
 

 

Efficient Extraction of High Centrality Vertices in  
Distributed Graphs

Alok Gautam Kumbhare 

Computer Science Department 

University of Southern California 

Los Angeles, CA USA 

email: kumbhare@usc.edu 

Marc Frincu, Cauligi S. Raghavendra and Viktor K. Prasanna 

Department of Electrical Engineering 

University of Southern California 

Los Angeles, CA USA 

email: ffrincu, raghu, prasannag@usc.edu 

  



 

Acknowledgement   

This material is based upon work supported by the Department of Energy under Award Number  

DE-OE0000192. 
 

Disclaimer  

This report was prepared as an account of work sponsored by an agency of the United States  

Government. Neither the United States Government nor any agency thereof, the Los Angeles  

Department of Water and Power, nor any of their employees, makes any warranty, express or  

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or  

usefulness of any information, apparatus, product, or process disclosed, or represents that its use  

would not infringe privately owned rights. Reference herein to any specific commercial product,  

process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily  

constitute or imply its endorsement, recommendation, or favoring by the United States  

Government or any agency thereof. The views and opinions of authors expressed herein do not  

necessarily state or reflect those of the United States Government or any agency thereof. 



Efficient Extraction of High Centrality Vertices in
Distributed Graphs

Alok Gautam Kumbhare
Computer Science Department

University of Southern California
Los Angeles, CA USA

email: kumbhare@usc.edu

Marc Frincu, Cauligi S. Raghavendra and Viktor K. Prasanna
Department of Electrical Engineering

University of Southern California
Los Angeles, CA USA

email: {frincu, raghu, prasanna}@usc.edu

Abstract—Betweenness centrality (BC) is an important mea-
sure for identifying high value or critical vertices in graphs,
in variety of domains such as communication networks, road
networks, and social graphs. However, calculating betweenness
values is prohibitively expensive and, more often, domain experts
are interested only in the vertices with the highest centrality
values. In this paper, we first propose a partition-centric algo-
rithm (MS-BC) to calculate BC for a large distributed graph that
optimizes resource utilization and improves overall performance.
Further, we extend the notion of approximate BC by pruning
the graph and removing a subset of edges and vertices that
contribute the least to the betweenness values of other vertices
(MSL-BC), which further improves the runtime performance. We
evaluate the proposed algorithms using a mix of real-world and
synthetic graphs on an HPC cluster and analyze its strengths and
weaknesses. The experimental results show an improvement in
performance of upto 12x for large sparse graphs as compared
to the state-of-the-art, and at the same time highlights the need
for better partitioning methods to enable a balanced workload
across partitions for unbalanced graphs such as small-world or
power-law graphs.

I. INTRODUCTION

With the development of massive online social networks
and graph structured data in various areas such as biology,
transportation, and computer networks, analyzing the rela-
tionship between the various entities forming the network is
increasingly important as it allows complex behavior in these
large graphs to be explained. The relative location of each
vertex in the network helps identify the main connectors,
where the communities are, and who is at their core. Centrality
indices measure the importance of a vertex in a network [1]
based on their position in the network. Betweenness centrality
(BC) is one such useful index that is based on the number of
shortest paths that pass through each vertex. Formally, BC for
a vertex v is defined as the ratio of the sum of all shortest
paths that pass through the node v and the total number of
shortest paths in the network [2]:

BC(v) =
∑

s6=v 6=t∈V

δst(v) =
∑

s6=v 6=t∈V

σst(v)

σst
(1)

A simple approach to compute BC is in two steps: first,
the shortest paths between all pairs is computed, and second,
the length and number of pair-dependencies (i.e. δst(v)) are

computed and hence the betweenness centrality. This has
O(n3) time, and O(n2) space complexity.

Brandes [2] proposed a faster algorithm with O(n + m)
space complexity and O(nm) time complexity for unweighted
graphs (andO(nm+n2log(n)) for weighted graphs). The main
idea behind Brandes’ algorithm is to perform n shortest path
computations and to aggregate all pairwise dependencies with-
out explicitly iterating through n2 shortest paths to calculate
BC for each vertex. To achieve this Brandes noticed that the
dependency value δs(v) =

∑
t∈V δst(v) of a source vertex s

on a vertex v satisfies the following recursive relation:

δs(v) =
∑

w,v∈pred(s,w)

σsv
σsw

(1 + δs (w)) (2)

where pred(s, w) represents the set of predecessors of w in the
shortest path from s to w. By using Equation 2 the algorithm
revisits the nodes starting with the farthest one from s, and
accumulates the dependency values.

It can be easily seen that the algorithm exposes parallelism
at multiple levels. Mainly the shortest path exploration from
different source vertices as well as the computation of the
individual shortest paths from a given source can be done
in parallel. The first shared memory parallel algorithm that
exploits the former for exact BC evaluation was proposed
by Bader, et al. [3] and later improved [4] by reducing
the synchronization overhead by eliminating the predecessor
multisets. While this approach has been proven to be much
faster, it is architecture specific and assumes a shared memory
architecture. On the other hand we explore BC algorithms for
large graphs partitioned on commodity clusters as opposed
to tightly coupled high performance computing systems since
commodity clusters are more accessible especially due to
emergence of cloud computing paradigm.

In this paper we propose a partition centric bulk syn-
chronous parallel (BSP) algorithm (§III) that exhibits a more
efficient utilization of distributed resources and at the same
time shows a significant reduction in the number of BSP
supersteps as compared to the vertex centric model. To achieve
this we rely on a partition centric approach that we and others
have proposed earlier [5], [6] and perform an initial partition-
ing of the graph which allows us to compute shortest paths
locally before communicating with other nodes, thus reducing
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the communication overhead. Following the conclusions of
Kourtellis et. al.[7] we focus on approximate computations and
extract the top k vertices with highest BC values in order to
speed-up the algorithm. We also propose a light weight pre-
processing step that prunes the graph by removing a subset
vertices and edges (§IV) that have minimum contribution to
the centrality indices of other vertices thus further improving
the algorithm runtime. We demonstrate the scalability and
tradeoffs for the proposed algorithm as well as the augmented
leaf compression version using both real-world and large
synthetic data sets (§V). Finally, We also study the impact
of partitioning imbalance on different types of graphs and
highlight the need for better partitioning techniques.

II. RELATED WORK

Betweenness centrality is a powerful metric used in com-
plex graphs such as social networks as it allows us to identify
the key nodes in a graph. These key nodes allow many nodes
to quickly connect with each other and at the same time they
are critical points in the graph, since by eliminating them we
could possibly split the graph. As a result much work has been
done towards efficiently identifying them since they were first
introduced by Freeman [1].

One important question that needs to be answered is “what
does centrality refer to?”. Borgatti [8] discusses other possible
definitions that look at the types of information flows and the
frequent paths they take when searching for centrality nodes.
While in this paper we restrict ourselves to geodesic paths we
argue that our algorithm can be easily applied to any kind of
centrality definition as long as the initial partitioning takes that
into account.

Brandes’ BC algorithm is highly parallelizable due to
the way shortest paths are explored and computed. Bader
et al. [3] have proposed a shared memory algorithm for
exact betweenness evaluation on a dedicated multi-threaded
Cray XMT system [9]. Improved versions with better memory
utilization [10] and processing and communication overhead
[4] have also been proposed. While these algorithms scale on
dedicated systems they are not suited for large distributed envi-
ronments. This is especially important since with the advent of
cloud computing the graph datasets may be distributed across
compute nodes with relatively higher network latency.

Distributed vertex[11] and partition centric algorithms [12]
have also been proposed which exploit the parallelism in
computation of the shortest paths. Houngkaew et al. [13]
extends the space efficient partition centric approach proposed
by Edmonds et. al. [12] by further exploiting the per compute
node level parallelism to accumulate dependencies (with ex-
plicit mutual exclusion similar to Bader et. al.[3]). While both
these approaches are space efficient, we observe that only the
compute nodes on the fringe of the shortest paths computation
are active and hence leads to under-utilization of the cluster.
Our approach improves upon them by computing multiple
shortest paths starting from different compute nodes in parallel,
albeit, at the expense of additional space requirements.

Because computing BC is extremely costly due to the all-
pair shortest path calculations approximate versions have been
proposed. The main motivation is that good approximations
can be an acceptable alternative to exact scores. Bader et

al. [14] proposed an efficient approximate algorithm based
on an adaptive sampling and more recently Kourtellis et al.
[7] proposed identifying the top k high betweenness nodes,
arguing that the exact value is irrelevant for the majority of
applications and that it is sufficient to identify categories of
nodes of similar importance. In this paper we too address the
aspect of vertices with high BC values and further improve the
performance through graph pruning.

III. PARTITION-CENTRIC BETWEENNESS CENTRALITY

Vertex centric programming models using BSP (e.g. Pregel)
[15], [16] for large distributed graph analytics have improved
the programming simplicity as well as provided a simple
approach for parallelizing graph algorithms. They have been
shown to be useful for a large class of graph algorithms, but
are prone to performance bottlenecks due to several aspects:
low computation to communication ratio because of relatively
small amount of work performed per vertex, synchronization
required at every superstep and the fact that vertex locality
and graph partitioning is ignored by the programming model.
Further, the vertex centric models tend to require a large
number of supersteps to propagate the information across the
graph which further adds to the overall runtime.

To overcome these issues, we and others have proposed
partition (or subgraph) centric programming models [17], [5]
with the goal of improving the computation to communication
ratio by allowing the workers to process an entire partition
at a time without any explicit message passing and thus
reducing the overhead. This also tends to reduce the number of
supersteps required since the messages exchanged between the
partitions are available to all the vertices in that partition. The
number of supersteps to propagate information is reduced from
O(graph diameter) to O(num. of partitions) and is reflected in
several graph algorithms such as single source shortest paths
[5] which forms the basis of the BC algorithm.

Figure 1a shows a sample graph partitioned into three
nodes showing its adjacency list as well as remote vertices
that act as pointers to partitions owning those vertices, while
Fig. 1b shows a generic approach and programming model for
partition centric graph algorithms. The idea is to perform local-
computations on the given graph partition, send messages to
remote vertices if required and incrementally continue the local
work when new messages are received from other partitions.
The Do-Local-Compute and Process-Messages functions (fig.
1b) form a core of any partition centric algorithm.

With the development of such new programming
paradigms, it is important to explore their strengths and
weaknesses with respect to basic kernels in the domain. BC
is one such algorithm in graph analytics and we propose a
partition centric BC algorithm which improves CPU utilization
by increasing parallelism and reduces the number of required
supersteps. While Edmonds et. al. [12] proposed a partition
centric algorithm (referred to as ∆S-BC), they focus on
efficient space utilization and use a ∆-stepping version of
the the Single Source Shortest Paths (SSSP). The ∆-stepping
shortest paths improves utilization by doing a look-ahead and
estimating the distance to the vertices within the look-ahead
window using a label correcting approach and updating the
distance whenever the estimated value is found to be incorrect.
While this approach improves the performance of a single run



Adj List
0 : 1 3
2 : 1
3 : 2 <4, P1> 

<5, P1>  
<8, P2>

Adj List
4 : 6
5 : 4
6 : 7
7 : <11, P2>

Adj List
8 : 9
10 : 9
11 : 9

P0 P1

P2

(a) Sample graph partition with remote vertices.

1: procedure PARTITION-COMPUTE(Partition Graph G, messages<
targetvertex, list < values >>)

2: if superstep = 0 then
3: DO-LOCAL-COMPUTE(G)
4: else
5: PROCESS-MESSAGES(messages)
6: CONTINUE-LOCAL-COMPUTE(G)
7: end if
8: for r: remote-vertices do
9: if condition then

10: SEND(owner(r), r, msg)
11: end if
12: end for
13: if condition then
14: VOTE-TO-HALT
15: end if
16: end procedure

(b) Programming Abstraction.

Fig. 1: Partition-centric programming model

of the shortest path algorithm, it seems to be limited because
the parallization is achieved only by expanding the fringe of
the shortest paths algorithm and does not exploit the fact that
multiple shortest paths need to be calculated for computing the
centrality values.

We sacrifice in-memory space efficiency in favor of better
work distribution among the available processors by running
multiple shortest paths starting in different partitions which
further increases the amount of local compute and improves
the compute to communication ratio. Algorithm 1 (referred to
as MS-BC) shows an overview of our approach. The Algorithm
is divided into four stages, viz. compute SSSP, find successors,
calculate path-counts, and finally update centrality, similar to
the vertex centric model BC algorithm proposed by Jonathan
et. al. 1. Each stage in the algorithm in itself follows the
partition-compute model (Fig. 1b).

Algorithm 1 Partitioned Betweenness Centrality.
1: v ← NEXT-LOCAL-VERTEX
2: COMPUTSSSP(v) . Each partition start a computation from different

source vertex.
3: for Each SSSP Source s in batch do
4: succ[s] ← COMPUTE-ALL-SUCCESORS(s)
5: path-counts[s] ← COMPUTE-PATH-COUNTS(s)
6: UPDATECENTRALITY(CB , succ[s], path-counts[s]);
7: end for

In the SSSP stage each worker independently starts com-
puting the shortest paths from a selected local source vertex,
thus utilizing all the nodes in parallel. This runs a modified
Dijkstra’s algorithm as shown in Alg. 2 which computes
tentative distances to the local vertices from the given source
and sends a message to the corresponding partition whenever
a vertex is identified as a remote vertex. Note that since
a partition has no information about a remote vertex and
the incoming edges, the distance calculated for the local
vertices may be incorrect if there exists a shorter path to the
vertex that passes through a remote partition. This entails that
the label assignment property of the Dijkstra’s algorithm no
longer holds and hence requires decoupling the path count
calculations from the SSSP stage similar to ∆S-BC algorithm
due to its label correcting approach. Further, as each partition

1https://github.com/Sotera/high-betweenness-set-extraction

processes incoming messages (Alg. 2) belonging to different
paths at the same time, it requires additional aggregate space
O(p × (n + m)), where p is the number of partitions and
consequently the number of parallel executions of the SSSP
algorithm.

The compute-all-successors stage traverses the predecessor
tree for the shortest paths from each SSSP source in the
order of non-increasing distance values and finds successors
for the vertices on the shortest paths. The details are omitted
for brevity. Once the successors are identified, the paths-count
stage performs a similar sweep starting at the source of each
shortest path. Finally, the update-centrality stage accumulates
the dependency and centrality values using Eqs. 2 and 1.

IV. EXTRACTING HIGH CENTRALITY NODES

Given that the exact BC is highly compute intensive and
that most applications (e.g., network routing, traffic monitoring
etc.) are interested in finding the vertices with highest central-
ity, algorithms that compute approximate betweenness values
[18] and that extract the high centrality vertices [19] have
been proposed. The general idea behind these algorithms is
to incrementally update the centrality values by computing the
shortest paths from a small subset of vertices, called pivots
until a satisfactory approximation or a stopping criterion is
met. This is done in batches and the criterion is evaluated
at the end of each batch. The batch size has been shown to
have direct correlation with the result quality and the algorithm
runtime. This approach achieves tremendous speed-ups with
high mean precision (MP) while extracting a small set of high
centrality nodes [19].

The partition centric BC algorithm can be easily extended
to incorporate this strategy by utilizing the master compute
function which checks for the terminating criterion at the start
of each superstep.

We further extend the notion of approximation and posit
that further performance improvements can be achieved with
minimal loss of accuracy by performing a pre-processing step
which prunes the graph by removing vertices that satisfy the
following conditions: (1) the vertices being removed do not
exhibit high BC, and (2) removing such vertices has minimum
(or equal) effect on the centrality values of other vertices.



Algorithm 2 Partitioned SSSP Computation.
d ← distance map; . default value for each vertex is ∞.
P ← predecessor map;
Q is a priority queue with vertex distance as the key
1: procedure LOCAL SSSP(SSSP Source src, Queue Q) . Compute local

shortest paths from the given source
2: while Q not empty do
3: u ← pop Q;
4: if owner(u) = current process then
5: for Neighbor v of u do
6: if d[v] > d[u] + 1 then
7: d[v] = d[u] + 1;
8: DECREASE-KEY(Q, v);
9: CLEAR-LIST(P[v])

10: end if
11: if d[v] = d[u] + 1 then
12: P [v]← append u;
13: end if
14: end for
15: else
16: send(owner(u), src, < u, d[u], σ[u], P [u] >);
17: end if
18: end while
19: end procedure

1: procedure PROC. SSSP MSG(SSSP Source src, message list ms)
2: Q ← empty queue;
3: mind[u]← minm∈ms{m.dwhere,m.u = u};
4: min[u]←

⋃
argminm∈ms{m.dwhere,m.u = u} . Get all

messages with minimum distance for each target vertex u
5: upd ← 0
6: for u ∈ min.keys do
7: if d[u] > mind[u] then
8: d[u] ← mind[u];
9: DECREASE-KEY(Q,u)

10: CLEAR-LIST(P[v])
11: end if
12: if d[u] = mind[u] then . on shortest path?
13: for Message m ∈ min[u] do
14: P [u]← P [u] ∪m.P
15: end for
16: end if
17: end for
18: LOCAL SSSP(src, Q)
19: end procedure

We observe that the graph’s leaves (i.e. vertices with at most
one edge) satisfy both these conditions since none of the
shortest paths pass through a given leaf vertex (i.e. BC =
0) and it contributes at most one shortest path starting or
terminating at that leaf vertex with equal contribution to all the
nodes on that path. Hence we use a iterative leaf-compression
algorithm (Alg. 3) as a pre-processing step before running the
partition centric approximate betweenness algorithm. Although
the formal proof for the error bounds is out of scope of the
paper, we present empirical evidence for both performance
improvements and relative error in precision in the following
section.

V. EVALUATIONS

a) Experimental Setup: To assess the quality and per-
formance of the proposed algorithm (with and without leaf-
compression)2 we compare it against the high centrality node
extraction algorithm by Chong et al. [19] implemented using

2available for download at: https://github.com/usc-cloud/parallel-high-
betweenness-centrality

Algorithm 3 Recursive Leaf Compression (undirected graph)
1: while No Updates do
2: for v ∈ V do
3: if EDGECOUNT(v) = 0 then
4: REMOVEVERTEX(v)
5: else if EDGECOUNT(v) = 1 then
6: REMOVEEDGE(Edge)
7: REMOVEVERTEX(v)
8: end if
9: end for

10: end while

Data Set vertices edges type

Enron Email 36,692 108298 Sparse, Preferential Attachment
Gowalla S/N 196,591 1,900,654 Small World
PA Road N/W 1,088,092 3,083,364 Sparse

Synthetic 100,000 199,770
Synthetic 200,000 801,268 Erdos-Renyi sparse graphs
Synthetic 500,000 2,499,973

Synthetic 262,144 2,097,152 Powerlaw, HPCS-GA: SCALE = 18
Synthetic 524,288 4,194,304 SCALE = 19
Synthetic 1,048,576 8,388,608 SCALE = 20

TABLE I: Data Sets

the boost MPI version of ∆S-BC3.

The experiments were run on a HPC cluster consisting
of nodes connected with high speed interconnect each with
two Quad-Core AMD Opteron 2376 processors and 16GB
memory. The experiments were run on a subset of these
nodes ranging from 4 to 64 for different graphs with two
workers per node (i.e. 8 to 128 workers) each with upto
8GB memory allocated to it. The graphs were partitioned and
distributed among the processors using a shared network file
system. For the experimental results we do not include the
data partition, distribution or loading times since these are
consistent across the different studied algorithms and focus on
end-to-end algorithm execution time as a performance metric.
We use Mean Precision (MP) as the quality metrics as defined
by chong et al. [19].

As the quality as well as the performance (due to different
convergence rate) of a given algorithm depends on the selection
and ordering of pivots, we run each experiment three times
with random pivot ordering and report the median MP values
and mean runtime values across the three runs.

b) Data Sets: We evaluate the proposed algorithms over
a mix of different graph types, both real-world as well as syn-
thetic. The real world data sets includes the Enron email data
set, the Gowalla social network graph, and the Pennsylvania
road network data set (Tab. I). Random weights between 1 and
10 are generated for each of the edges. We use the real world
graphs to analyze the quality of the algorithms, especially with
leaf-compression as well as their relative performance. Further,
we use several synthetic sparse as well as power-law graphs
to study the performance characteristics and scalability of the
proposed algorithms both with respect to increasing graph size
and processing cores; and also to study the shortcomings of
the proposed algorithms.

3http://www.boost.org/doc/libs/1 55 0/libs/graph parallel/doc/html/
betweenness centrality.html
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Fig. 2: Execution times for real world Graphs

c) Results: We first compare the quality of the proposed
algorithms using real-world graphs with known ground truth.
Table II shows the mean precision values for different real-
world data set with the pivot batch size varying from 1
to 64 to extract top 32 high centrality nodes. While MS-
BC algorithm should give exactly the same results as ∆S-
BC (∆ = maxedgeweight = 10) [20] given the same set
of pivots, the observed minor variations are due to random
pivot selections. Further, we observe that the effect of leaf-
compression pre-processing step (MSL-BC) on the algorithm
quality is minimal and the average error is less than 10% for
the Enron data set for higher batch sizes while it performs as
well as the others for smaller batch sizes. We see similar trends
for the Gowalla s/n and PA road n/w graphs thus empirically
validating our hypothesis.

Figure 2 shows the average runtime for different real world

graphs over a range of batch sizes. We observe that for the
Enron and the road n/w data sets, MS-BC algorithm shows
significant improvements over ∆S-BC algoritm (≈ 1.5) due
to the better distribution of work among the nodes. Further,
the improvement in performance due to leaf compression
(MSL-BC) is more pronounced (≈ 2x - ≈ 3x) with higher
improvements observed for larger batch sizes. This is primarily
because of the improvement in per iteration (one batch of
pivots) time due to leaf compression as the number of edges are
reduced by 21.19% and 13.74% for the Enron and road n/w
data sets respectively. This leads to corresponding reduction
in the amount of local work done by each worker which gets
accumulated due to the fact that higher batch sizes leads to
more pivots being selected.

However, we observe that the performance of the algorithm
suffers high synchronization penalty for the Gowalla dataset as
the batch size (and hence the parallelism) is increased for a
fixed set of resources. While the Enron and road network data
sets are sparse and balanced (fairly uniform edge distribution),
the Gowalla dataset is a dense graph that exhibits power-law
edge distribution and is unbalanced. The goal of the default
Metis partitioner [21] is to minimize edge cuts while balancing
the number of vertices per node. However, like BC, most
graph algorithms’ runtime is a function of both the number
of vertices and the edges, which is not accounted for by the
Metis partitioner and hence leads to imbalance in the runtime
of the local components, and in turn causes the synchronization
delay during barrier synchronization. For the Gowalla data set
we observe that the Metis partitioner produces partitions with
1:30 ratio of edge count between the smallest and the largest
partition, where as 1:200 ratio for the local compute (including
message processing) function. Further, as we increase the
batch size (i.e. parallelism), this effect gets exaggerated as the
number of pivots to be processed per partition increases. This
implies that the existing partitioning schemes fall short for such
graph analytics and techniques such as LALP and dynamic
repartitioning [16] have been proposed. However the former
is limited in its applicability [16] and the later incurs run-time
performance overhead and hence requires further study.

Second, we study the performance and scalability of the
proposed algorithms using a set of synthetic sparse graphs
generated using the NetworkX graph generator. Figure 3 shows
the execution runtime for sparse graphs of different graph sizes
over a range of workers. We observe that MS-BC and MSL-BC
perform consistently better than ∆S-BC for different graphs
sizes and number of workers (as much as 12x performance
improvement for large graphs) except for the case of small
graphs with large number of workers (e.g. 100K graph with
>64 workers). This is because with the increase in number of

Enron Gowalla CA Road Network
MS-
BC

∆S-
BC

MSL-
BC

MS-
BC

∆S-
BC

MSL-
BC

MS-
BC

∆S-
BC

MSL-
BC

1 59.375 56.25 56.25 31.25 28.125 25 25 28.12 21.8
2 50 28.125 56.25 28.125 31.25 25 37.5 34.37 31.25
4 43.75 46.875 56.25 28.125 31.25 28.125 53.125 50 34.375
8 68.75 59.375 53.125 59.375 62.5 46.875
16 71.875 75 71.875 90.625 84.375 75
32 71.875 81.25 68.75 87.5 81.25 71.87
64 90.625 84.375 75

TABLE II: Mean Precision values for real-world datasets for
different batch size (first column refers to the batch size).



0

200

400

600

800

1000

4 8 16 32 64

Ex
e

cu
ti

o
n

 T
im

e 
(s

e
c)

# workers

∆S-BC MS-BC MSL-BC

(a) #vertices = 100k, #edges = 200k

0

500

1000

1500

2000

2500

3000

4 8 16 32 64

Ex
e

cu
ti

o
n

 T
im

e 
(s

e
c)

# workers

∆S-BC MS-BC MSL-BC

(b) #vertices = 200k, #edges = 800K

0

2000

4000

6000

8000

10000

12000

4 8 16 32 64 128

Ex
e

cu
ti

o
n

 T
im

e

# workers

∆S-BC MS-BC

(c) #vertices = 500k, #edges = 2M

Fig. 3: Execution times for Random Sparse Graphs

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100110120130140

Sp
ee

d
-u

p
 F

ac
to

r

# of workers

100k

200k

500k

Fig. 4: MSL-BC’s speedup relative to ∆S-BC for sparse
graphs.

workers, the partition size decreases and in turn the amount of
local work performed. At the same time there is an increase
in the number of edge cuts, thus increasing the overall com-
munication. These two factors lead to less than ideal scaling
for MS-BC and MSL-BC and hence there is a drop in relative
speed-up as shown in Fig. 4. Further, we observe that MS-BC
and MSL-BC fail to completion for large graphs with small
number of partitions due to increased memory pressure (e.g.
500k with 4 workers).

This shows both MS-BC and MSL-BC scale well with
both the graph size and number of workers for sparse graphs.
However there exists a break-even point for the number of
workers given a graph size beyond which the performance
starts to degrade.

Finally, we extend the scalability experiments over to the
power-law graphs generated using R-MAT [22] power-law
graph generator proposed as part of the HPC Scalable Graph
Analysis (HPCS-GA) Benchmark v1.0 [23] (a precursor to
Graph500 benchmark). The generator takes two parameters,
the SCALE factor and the edge multiplier (M), and generates
a powerlaw graph with |V | = 2SCALE and |E| ≈ M × |V |
with edge weights ranging from 1 to 100. Typically an edge
multiplier value of M = 8 is suggested by the benchmark.

The benchmark also proposes a number of kernels includ-
ing graph construction (K1), large sets classification (K2),
graph extraction (K3), and graph analysis (K4). Of these,
we focus on the graph analysis kernel (K4), the intent of
which is to identify a set of vertices in the graph with
highest betweenness centrality score, which is inline with our

proposed algorithm. However, while the stopping criterion of
our proposed algorithm is based on stability of the extracted
set, the HPCS-GA benchmark uses a fixed number of the
vertices (2K4approx) as pivots. Hence we follow a similar
approach for the following experiments.

The benchmark further proposes a performance metric
called traversed edges per second (TEPS) to measure the
performance characteristics of the algorithm as well as the
underlying hardware. Since the underlying hardware is fixed
for our experiments, we use TEPS to measure the relative
performance of MSL-BC and ∆S-BC. For an approximate
implementation, TEPS is calculated as follows:

TEPS(|V |) =
M× |V | × 2K4approx

timeK4(|V |)
where timek4(|V |) is the execution time for kernel K4.

Given the resource constraints, we use graphs of size
V = 2SCALE , where SCALE = 18, 19, 20 and |E| ≈ 8×|V |.
Figure 5 compares TEPS for ∆S-BC and MSL-BC for differ-
ent graph sizes. For these experiments, we fix the lookahead
value to 100 for ∆S-BC and the batch size (i.e. number of
simultaneous path calculations) to 2 for MSL-BC algorithm.
As noticed, the MSL-BC algorithm out performs ∆S-BC for
all graph sizes. However, the performance gain observed for
powerlaw graphs (2-2.7x) is less than that observed for the
sparse graphs (upto 12x). This is primarily because of the
imbalance in terms of edge density and number of incoming
edges between different partitions of the graph, which in turn
results in straggling partitions that become bottleneck for the
BSP algorithm.

To further study the impact of such straggelers on
MSL-BC, we ran several experiments with fixed graph size
(SCALE = 20), and calculated the TEPS over different batch
sizes. Note that the batch size dictates the number of parallel
SSSPs running per super-step. As the batch size increases,
the amount of work per partition increases proportionally to
the number of incoming edges and the edge density within
the partition. Hence, as shown in Fig. 6, as we increase the
batch size from 2-8, the performance of the algorithm first
increases since the time saved due to increase in parallelism
is greater than the synchronization delay caused due to the
straggling partition. However, as we increase the bath size
the imbalance between the super-step execution increases and
the synchronization delay becomes the bottleneck causing the
performance to drop for higher batch sizes (e.g. 16, 32).
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Fig. 5: TEPS for MSL-BC and ∆S-BC for power-law graphs
at different scales.
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Fig. 6: TEPS for MSL-BC at SCALE=20 for differnt batch
size (parallelization).

Further improvements in the execution time may be achieved
by improving the partitioning scheme that not only balances
the number of vertices across partitions but also balances the
number of edges within and across the partitions.

VI. CONCLUSION

In this paper we proposed a partition centric algorithm for
efficient extraction of high centrality vertices in distributed
graphs that improves the execution time by improving overall
utilization of the cluster and the work distribution. We also
prosed a graph pruning technique based on leaf-compression
that further improves the performance and experimental results
show an improvement of upto 12x for large sparse graphs. Fur-
ther, we studied the performance characteristic of the proposed
algorithm for large synthetic power-law graphs and observed
modest performance improvements of upto 2-2.7x. We also
identified the cause of the performance degradation for power-
law graphs that accentuates the need for better partitioning
methods.

As future work, we will analyze the effect of different par-
titioning schemes on the algorithm performance and propose
a custom partitioner that accounts for graph structure as well
as algorithm complexity while partitioning the data.
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