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Abstract—Un-coordinated Electric Vehicle (EV) charging can
create unexpected load in local distribution grid, which may
degrade the power quality and system reliability. The
uncertainty of EV load, user behaviors and other baseload in
distribution grid, is one of challenges that impedes optimal
control for EV charging problem. Previous researches did not
fully solve this problem due to lack of real-world EV charging
data and proper stochastic model to describe these behaviors. In
this paper, we propose a new predictive EV scheduling algorithm
(PESA) inspired by Model Predictive Control (MPC), which
includes a dynamic load estimation module and a predictive
optimization module. The user-related EV load and base load are
dynamically estimated based on the historical data. At each time
interval, the predictive optimization program will be computed
for optimal schedules given the estimated parameters. Only the
first element from the algorithm outputs will be implemented
according to MPC paradigm. Current-multiplexing function in
each Electric Vehicle Supply Equipment (EVSE) is considered
and accordingly a virtual load is modeled to handle the
uncertainties of future EV energy demands. This system is
validated by the real-world EV charging data collected on UCLA
campus and the experimental results indicate that our proposed
model not only reduces load variation up to 40% but also
maintains a high level of robustness. Finally, IEC 61850 standard
is utilized to standardize the data models involved, which brings
significance to more reliable and large-scale implementation.
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. INTRODUCTION

Electric Vehicle and corresponding charging infrastructure
have received much attention in recent years due to the lack of
fossil fuel and pressure from government to reduce carbon
emission[1]. The initiative from California government, 1
million zero-emission EVs are expected to be on road by
2020[2]. Accordingly, there will be more Electric Vehicle
Supply Equipments (EVSES) to be installed as the penetration
of EV increases in the foreseeable future. Un-coordinated
Electric Vehicle charging can create unexpected load in local
distribution grid, which may degrade the power quality and
system reliability[3]. Many pioneer researches[5],[10]-[14] on
advanced charging infrastructure, including both software and

hardware that are developed to facilitate the acceptance of EVs.

However, it is still a challenging task to regulate numerous EV
charging behaviors in real-time due to the following reasons: 1)
the randomness of EV user behaviors, such as arrival time,
departure time and energy demand; 2) complexity of stochastic
models that describe the loads, renewables and EVs. Thus,
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more efforts should be made to design a real-time energy
scheduling system that considers the above factors.

Previous researches have proposed several viable
scheduling schemes for deferrable load control. An optimal
distributed charging protocol is designed and implemented in
simulations with a large number of EVs in [4]. Valley-filling
and load-following strategies are proposed to provide grid-side
regulations with deferrable EV load. However, these solutions
assume static travel schedules for EV users without
uncertainties, which is not true in reality. Price-based charging
algorithm is designed and implemented with user preferences
in [5]. Uncertainties of renewable generation and EV load are
considered in [6]-[9]. [7] utilizes receding horizon scheduling
techniques based on MPC to handle uncertainties of EV arrival
and renewable generation periodically. In addition, in [7] a
proof for optimality is provided given the Gaussian noise of
baseload. However, the estimation for the short-term EV
energy demand is derived from a simple assumption rather than
from real-world EV energy consumption data, which
undermines the problem formulation and the simulation results.
The power consumptions for different EVSES are also assumed
to be un-correlated and no power sharing scheme exists. The
EVSE[10] designed and manufactured by UCLA Smart Grid
Energy Research Center (SMERC) has the capacity to allow
multiple charging sessions at the same time by power-sharing
and current-multiplexing  circuit design.  Event-based
scheduling algorithms, considering random user behaviors are
developed in [11]. Vehicle-to-Grid and Vehicle-to-Building
services[12],[13] are developed for various EV energy
consumption scenarios. Accordingly, smart EV charging
algorithms are designed to support more complex functions
that satisfy both EV energy demand and also provide grid-side
services, such as load flattening and load following.

In this paper, we proposed a new real-time EV charging
scheduling algorithm inspired by MPC, which is designed and
simulated in a micro-grid scenario, including building load,
solar generation and EV load. A dynamic load estimation and a
predictive optimization module are implemented to handle the
uncertainties in system. The contributions of this paper can be
summarized as: 1) Current-multiplexing is considered in the
problem formulation and accordingly a virtual load for each
EVSE is modeled to simulate the uncertain short-term EV
energy demand. 2) Dynamic estimation method based on K-
nearest neighbor (KNN) are utilized for charging session
parameters. 3) Online predictive optimization method based on
MPC is formulated, considering the uncertainties of building
load and user behaviors; 4) IEC 61850 is utilized to standardize



the information exchange by modeling the data involved in this
algorithm, which gives practical meaning to more reliable and
large-scale implementation.

The rest of this paper is organized as follows: Section Il
discusses over system architecture. Section Il introduces
detailed problem formulation. Session IV discusses the
experiment results and potential improvements. Finally, we
conclude this paper in section V.

Il.  SYSTEM OVERVIEW

A. System Architecture
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Fig. 1 System Overview

The proposed system architecture is illustrated in Fig. 1. In
general, the system has 5 main components, i.e. EVSE,
building load, solar generation, client mobile application and a
control center. Real-time energy consumption data with user
index and device ID are retrieved and transmitted through
advanced communication networks [14] constructed within
UCLA campus, and finally stored in a central database. EVSEs
[5] are controllable by commands from scheduling service on
server side or client mobile applications, via assigning different
duty-cycles to different outlets that share the same power
source from the grid. The mobile application can perform the
remote control function for each EVSE in our system. Based
on the real-time power data from all engaged buildings, solar
generation sites, EVSEs and mobile charging requests,
scheduling services are able to compute periodically for an
optimal EV energy scheduling given dynamic estimation of
short-term energy demand. The building load used here is from
Cornell University Facilities Service[17] and the solar data is
from UCLA Ackerman Union Solar Integration project[18]. To
support reliable and large-scale implementation, IEC 61850 is
implemented in EVSE gateways and the control center to
encode/decode all the involved data and communication. This
architecture has been tested by real EV users in UCLA and is
friendly to more advanced charging algorithms.

B. EVSE with Current Multiplexing and Existing Algorithm

One distinguished feature of the EVSE developed by
SMERC is power —sharing and current-multiplexing function.
The power supply from grid can be split into multiple charging
sessions based on users’ preferences or control signals. The
current assigned to each vehicle connected to the EVSE is

proportional to the specified duty-cycle value in control
signals. The duty-cycle ranges from 0 to 50% according to
SAE J1772 standard. This design provides more flexibility for
the algorithm to assign various current to different outlets due
to varied energy demand and travel schedules. In current
implementation, the existing charging algorithm is simply to
check the real-time power consumption value and verify the
connected vehicle is fully charged. Charging session will be
closed and notification will be sent to users once the charging
session is finished. By analyzing the monitoring records
associated with each user’s charging session, one can extract
the historical data of energy demand and personal charging
schedules, such as start time, end time and leave time, which
will be utilized for the estimation of current charging session.

C. IEC 61850 Protocol and Integration

IEC 61850 is an international standard that provides a
standardized framework that specifies the communication
protocols, originally for power automation substation[15].The
advantages include interoperability, free configuration and
long-term stability[16]. A specialized IEC 61850 gateway is
designed as communication interface for both control center
and EVSE in our system. Data models, that include power
information, EVSE status, charging requests and control
signals, are all encoded as virtual components in xml-based
messages to improve the system interoperability and reliability.
Fig.2 is the schema view of communication and data modeling
for EV system, based on IEC 61850 protocol.
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Fig. 2 Communication & Data Modeling using IEC61850

I1l.  PROBLEM FORMULATION

A. Dynamic Parameter Estimation

The optimization method in this paper is inspired by MPC,
which is an online optimization method and computes optimal
scheduling across fixed steps in the future periodically,
however just realize the first element in the schedule results.
The procedure continues in every step, taking the updated
system states into consideration. In our system, the
optimization program needs to involve the estimations of
leave time and energy consumption values for all the active
charging sessions. Thus, proper estimation methods play a
significant role in improving the system performance. The
leave time and energy consumption values are estimated
dynamically, using the following methods.

1) Session Parameter Estimation



Each charging session, with a number of properties values,
such as user index, device ID and start time, finish time, leave
time and energy consumption, are stored as a record in
database. We model each record associated with a charging
session as a tuple:

s = (up, t, t, t, €, d)

where u is the user index for this session, d is the EVSE ID or
power source ID. ¢, t, denotes the start time and finish time
for the charging session, respectively; t; is the leave time; e
denotes the energy consumption. K-nearest neighbor (KNN)
method is utilized to estimate e and t. In general, KNN
calculates the weighted mean of neighbor values, who are
among top k smallest distances with input value. In our case,
the start time and stay duration in qualified sessions with top k
smallest distances with current session value are extracted from
database and averaged with weights.

disi,j = ”Si' ts - S]tS” (l)

_ disk+1,j - dl.Sn'j

@

¢ dl5k+1,]' - dlSLj

where dis;; denotes the distance between session s; and
session s;; w; denotes weight of the ith session s;.

K
1
én=E-ZWi-(si.e) 3)
i=1
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i=1

where &, and fn,f are estimations of energy consumption and
stay duration; k denotes the total number of qualified sessions.

2) Virtual Load Estimation

Since the hardware we are modeling in this paper has the
power sharing and current multiplexing function, it means that
the charging schedules for vehicles connected to the same
power source will interact with each other. If taking
uncertainties of future EV energy demands into consideration,
the proposed system models an additional virtual EV load for
each power source to account for the potential deviation. For
each EVSE, historical data are extracted to construct the
estimation of future EV load demand. Two steps are needed
for dynamic virtual load estimation, i.e. total demand
estimation and real-time update for remaining demand. Total
demand after time t can be computed offline for all charging
sessions in one specific EVSE:

i=M

LR N (5)
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where the qualified
Si'ts = tand Si.d = k.

subject to

Real-time EV energy demand will be updated based on
current active charging sessions in power source k and their
estimated energy consumptions. The update for virtual load is
illustrated in the following equation:

ty r = max(s;. ty) (6)

ek = max(0,Df — fo - Z s;.e) @)
iEN
The virtual load charging rate ¥ (t) for power sourcek is
modeled as a regular EV load and will be input into the overall
optimization problem.

0 < rf(7) < ¥y, VT € [t, t,’f_f] (8)
tv,f
Z k() = ek 9)
T=t

B. Load Modeling with Uncertainties
1) Building Load and Solar Generation

The power consumption for the building and solar power
generation cannot be exactly known in advance and there exists
little variation between different days. In this paper, wiener
filter and historical data are combined as a simple load
predictor.

Py () = P5(t) + Py(8) (10)
Py(t) = Pa(t) — Fs(t) (11)

where P, (t) denotes the average value of base load at the time
t, which is the difference between average building power
consumption value P,;(t) and the average solar generation
value P,(t). P;(t) and P,(t) can be simply obtained by
averaging historical data for time t. The assumption for wiener
filter is that the estimation error can be accumulated by
previous steps[8] and thus, real-time error calculation is
performed by:

Pie= Y §@)-fe—i), vee[tT] (1)

where Py, is the error between real base load and predicted
average baseload at time ¢. & is an identically distributed
random variable with zero mean and variance ¢2. f is the
impulse response of a causal filter, with following form:

0, t<0
ro=lee iZo

Thus, the prediction error for current time ¢t is only the
summation of the previous estimation errors with different
weights. Note that f£(0) = 1.

2) EVSE Model

Due to the characteristics of our EVSE design, more than
one vehicle can share the power source at the same time, which
means each charging session has separate constraints. For each
connected vehicle, we use 1, = {1, Tt 4a e+ 2000 ...,rtf} to
denote the power consumption rates from session start time ¢,
to session finish time t. At is the time step we use in this
paper. The constraint for each charging session:

0 < 1k () + 1k (t) < "oy, Vt € [tns tnr]l  (14)

(13)



where r,¥(t) is the power consumption rate for vehicle n,
which is connected to power souce k, at time t. r7*%* is the
maximum power supply for power source k; n is the safety
coefficient for this power source. £, denotes the estimated
finish time for vehicle n.

For each power source (EVSE), the same limitation of total
power consumption also applies:

0<rk@)+ Z k() < ¥, vt € [tns fn,f] (15)

NeENy

where N, denotes the number of active charging sessions for
power source k.

3) User Model

Each charging session in our system is labeled with a
number of properties, such as user ID, session start time ¢, ,
session finish time ¢, ¢, vehicle leave time ¢, , and the session
energy consumption e,,. At the beginning of each charging
session, estimation algorithm will calculate the predicted
energy consumption é, and the real energy consumption
should be larger than the predicted value, but less than battery
capacity E,:

én < en(tns) <E, (16)

As the time goes on, energy consumption is accumulated at
each time interval:

en(t) = e, (t — At) + 1, (t) - At, Vt € [ty bnf]  (17)

C. Receding Horizon Control

At each time interval, the scheduler on control center will
call optimization program to compute for an optimal EV
charging schedule, considering the estimated travel schedules
and energy consumption values for all active charging
sessions. To minimize the overall load fluctuations, the
optimization problem, referring to [8], is modeled as:

Obj:

T—t+1

nenN nenN

=T
min Y (Py(0) + Y 7(0) g B+ Y ) (18)

s.t.(8)(9),(14) — (17)

After the algorithm initiation, the baseload that consists of
building load and solar generation, and EV demand will be
estimated. At each time interval, parameters for all active
charging sessions in system will be extracted from database,
and virtual load will be estimated to solve the optimization
program. Only the first element in scheduling results r,(¢) is
used to control specific EVSE and then algorithm moves
forward to next time interval. This procedure repeats until the
end of the day. The whole algorithm is summarized in
Algorithm 1:

Algorithm 1: Predictive EV Scheduling Algorithm (PESA)

Calculate baseload Py, by averaging historical data

Estimate EV demand for each EVSE: D, using (1)(2)(5)
t=1
Do
Estimate P, (t) with error using (10) — (13)
For each vehiclen € N:
Estimate leave time fn, £ and energy consumption &, for
vehicle n, using (3)(4)
End
Estimate virtual load parameters, using (1)(2), (6) — (9)
Solve problem (18) ,subject to (8)(9), (14) — (17)
For each vehiclen € N
Implement 1, (t)
End
t=t+1
Whilet < T

IVV. RESULTS AND DISCUSSION

In this section, results from PESA is discussed, based on
comparisons with those algorithms without considering
uncertainties. The overall load variation is utilized as metric for
performance evaluation of PESA. Potential improvements are
also discussed.

A. Experiment setup

Real-world charging records from users in UCLA campus
are utilized for our experiment setup. One day in March, 2015
is randomly selected as a test day. There are totally 21 charging
sessions from multiple users on test day, associated with all
Level Il EVSEs. We set the time interval for all data
preprocessing and PESA to 15 minutes, which is long enough
considering our problem size and performance requirement.
The standard variance o of & is set to 2 according to our
observation and a is set to 0.4 in the wiener filter. Safety
coefficient n is set 0.9. CVX package[19] is used for solving
the optimization problem in each step.

B. Scheduling Results and Future Improvements

- Predictive Scheduing Results

Load (kWh)
w B @ g

...... 2:00:00 18:00:00 24:00:00
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Fig. 3 Predictive Scheduling Results

In Fig.3, the brown step curve is the base load generated by
(10) — (13) on the test day and the red dotted curve is the
original EV load caused by the real-world charging behaviors.
PESA is performed every 15 minutes and only the first
schedule elements from the output is implemented. The blue
curve is the new energy consumption schedules created by



PESA. Visually, there is a portion of EV load is shifted from
around 9:00 AM to 2:00 PM. Thus, the total load with EV,
solar generation and building load is updated as the green
curve in Fig.3. Thus, PESA’s ability for valley filling is
demonstrated.

Quantitatively, equation (18) can serve as a numerical
metric load variation. After applying the updated EV load, the
variation values for system loads with and without PESA are
compared in Table I. Scheduled EV load with PESA can
reduce the load variation drastically by more than 40%.

Table | Comparison of Load Variation

With PESA
40.1413

Without PESA
70.7471

Load Variation

However, it should be noted that there is a slight difference
between original total EV energy consumption and the new
total EV consumption, which is reflected by the areas under the
red-dotted curve and the blue curve, respectively. This
deviation, caused by uncertainties of user behaviors, can be
used as another criteria for performance evaluation. We define
Average Schedule Error Rate (ASER) to represent this
deviation:

ASER =

~ =

L
. Z M -100% (19)
en
n

where e, is the original energy consumption for one
charging session. e,, . is the energy consumption obtained from
PESA. L denotes the number of charging sessions on a
particular EVSE. Smaller ASER values denote less deviations
and higher levels of satisfactions of energy demand from EV
users. For each level Il EVSE in experiment, single ASER is
calculated as well as the overall value in Table II.

Table Il ASER Values for Different EVSEs

EVSE ID
ASER(%)

EVSE 1
7.4061

EVSE 2
24.6687

EVSE 3
1.6531

EVSE 4
19.6281

Overall

14.9745

After comparing different ASER values for different
EVSEs, we find that, for EVSE 2 and EVSE 4, there are users,
whose travel schedules and energy demands have quite large
deviations from their historical routines, i.e, they leave
unexpectedly at a much earlier time than before or demand
much higher energy than usual. Even though the overall
deviation level represented by ASER values are acceptable,
users, whose daily charging behaviors are beyond estimations,
will undermine the overall scheduling results. To solve this
problem completely, the resemblance between current charging
session and historical sessions should be estimated dynamically
based on more information extracted from live system.

V. CONCLUSION

In this paper, a predictive EV scheduling algorithm(PESA)
is developed, accounting for the uncertainties of building load,
renewable generation and EV load. PESA reduces the system
load variation and maintains high level of satisfaction for

energy demand from EV users. Bayesian inference method has
the potential to be used as an adaptive estimator for biased user
behaviors and research efforts will be invested into that
direction to improve performance.
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