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Abstract—Demand Response(DR) is a common practice used
by utility providers to regulate energy demand. It is used
at periods of high demand to minimize the peak to average
consumption ratio. Several methods have been proposed over the
previous years on how to formulate and deal with the problem of
excess demand. Following these methods automated systems for
initiating and regulating demand response events have emerged.
In this paper we present an automated system for providing an
estimated demand response schedule of participating customers.
We quantify the achieved energy reduction using information
about the baseline consumption and the consumption during
DR. Our goal is to provide a sustainable reduction to ensure the
elimination of peaks in demand. The proposed system includes
an adaptation mechanism for when the provided solution does
not meet the DR requirements. We conducted a series of
experiments using consumption data from a real life micro grid
to evaluate the efficiency as well as the robustness of our solution.

Keywords: dynamic demand response, sustainable reduction,
automated demand response, real time adaptation, scheduling.

I. INTRODUCTION

Reliable energy distribution has been the cornerstone of
the energy industry. Utility providers are concerned with
meeting the energy demand while ensuring the viability of
the distribution network. Over the last years the traditional
power grids have evolved to complex cyber-physical systems
[7], [17] consisting of bi-directional smart meters that report
energy consumption in real time. The collected data can be
used to predict future consumption [4] or deal with periods of
high demand [20] through Demand Response (DR) [20], [23]
techniques.

DR is well known paradigm used by utility providers to
shape customer load. A variety of techniques have been em-
ployed to minimize consumption based on direct control [21]
or customer voluntary participation [4]. While both paradigms
have been used extensively they fail to eliminate demand peaks
as the may shift the original load to other less busy periods
of the day.

To deal with this scenario we have introduced the notion
of Sustainable DR (SDR) [24]. A DR event is said to be
sustainable if it achieves a consistent reduction through the
whole DR period. We define as consistent the reduction of low
deviation between the observed values of consecutive intervals.
This can be formally described by:

Fig. 1: Sustainable reduction compared to peak minimization.

S =
1

n
·

n∑
j=2

|Lj |+max(Lj)−min(Lj) ≥ 0 given:

R = {[x1, f(x1)],[x2, f(x2)], . . . [xn, f(xn)]}

∀j ∈ [2, n], Lj =
f(xj)− f(xj−1)

xj − xj−1

(1)

The equation shows the reduction vector R described by
the reduction values f(xi) for each sample xi. If S → 0
then the achieved reduction is said to be highly sustainable. A
visual representation of SDR compared to peak minimization
is depicted in Fig. 1.

Achieving a sustainable reduction is a hard combinatorics
problem because there are numerous combinations of cus-
tomers to be utilized. An approximation algorithm needs to
be employed in order to solve the problem quickly. However
the need for real time adaptation is imperative as customer
behaviour is hard to predict. The proposed system provides an
initial schedule which can be efficiently updated(e.g., dynamic
SDR – SD2R) to meet the given reduction target.

In this paper we address these issues and present an auto-
mated system used to suggest and enact SD2R schedules. The
system has the ability, based on real-time consumption data,
to quickly adapt in order to compensate for any prediction
inaccuracies. It is currently being used as a support tool in the
controlled micro-grid of the University of Southern California
(USC) campus by the Facility Management Services (FMS).
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II. RELATED WORK

There have been numerous attempts to deal with con-
sumption demand. Utility providers can either compensate by
buying extra power at high prices [5] or employ DR strategies.
The latter is a well known concept divided into two categories
which include direct control and voluntary participation [2].
Arguments in favour of both techniques have yield several
different solutions driven by specific use cases. These address
residential buildings [6], offices [10] as well as large industrial
facilities [19] and data centers [14]. In this paper we focus
on the USC campus microgrid which includes a mixture of
various building types including residential, offices, libraries,
and mixed spaces. Our work is based on directly controlling
the building equipment to achieve a specified reduction target.

Previous work in the domain of load manipulation includes
attempts to minimize peak demand by shifting it to less busy
hours of the day [13], [22] or optimizing load consumption
while minimizing costs from the customer perspective [16].
The above methods rely on cooperative customer action and
has the main drawback of not ensuring the sustainability of
the DR event. In contrast, we aim on finding a group of
customers the participation of who ensure the sustainability
of the DR event. Utility providers can either rely on direct
or voluntary participation as long the necessary consumption
data from past DR events are available for the selection
procedure. Maximizing human comfort plays an important role
in a directly controlled environment an issue that we have
addressed in our previous work [9].

A significant contribution in the domain of ADR is the
DRAS (Demand Response Automated System) [11]. This
system is designed with the goal of eliminating human in-
tervention when scheduling DR events. It is used to broker
the communication between the utility providers and directly
controlled equipment. After a bidding procedure the clients
to participate in the DR event are selected. Our system is
designed to work in cooperation with DRAS by automating
the selection of equipment/buildings to be controlled during
DR for each participating client. In doing so it also provides
an estimated reduction based on that selection.

To the best of our knowledge this is the first work to address
the concept automated SD2R and to propose an automated
equipment/building selection module.

III. INTEGRATED PLATFORM OVERVIEW

The FMS at USC operates an integrated platform for ADR
which manages the DR activities on the USC campus. In
addition the micro-grid is part of the LA DWP Smart Grid
Regional Demonstration project. The platform comprises of
several independent modules: the DRAS server, the Integrated
Building Control (IBC), and the Policy Engine. Requests for
DR events come to the IBC from the DRAS server in the form
of messages following the OpenADR specifications [3]. Based
on them IBC sends to the Policy Engine an XML message
containing the list of buildings and strategies to be used, the
targeted curtailment value in kWh and the DR event period.
The engine will reply with a subset of building-strategy pairs

Fig. 2: DR event timeline.

Fig. 3: Overview of the existing integrated platform for ADR.

which IBC can use in the DR. A number of HVAC strategies
and their combinations can be currently used (cf. Fig. 5):
Global Zone Temperature Reset (GTR), Variable Frequency
Drive Speed Reset (VFD) [18] and equipment Duty cycling.
Based on the received list the IBC will send OpenADR
command and control messages to the building automation
system currently installed in 36 on campus buildings. Power
consumption for each of the buildings is monitored at 1 minute
intervals and aggregated for ease of use in 15 minute kWh
values which are stored on an FTP database for the Policy
Engine to use. The updates are in real-time in order to offer
the engine the most accurate view of the system and to allow
it to efficiently adapt the DR strategies to recent changes in
the buildings’ consumption patterns.

The IBC constantly communicates with the engine in order
to sustain and achieve the curtailment target. For this it relies
on three types of messages: FAR, NEAR, and DURING. The
first two are sent immediately following the DRAS request,
respectively 15 minutes ahead of the DR event in order to
decide the initial set of building-strategy pairs to be used. The
NEAR message is designed to capture any possible changes in
the set determined by FAR, e.g., due to baseline adjustments.
The DURING message is sent on an hourly basis during the
DR event to update the building-strategy pairs based on the
so far achieved curtailment and an estimated achievable target
for the remaining period. Figure 2 shows a typical DR event.

IV. POLICY ENGINE MODULE

The policy engine’s functionality is split in two main parts
dealing with the communication with the FMS’s integrated
building control and with the actual selection process. Figure
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Fig. 4: Policy Engine components & data flow.

4 shows the main components and their interaction. The engine
is deployed as a REST service [8] which is periodically polled
by FMS. Two independently running components deal with the
communication: the Data clean-up and Message Processing.
The former is responsible for retrieving real time and historical
consumption data that will be used later in the selection
process. Since this data comes directly from the buildings,
it is not cleansed and filtered by an MDM (Meter Data
Management) component. As a result our component takes
the role of a simplified MDM. The latter is responsible for
receiving and processing XML based request messages as well
as constructing and transmitting a response message. They
include information about the duration of the DR event, the
participating buildings along with the corresponding strategies
that should be considered and the curtailment target.

The selection process is handled by a single Selection Policy
component. The component consults a curtailment matrix
containing the predicted reduction for the whole day for each
building-strategy pair. The values in this matrix are computed
based on the difference between the buildings’ consumption
in the absence of DR as predicted by a baseline and the actual
consumption during the DR events. Given that numerous ADR
strategies can be used each line corresponds to a building-
strategy pair and contains 96 values corresponding to 15
minute interval readings. Depending on the baseline the matrix
values can vary significantly impacting as a result the selection
process and its accuracy.

Because we target SD2R we require the selection module
to be able to periodically adapt the selection of buildings to the
reality provided by the real time consumption data. For this
the component will periodically (i.e., whenever FMS sends a
DURING message) estimate, based on real time consumption
values, the achieved curtailment and the remaining target. The
remaining target will then be used to make a reselection of
building-strategy pairs to be used next. Two choices exist:
add/remove building-strategies and modify the strategies of
already used buildings. Given building specific mechanical
and practical constraints there are limitations on the strategies
which can be selected to replace existing ones. Figure 5 depicts
the state diagram of the allowed changes for the case of the
USC micro-grid.

VFD 

GTR 

Duty 

VFD 
& 

GTR 

VFD 
& 

Duty 

GTR
& 

Duty 

All 

Fig. 5: Allowed transitions between DR strategies. The strategies are
techniques used to control directly HVAC units and include: Global
Zone Temperature Reset (GTR), Variable Frequency Drive Speed
Reset (VFD), Duty Cycling (Duty).

A. Selection Algorithm

The selection algorithm provides an approximate solution to
the problem of finding a sustainable reduction schedule [24].
It is formulated based on the change making problem [15].
Buildings(customers) are grouped according to a calculated
estimated reduction derived from the curtailment matrix. Using
a default value set corresponding to the US coin set (i.e.,
C = {1, 2, 5, 10, 25, 50, 100}) a number of corresponding bins
are constructed. The bin ranges are scaled to incorporate the
estimated reduction values. The scaling factor(unit value = u)
is computed using a variety of developed heuristics which
are out of the scope of this paper. The buildings are then
distributed into their corresponding bin. At this point each
building is paired with the specific strategy that minimizes the
error from the corresponding bin value (i.e., the upper bound of
the bin range). This ensures that a strategy with the maximum
reduction of the lowest deviation between consecutive intervals
is selected. This strategy will provide us with a sustainable
reduction. The building-strategy pairs are sorted per bin based
on the Euclidean distance from the specified reduction denoted
by the bin value. Finally these pairs are combined to achieve
a given reduction through greedy indexing of the constructed
bins.

In Algorithm 1 an overview of the selection procedure is
presented. The reduction estimates used to group the buildings
are called representatives. The representatives are utilized to
select a suitable scaling factor called unit value. The given
reduction to be achieved is denoted as M . The default value
and the scaled value set are denoted as c̃ and c respectively.
The algorithm then continues to make a selection in the way
described previously. Findings that verify the accuracy as well
as the efficiency of the algorithm are part of previous work
presented in [24].
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Algorithm 1 Change Making Scheduler

Input: Curtailment vectors for each customer-strategy pair.
Output: List of customer-strategy pair.

1: representatives← customers.representatives()
2: v ← calc unit value(representatives)
3: for i← 0 to c.size do
4: c[i]← c̃[i] · v
5: end for
6: M̃ ←M/v
7: bins← distribute(c̃, customers)
8: for i← 1 to buckets.size do
9: sort(bins[i])

10: end for
11: for i← c.size to 1 do
12: j ← 0
13: while M − c̃[i] ≥ 0 do
14: while c[j]−bins[i].customer[j].reduction ≥ 0 and

j ≤ bins[i].length do
15: result.add(bins[i].customer[j])
16: c[j]← c[j]− bins.customer[j].reduction
17: j ← j + 1
18: end while
19: M̃ ← M̃ − c[i]
20: end while
21: end for
22: return result

V. EXPERIMENTS & RESULTS

We conducted a series of experiments using consumption
data acquired from the USC campus micro-grid. We focused
on comparing the predicted reduction to the actual achieved
reduction. We also conducted experiments to test the effective-
ness of the adaptation mechanism, i.e., the sustainability of the
curtailment (cf. Eq. 1). Finally we present the results which
measure the execution time of our Policy Engine module.

A. Experimental Setup and Evaluation Methods

The dataset we used consists of consumption data for 33
buildings for a period of one year. It also includes the observed
consumption during DR events where building equipment are
directly controlled using different strategies. The time series
data are sampled at a fixed rate of 15-min granularity. The
consumption data during regular operation was used to estab-
lish the baseline consumption for each building. This baseline
was predicted using Southern California Edison (CASCE) [1].
The actual consumption during a DR event was predicted
using the ARIMA model [12]. The reduction achieved for
each building was measured as the point difference of these
two time series. The designated period of the DR event was
1-5PM which is the period of peak demand at USC [4].
However the curtailment matrix consists of 96 intervals which
represent a whole day. Hence a schedule can be provided for
an arbitrary period of the day given the existence of reduction
data. For the experiments we used a variety of reduction targets
ranging from 100 to 3,000 kWh. In the experiments we used

Fig. 6: Comparison of predicted to achieved reduction using an
increasing window of previous events.

Fig. 7: Comparison of predicted to achieved reduction with stable
window=2 size.

observed consumption information from previous consecutive
events to predict the upcoming events. The events to which
we compared our prediction are presented in consecutive order
according to the date they were submitted.

B. Achieved Reduction

The effectiveness of the policy engine was evaluated by
comparing the predicted reduction with the actual achieved
reduction. The predicted reduction is calculated using a win-
dow of continuously increasing size that includes the previous
DR events. The consumption of these events is predicted and
compared with the baseline of the next immediate event. The
actual reduction is the observed reduction of the next DR event
not included in the prediction.

The results of the experiment can be seen in Fig. 6. The
main diagonal line represents the ideal scenario were the
prediction is 100% accurate and matches the observed actual
curtailment.

Points above the ideal line represent a higher actual reduc-
tion than the predicted one and in reverse points that are below
the line represent a lower actual reduction than the predicted
one. It can be seen that the actual reduction in most instances
is lower that the predicted reduction. However the reduction
target is always very closely approximated. This means that
the difference between the actual and the predicted reduction is
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Fig. 8: Comparison of predicted to actual reduction using real time
DR adaptation.

due to the prediction accuracy. In fact the calculated reduction
will present a higher error since we need to predict both
the baseline and the consumption during DR. This increases
significantly the overall error of several building combinations.

Intuitively we can suspect that external events (e.g., weather
related factor) that characterize older DR events affect the
behavior of each building and in turn the accuracy of the
prediction method. This can be avoided when smaller his-
torical windows are being used for the prediction. In this
case the predicted reduction would be influenced only by
adjacent events in time. We performed experiments using a
stable window of size 2. This means that for the same events
we utilized only the previous two DR events to determine
the reduction. The results are presented in Fig. 7. It can be
observed that in most cases the predicted reduction matched
more closely the actual reduction. However the results are far
from the ideal case for the last events. In our problem the
accuracy of the prediction methods is very important as the
selection procedure assumes accurate data to make a calculated
suggestion.

As it was mentioned in Sect. IV the system has the ability
to adapt on demand. This means that it can detect through
real time monitoring that the achieved reduction is lower
than expected and suggest a new schedule to make up for
the missing reduction. This feature can help increase the
achieved reduction overcoming the induced prediction error.
We performed experiments using the difference between the
predicted and actual reduction to test the adaptation mecha-
nism. In Fig. 8 we present the results of these experiments.
It can be observed that the quality of the results increased.
The adaptation mechanism successfully compensates for the
prediction error and produces better results in terms of the
actual achieved reduction.

C. Sustainability
As we stated in Sect. I a sustainable reduction is very

important if we want to keep the curtailment across a longer
time frame. Next we evaluate the sustainability of the provided
solution using Eq. 1 which measures the slope variations
between consecutive points. It ranks the sustainability of the
provided solution independently of the targeted reduction. The

Fig. 9: CDF depicting the level of sustainability of the predicted
reduction for a variety of reduction targets.

Fig. 10: CDF depicting the level of sustainability of the achieved
reduction for a variety of reduction targets.

sustainability was measured for both cases of the window
prediction methods described previously.

In Fig. 9 we present the level of sustainability of the pre-
dicted reduction. It is observed that the reduction achieved is
highly sustainable since almost 90% of the solutions provided
have a slope variation less than 1.

Although the results of the predictions are promising it does
not follow up for the sustainability of the actual achieved
reduction. In Figure 10 we present the CDF plot of calculated
level of sustainability for the observed reduction. The graph
shows a clear increase in the slope variations indicating a
sustainability lower than the predicted one. This is a direct
result of the low prediction accuracy which cannot be solved
by on demand DR adaptation unless a highly accurate baseline
is used. This is because adaptation is based on the prediction
which provides a reduction more stable than the actual ob-
served reduction. Achieving a sustainable reduction adaptation
will have to utilize information about the real time evolution
of the observed consumption data and make a decision based
on them.

D. Execution Time

Synthetic data were used to measure the execution time of
each component of the selection procedure. Here we use 10
strategies per building which is a realistic scenario drawn from
the available strategies of the real dataset used in our previous
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Fig. 11: Percentage utilization of the overall execution time for each
individual step of the selection procedure by the policy engine.

experiments. The results are presented in 11. It is clear that
the execution is independent of the reduction target. It depends
only on the size of the dataset. Roughly 90% of the execution
time is spend on retrieving the reduction information. This
includes updating the consumption values with the latest data
from the FMS FTP server. As the size of the input increases
with the number of buildings this becomes a serious bottle-
neck. The actual execution time however is relative low unless
taking into account the retrieval time. The execution time can
be further improved by pre-computing information which is
regularly used in the selection procedure. This includes the
representatives or even the constructed building groups, unless
the curtailment matrix is frequently updated.

VI. CONCLUSION

In this paper we presented an integrated platform for sus-
tainable DR. The DR events are handled by providing a highly
sustainable schedule of participating customers given a specific
reduction target. It has been shown that the presented system
has the ability to overcome the prediction error when utilizing
the real time adaptation mechanism. However the adaptation
cannot currently ensure a sustainable reduction because it is
based only on the predicted reduction values. This indicates
that the prediction methods are the ones limiting our system’s
effectiveness.

In our future work we need to deal with two aspects. The
first is related to the efficiency of the selection procedure as
our implementation will not scale well for a larger number
of households. Moreover it is imperative to deal with the
inaccuracies of the prediction models to achieve a highly
sustainable DR event.
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