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Abstract— As Smart Grids move closer to dynamic curtailment
programs, Demand Response (DR) events will become necessary
not only on fixed time intervals and weekdays predetermined
by static policies, but also during changing decision periods
and weekends to react to real-time demand signals. Unique
challenges arise in this context vis-a-vis demand prediction and
curtailment estimation and the transformation of such tasks
into an automated, efficient dynamic demand response (D’R)
process. While existing work has concentrated on increasing
the accuracy of prediction models for DR, there is a lack of
studies for prediction models for D*R, which we address in this
paper. Our first contribution is the formal definition of D*R, and
the description of its challenges and requirements. Our second
contribution is a feasibility analysis of very-short-term prediction
of electricity consumption for D’R over a diverse, large-scale
dataset that includes both small residential customers and large
buildings. Our third, and major contribution is a set of insights
into the predictability of electricity consumption in the context of
D’R. Specifically, we focus on prediction models that can operate
at a very small data granularity (here 15-min intervals), for
both weekdays and weekends - all conditions that characterize
scenarios for D’R. We find that short-term time series and simple
averaging models used by Independent Service Operators and
utilities achieve superior prediction accuracy. We also observe
that workdays are more predictable than weekends and holiday.
Also, smaller customers have large variation in consumption and
are less predictable than larger buildings. Key implications of our
findings are that better models are required for small customers
and for non-workdays, both of which are critical for D*R. Also,
prediction models require just few days’ worth of data indicating
that small amounts of historical training data can be used to
make reliable predictions, simplifying the complexity of big data
challenge associated with D*R.

I. INTRODUCTION

Electricity consumption optimization is critical to enhance
electric grid reliability and to avoid supply-demand mis-
matches. Utilities have long used demand response (DR) for
achieving customer-driven curtailment during peak demand
periods to maintain reliability [1]. Traditionally, planning and
notification for DR is done a day ahead of the day when
curtailment is to be performed [2]. However, the Smart Grid
is transitioning towards dynamic demand response [3], in
which the utility provider needs to perform DR at a few
hours’ advance notice whenever necessitated by dynamically
changing conditions of the grid. We formally define Dynamic
Demand Response as follows:

TABLE I: Comparison of DR and D’R characteristics and

challenges

[ DR [ DR
Goal advance planning dynamic adaptation
Horizon day ahead hours ahead

Data/control granularity

coarse

fine

Data rate

monthly billing

real-time data from
smart meters

Timing and duration

fixed and pre-defined

flexible, dynamically
determined

Extent of curtailment

fixed

dynamically  deter-
mined/adjustable

Customer selection

selected a-priori

dynamically selected

Challenges labor intensive, data | small latency
unavailability, inabil- | requirements,
ity to adapt computational
complexity, data
deluge

Definition 1: Dynamic Demand Response (D’R) is the
process of balancing supply and demand in real-time and
adapting to dynamically changing conditions by automating
and transforming the demand response planning process.

Several factors drive the transition towards D?R; most
notable the integration of renewable energy sources, which due
to their intermittent, non-dispatchable, and uncertain nature
result in supply instability [2]. The need to curtail at time
periods which were traditionally considered non-peak periods,
such as weekends, as a result of such instabilities is beyond
existing DR policies. The need to curtail any time as a result
of such instabilities is beyond existing DR policies, which are
traditionally defined for workdays, and usually in hot summer
afternoons [4], [L]. Besides, Plug-in electric vehicles (PEVs)
can introduce spikes in consumption at arbitrary times during
the course of a day [S]], whereas special events can result in
increased load on weekends. The key differences between DR
and D?R are summarized in Table [

In DR, the focus has been on large industrial and com-
mercial customers [2], selected a-priori, who are expected to
contribute large-sized curtailment. With increasing adoption
of smart meters [6]], [3], and home energy management and
automation systems [[7], [2] however, the participation of small
customers in demand side management is increasing. The
electricity demand of such small customers might be easier to
regulate (i.e. shift or shave) as compared to the load of com-



mercial entities, however, consumption prediction for small
customers and at high temporal granularity is challenging []],
[9]. One of the key implications of involving small customers
would be to dynamically and optimally select customers for
participation in curtailment [2] and request only the minimum
curtailment required to avoid fatigue and loss of interest in the
customers [1]].

While existing work has focused on improving consumption
prediction models[l], [9], to date, there has been little study
on the differences in consumption characteristics of various
customer types and their impact on prediction models’ accu-
racy. Existing studies have shown that consumption prediction
accuracy is high when consumption values of individual
customers are aggregated together [6], [10], [L1]. This is
attributed to the law of large numbers such that larger the
number of customers in an aggregated group, the lower the
prediction error for the group [[12]]. Predictions for aggregated
groups make it impossible to discover curtailment potential of
individual customers, which is necessary for wider adoption of
D?R. Models that work well for large commercial customers
with smaller consumption variability over time, could be less
efficient for small residential customers, whose consumption
pattern fluctuates significantly. Thus, it is necessary to identify
effective methods for predicting demand for diverse customers.

In this paper, we compare six short-term electricity con-
sumption prediction models. Our study differs from previous
work and focus specially to D?R challenges, in that:

e it deals with small, highly variable, individual customer
consumption, as well as relatively larger and more stable
building consumption;

o consumption data granularity is very small (i.e., 15-
min interval) for appropriately timing the requests for
dynamic demand response (D2R) [l as opposed to prior
work on hourly or higher granularity predictions;

« it focuses on short-term predictions (hours ahead) re-
quired for (D*R) [1]], as opposed to most prior work on
day-ahead predictions;

« it evaluates the relationship between prediction accuracy
and day type, i.e., workday versus weekends or holidays.

These distinctions make the insights we draw greatly useful
for researchers and practitioners in the smart grid domain.
Our goal is to get a comprehensive understanding of the
performance of prediction models for D’R. Prediction models
used for D°R should balance conflicting requirements of high
prediction accuracy, low compute time for training and
prediction, and reliability at any time of the week and for
diverse customers. This paper can be considered as first
attempt in studying prediction models specifically from this
perspective.

II. PREDICTION MODELS FOR D?R

Our work advances previous research on analyzing perfor-
mance of prediction models, such as [8], [2], [[13], but differs
from them in experiments and analysis focused specifically
on D?R. Electricity consumption prediction models can be
broadly categorized into three groups [14]]: 1) simple averaging

models; 2) statistical models like regression and time series
models; and 3) artificial intelligence and machine learning
models (AI/ML) like neural networks and support vector ma-
chines [14] [10], [L15], [8]. As many AI/ML methods involve
longer training times, they may not be suitable for near real
time predictions required for D’R, and hence not considered
here.

In the following, we describe the models considered in
our study. While the models used in our analysis are not
exhaustive, they represent the most commonly used algorithms
in demand-response systems [[1]], [8]] and meet the requirements
for D’R predictions as mentioned previously.

A. Averaging Models

Averaging models are popular among utilities and ISOs
[LON[17][18] due to their simplicity [19]. Averaging models
make predictions based on linear combinations of consumption
values from limited historical data. Averaging models have
been shown to perform as well as advanced machine learning
and time-series models [8] while considerably reducing the
computational need for large-scale predictive analysis of home
energy data. In our study, we consider three popular averaging
models and a Time of Week (ToW) model, as described below:

1) New York ISO Model (NYISO): It predicts for the next
day by taking hourly averages of the five days with highest
average consumption value among a pool of ten previous days,
starting from two days prior to prediction [16]. It excludes
data from weekends, holidays, past DR event days or days
with sharp drop in the energy consumption.

2) California ISO Model (CAISO): Tt predicts for the next
day by taking hourly averages of the three days with highest
average consumption value among a pool of ten previous days,
excluding weekends, holidays, and past DR event days [17].

3) Southern California Edison Model (CASCE): It predicts
for the next day by taking hourly averages across past ten
immediate or similar days, excluding weekends, holidays, and
past DR event days [19], [I18].

4) Time of Week Average Model (ToW) : 1t predicts for each
15-min interval in a week by taking average over all weeks in
the training dataset. It captures consumption variations over
the duration of a day , i.e., from day to night, and across
different days of the week. Time related features are important
for electricity consumption [20] as it is closely tied to human
schedules and activities.

B. Regression Models

Regression models combine several independent features
to form a linear function. Commonly used regression mod-
els for electricity consumption prediction are regression tree
models [21]], probabilistic linear regression, and gaussian pro-
cess regression models [22]]. Hybrid methods that combine
regression-based models with other models have also been
used for short term load prediction [23]]. A multiple linear
regression model for load prediction was presented in [26].
A non-linear and non-parametric regression model for next
day half-hourly load prediction was employed in [27] for



stochastic planning and operations decision making. In other
studies, Support Vector Machines have also been used for load
forecasting [24], [235].

We use regression trees [28] in this study. A regression
tree recursively partitions data into smaller regions until each
region can be represented by a constant or a linear regression
model. Its key advantage is its flowchart or tree representation
that enables domain users to interpret the impact of different
features on predicted values [21]: Also, once trained, predic-
tions are fast to compute by a tree look-up [L1]].

C. Time Series Models

A Time Series model predicts future values based on recent
observations. One of the early reviews for time series based
models for load forecasting is given in [29]. A comparison of
time series methods for load forecasting with other methods is
presented in [30]. A time series method for short to medium
term load forecasting (few hours to few weeks ahead) of hourly
loads was proposed in [31]].

In this study, we use Auto-Regressive Integrated Moving
Average (ARIMA) [29]]. ARIMA is defined in terms of three
parameters: d, the number of times a time series needs to
be differenced to make it stationary; p, the auto-regressive
order, that denotes the number of past observations included
in the model; and ¢, the moving average order that denotes the
number of past white noise error terms included in the model.
These parameters are derived from the Box-Jenkins test [32].

ITII. EXPERIMENTAL SETUP

A. Dataset Description

Electricity consumption data: Our data for small customers
is drawn from a major California power utility. It comprises of
15-min kWh values from 89 household customers, collected
between Feb 2013 and Apr 2013. The dataﬂ for the building-
level large customers comes from USC campus microgrid [33|],
[3]. It comprises of 15-min kWh values from 170 USC campus
buildings, collected between Jul 2009 and Jun 2013 [33], [3]. It
represents large customers of diverse type: teaching and office
spaces, residential, and administrative buildings. For both
datasets, we excluded customers with major discontinuities
in data, and used linear interpolation for minor gaps. Key
properties of the datasets are summarized in Table [, and
their distribution is shown in Figure [I] For more details on
the datasets, the readers are referred to [34].

Weather data: We obtained curated weather data from
NOAA [35], [36] We used hourly temperature observations,
which were interpolated to 15-min values.

Schedule Data: It was obtained for the campus dataset com-
prised of information on working days, holidays, and semester
durations (for campus dataset). We used this information to
compare the performance of workday versus non-workday
performance of the models.

! Available from the USC Facility Management Services (FMS).

TABLE II: Description of microgrid and utility datasets.

[

Campus Microgrid | Utility Dataset

Number of participants 170 89

Data collection period 4 years 3 months

Data points 4 years X 365 days | 3 months
X 96 intervals | X 30 days
=~ 140 * 103 X 96 intervals
points per building | =~ 85 x 103
~ 16 * 10% points | points per customer
total ~ 073 = 10°

points total
Client type buildings households

Mean consumption (kWh)

large (30.5247.65)

small (0.22+0.15)

Average variance (kWh)

122.56

0.026
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Fig. 1: Probability density function (PDF) of average kWh
consumption per 15-min interval of campus buildings. Em-
bedded: the PDF of utility area customers.

B. Prediction Models’ Configuration

For the averaging models and regression tree models, we
spilt both datasets in 2:1 where 2 parts were used for training
and 1 part for testing. For both datasets, we build one predic-
tion model per customer. For the regression tree models, we
selected the feature combination that offered the best predic-
tion accuracy based on our previous work [21]: day of week,
semester, temperature, and holiday/working day flag. The time
series models are trained using a sliding window of 8 weeks
preceding the prediction period to predict for three horizons:
1, 4, and 24 hours. For the time series ARIMA model, the
parameters were found to be (8,1,8) for the campus dataset
and (4,1,4) for the utility dataset.The prediction models’
accuracy was compared using the Mean Absolute Percentage
Error (MAPE) [1].

IV. PERFORMANCE ANALYSIS

Observation 1: Prediction accuracy is higher for customers
with high consumption. We compare how accuracy varies
with customer size, which is defined in terms of the aver-
age consumption value in a 15-min interval. Due to space



TABLE III: Average MAPE (with standard deviation) for TS-
lhr for groups of buildings/customers.

[ [ avg. kWh [ workdays [ all days |
l Utility [ kWh <5 [ 0.3075 £+ 0.1309 [ 0.3054 £+ 0.1269 ]
kWh <5 0.1204 4+ 0.0649 | 0.1186 + 0.0623
Campus | 5 < kWh < 15 0.0743 +0.0382 | 0.0750 % 0.0355
15 < kWh < 50 0.0610 4 0.0308 0.0617 4 0.0293
kWh > 50 0.0392 4+ 0.0147 | 0.0416 + 0.0199
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Fig. 2: TS-1hr MAPE as a function of average kWh.

limitations we report here results for the Time Series (1-
hr) model in Fig [2| Results for the rest of the models are
available at [34]. Higher errors for small sized customers can
be observed in both datasets. TS-lhr, the best performing
method achieves 30.74% average MAPE (Figure , whereas,
CASCE, the best performing averaging method, is far worse,
with average MAPE 45.91% for utility customers. We further
quantify the relationship of customer size and prediction error
by dividing campus buildings in four groups according to
average consumption and calculating average MAPE for each
group. Table [lI]| summarizes the results. Evidently, the average
MAPE drops significantly with consumption from 12.04%
for smaller buildings to 3.92% for large consumers. This
result corroborates previous observations of higher accuracy
for larger aggregated consumption prediction [6], [[10], [11].
The discrepancy in prediction accuracy between small and
large customers can be explained by two factors. First, there
is higher variability in small customers [34], i.e., households,
where even switching on or off a light bulb can cause a no-
ticeable change in consumption. Second, activities in campus
buildings are expected to be periodic, governed by pre-defined
schedules and hence expected to be less variable. However, for
smaller customers, even a small offset in the predicted kWh
value results in a higher percentage error value as a result of
the difference between predicted and actual value being high
proportionally to large customers.
Insight 1: D’R requires higher accuracy models for small
customers.

Observation 2: Few recent observations are better pre-

dictors than large sets of historical observations. Averaging
models perform well while using only a small set of recent
historical data (i.e., 2-3 weeks). We found CASCE (Figure
[B) to be particularly effective for workdays, while ARIMA
achieves the best performance while only requiring few train-
ing data. According to Figure[3] even simple heuristics such as
the Time of Week model perform reasonably well with more
recent data (i.e., ToW performs better when trained on data
spanning 2 months than when using data covering a period
of 2 years). We conclude that historical data of extended
time spans enclose consumption patterns that change over
time introducing “noise” and deteriorating prediction accuracy.
Other researchers have also found that increasing the training
data did not improve accuracy [8].
Insight 2: Prediction models for D’R relying on few data
can maintain high short-term prediction accuracy while sig-
nificantly reducing storage requirements and computational
complexity associated with training and latency (i.e., predic-
tions can be made in real-time). It also implies that reliable
predictions for new buildings or customers can be initiated
sooner without waiting to accumulate large training data.

Observation 3: Simple averaging models are inadequate

for DR during weekends. In our experiments, we evaluated
models’ performance with respect to all days versus just
workdays (Figure 3b). For workdays, the three ISO/utility
models achieve lower than 20% MAPE for over 80% of
the campus buildings. CASCE is the best among them, with
an average MAPE of 10.93%. However, when including all
days, CASCE’s performance is affected the most. Its average
MAPE increases from 10.93% to 17.29%, indicated by a shift
of the CDF line to the right in Figure [3d] For experiments
involving weekends, we used a modified version of CASCE,
which was trained on all days of the week. The degradation
in CASCE’s performance when including weekends can be
attributed to weekend loads being different than weekdays
for both campus buildings and utility datasets due to differ-
ent schedules. Contrary, ARIMA’s accuracy deteriorates only
slightly for weekends. For TS 1-hour model, MAPE increases
by 1.13% (from 7.05% to 7.13%). Time series model benefits
from temporal locality and thus does not distinguish between
workdays and weekends. The regression tree and time of
week models are unaffected as both models inherently capture
the workday/weekend information. Specifically, our regression
tree model uses day of week and workday/holidays as features,
whereas time of week prediction is done by taking averages
individually for each day of the week.
Insight 3: D’R requires the development of accurate models
for all days of the week. Traditional DR involved industrial
customers [2] with weekends considered as non-peak. Instead
DR can be initiated at any time involving both industrial and
residential customers.

Observation 4: ARIMA achieves the best prediction
accuracy for very-short-term predictions. For both datasets,
the time series 1-hour model achieves the best performance.
It’s accuracy however deteriorates for longer horizons. While
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Fig. 3: CDF of MAPE values for campus and utility datasets.

this result is well known [1]], the confirmation in the context
of near-real-time consumption prediction makes it a good
candidate for D?R. For campus buildings, average MAPE
increases from 7.05+4.4% to 13.05% for 4-hour horizon, and
down to 26.38% for 24-hour horizon for workdays (Figure [3a).
For utility customers, TS 1-hour outperforms other prediction
techniques for workdays, achieving MAPE below 30% for
80% of the customers (Figure . Combining autoregression
with moving averaging, ARIMA can approximate temporal
locality in electricity consumption. However, as the prediction
horizon increases so does the volatility in the consumption
time series data. Therefore, continuous re-training of ARIMA
models is necessary for high accuracy to be maintained.
Insight 4: While TS 1-hour provides best results, its higher
training cost [[I]] makes it problematic for D’R.

Observation 5: Models that try to capture global pat-
terns over long time periods are not suitable for D’R.
We found both the regression tree and Time of the Week
models to be ineffective for D?R, even though we have

demonstrated their usefulness for medium and long-term pre-
dictions previously [21]], [1]. Also, the results indicate that
using additional features, as in regression tree model, did not
improve prediction performance.

Insight 5: Regression tree model is not suited for short term
prediction required in DR, though it has been found useful
for medium and long-term predictions [21], [I]].

V. CONCLUSIONS

We described how dynamic demand response (D’R) re-
quires very-short-term consumption prediction to make real-
time adaptive decisions about curtailment. Prediction models
used for D?R should balance conflicting requirements of high
prediction accuracy, low compute time for training and pre-
diction, and reliability at any time of the week and for diverse
customers. We analyzed six prediction models leading to key
insights relevant for D’R. 1) Our results indicate that there
is an inherent randomness associated with small customers,
which makes it harder to reliably predict their energy con-



sumption compared to larger customers. Thus, D’R requires
higher accuracy models for small customers. 2) Prediction
models for D’R relying on few data can maintain high short-
term prediction accuracy while significantly reducing storage
requirements and computational complexity associated with
training and latency. 3) D?R requires the development of
accurate models for all days of the week. 4) While Time Series
1-hour provides best results, its higher training cost makes it
problematic for D’R. 5) Regression tree model is not suited
for short term prediction required in D?R, though it has been
found useful for medium and long-term predictions. For future
energy management systems, researchers need to design better
models, personalized for individual customers that leverage
big data available in D’R environments to overcome inherent
randomness in consumption profiles of individual customers.
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