for 

energy demand from EV users. Bayesian inference method has 
the potential to be used as an adaptive estimator for biased user 
behaviors and research efforts will be invested into that 
direction to improve performance. 
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